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Summary

We propose a Bayesian decision theoretic framework for randomization in clinical

trials. The proposed approach reconciles the apparent contradiction between the prac-

tice of clinical trial design and implications of a traditional decision theoretic setup.

Although it is universal practice to use randomization in clinical trial design, a standard

decision theoretic setup does not justify randomized rules. The proposed approach is

based on formally acknowledging that the decision maker might be unable or unwilling

to specify a unique utility function. Instead we proceed with a set of possible utility

functions. We develop a specific algorithm to implement the proposed approach in a

phase II clinical trial comparing k competing experimental treatments. We develop a

sequential myopic design that includes randomization justified by a set of utility func-

tions. Randomization is introduced over all “non-dominated” treatments, allowing for

interim removal of treatments and early stopping. Results are shown for a study to

find the optimal biologic dose of pegylated interferon for platinum resistant ovarian

cancer.
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1 Introduction

We discuss a Bayesian decision theoretic framework to justify randomization in clinical trial

protocols. The proposed approach addresses the conflict between the common practice of

using randomization (for example, Piantadosi, 1997, chapter 9) versus the implication of a

traditional decision theoretic setup that would assign essentially one unique optimal treat-

ment (for example, Berger, 1985, chapter 1.4). Using the proposed setup we develop a specific

algorithm for a decision theoretic design to compare k experimental treatments with placebo

(or standard of care), assuming categorical response. The design is sequential, allowing to

drop inferior treatment arms at any time in the trial, and allowing early stopping when

stopping dominates continuation. Upon stopping the proposed trial design recommends a

set of non-dominated treatments.

The planning of clinical trials with human subjects is driven by sometimes conflicting

ethical and performance considerations (Thall, 2001, Carlin, Kadane and Gelfand, 1998,

Spiegelhalter, Freedman and Parmar, 1996). We feel that any reasonable ethical judgment

of a clinical trial should consider the consequences of all foreseeable outcomes of the trial.

Utilities are numerical values assigned to such consequences. We therefore believe that a

utility based decision theoretic approach to clinical trials provides a useful framework for

efficient and ethical evaluation of clinical trial designs. Model based Bayesian inference

provides a natural context to perform a formal decision theoretical approach. The need for

formal decision theoretic approaches for clinical trial planning was highlighted as early as

Ascombe (1963). See Berry (1993) for a recent discussion. Bayesian trial designs have been

proposed using both, fully decision theoretic (for example, Carlin, et al., 1998) and stylized

approaches (for example, Spiegelhalter et al. 1996, or Stallard, Thall and Whitehead, 1999).

The basic ingredients of a decision theoretic setup are an action space A, a utility function

v, and a probability model p(θ) for all relevant random variables θ, including parameters
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and future data. The probability model could be a prior probability model, or the posterior

predictive model conditional on historical data. It can be argued (DeGroot, 1970) that a

rational decision maker should choose an action in A to maximize the expectation of v with

respect to p(θ).

An important aspect of fully decision theoretic Bayesian approaches is the implication

about randomization. Is a randomized decision justifiable as maximizing expected utility?

We argue, yes, it is. A special case allows a simple justification. If an action a is equal in

expected utility to another action a′, that is, we are indifferent between a or a′, then we may

choose either of them and therefore we may justify a random selection among these two. But

this justification misses the main motivations that leads researchers to choose randomization.

In practice investigators choose randomization to avoid biases due to lurking variables and

time trends, or because constraints of the regulatory process and peer review require them

to do so. Berry and Kadane (1997) propose a formal justification of randomization by con-

sidering the impact of unknown covariates. Another possible formalization of randomization

in a decision theoretic setup is the notion of uncertainty and lack of specification for the

probability model and utility function.

Several approaches have been proposed to help utility elicitation for consequences of

clinical trials. See Spiegelhalter et al. (1996), Bryan and Day (1995) or Wolfson, Kadane

and Small (1996). However, in practice the utility function, for lack of time, difficulty to

combine competing goals, controversy, etc., is not specified as a single function. Rather,

we can at best narrow it down to a set of possible utility functions. In the following we

denote with V a set of utility functions, and assume the decision maker is unwilling or

unable to further specify a single utility function u ∈ V . The problem has been studied from

the perspective of sensitivity analysis to mis-specifications in the utility function and prior

distribution. See Ŕıos–Insua, Ruggeri and Martin (2000) for a review. French and Rios–

Insua (2000) discuss related axiomatic foundational issues. A central notion in the study of
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related problems is the definition of sets of non dominated actions. An action a ∈ A is non

dominated, given information I (a priori and data), if there is no other action a′ ∈ A such

that E{v(a′, θ) | I} ≥ E{v(a, θ) | I}, for all v ∈ V , and E{v(a′, θ) | I} > E{v(a, θ) | I} for

at least one v. The expectation is with respect to p(θ | I). Clearly, one should only consider

non dominated actions. If the set of alternatives is finite (as in our case), then the set of

non dominated actions (e.g. treatments) is non-empty.

In the next section we briefly describe a Phase II clinical trial for finding optimal dose

levels. In Section 3 we use the above ideas to design a sequential clinical trial, using backward

induction, where non dominated treatments (actions) are randomized to select the treatment

for the next patient in the trial. Dominated treatments are abandoned in the course of the

trial and early stopping is entertained for conclusive evidence in favor of a set of treatments.

The finally selected set of treatments could be placebo (or standard of care) only, i.e., the

trial can be stopped early for lack of evidence in favor of any experimental treatments. In

Section 4 we apply the proposed approach to design a clinical trial for the protocol introduced

in Section 2.

2 PEG Intron Protocol

PEG Intron, a pegylated form of alpha interferon, is proposed for treatment of patients

with platinum resistant ovarian, fallopian tube or peritoneal cancer. Preliminary laboratory

studies suggest that chronic exposure of interferon alpha may be an antiangiogenic agent

in ovarian cancer. The main advantages of the PEG modification are a lengthened plasma

half-life and increase in area under the time/concentration curve (AUC). Investigators at

M.D. Anderson Cancer Center (Tedjarati et al., 2002) are currently conducting a phase II

trial that includes adaptive dose allocation to three doses, 1.0, 1.25 and 1.5 µg/kg/week.

One course of the therapy goes over 4 weeks, consisting of a weekly injection of PEG

3



Intron. Injections are subcutaneous, and after the first injection, the drug is provided to

the patients for self–administration. There are no within patient dose modifications. The

protocol design decides on the dose for each new patient and this dose remains the same

for the 4 week treatment. After 8 weeks a response is measured. Responses are classified as

complete remission (CR), partial response (PR), stable disease (SD) and increasing disease

(ID). Previous studies demonstrated good tolerability of PEG Intron, with mild to moderate

flu-like symptoms in the majority of cases. Besides some haematologic changes no other

significant adverse events to PEG Intron administration have been reported for the dose

levels considered in this trial.

3 Trial Design

3.1 The Sequential Decision Problem

Suppose we have treatments t = 1, 2, . . . , T and responses r = 1, 2, . . . , R and a set V of

possible utility functions, assuming that the investigator can not further narrow down the

utility set. For any v ∈ V , the value v(t, r) denotes the utility of consequence r under

treatment t, according to v. We fix a maximum number N of patients to be enrolled in the

trial. At every stage n = 0, 1, . . . , N − 1 of the trial we have to make a two-step decision.

First we decide whether or not to continue the trial for one more period. If we decide to

continue we select a dose to assign to the next enrolled patient. If we decide to stop we

decide upon the best dose that is recommended for further development. The latter decision

includes t = 0 if we do not wish to recommend any of the proposed treatments for further

development, i.e., recommend no treatment or current standard of care. Figure 1 illustrates

the decision process.

– Place Figure 1 around here.
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The following discussion will necessarily involve extensive notation for utilities and ex-

pected utilities with different levels of expectations and maximizations carried out. We

already have introduced v(t, r) for the utility corresponding to the response for one patient.

We will need notation for the utility of the entire trial. We will use u(·) for the utility of

the entire trial, and Un(·) for the corresponding expected utility with the expectation taken

with respect to future responses r. Finally, we will use U∗n(·) for the expected utility after

substituting the optimal treatment decision at time n. Details are defined below when the

various utility functions appear first in the argument.

Assume for the moment that a single utility function v(t, r) ∈ V is chosen for the utility

of consequence r under treatment t. Based on v we now define a utility function u for the

entire trial. Let ti and ri be the assigned treatment and the recorded response for the ith

patient, i = 1, . . . , N . If the trial is stopped at stage n we let tn+1 indicate the recommended

treatment. If n < N , we assume that tn+1 will be used for the remaining N−n patients. Let

dn = 1, n = 0, . . . , N − 1, indicate that the trial is stopped at stage n and dn = 0 otherwise.

Together, the pair (dn, tn+1) constitutes the decision at any stage n. If dn = 0, the trial

continues and the next patient is assigned to treatment tn+1 ∈ {1, 2, . . . , T}. If dn = 1 the

trial stops and tn+1 ∈ {0, 1, . . . , T} is the recommended treatment. Let t1...n = (t1, t2, . . . , tn)

be the sequence of treatments and r1...n = (r1, r2, . . . , rn) be the sequence of responses for the

first n patients in the trial, and rm...n = (rm, . . . , rn). We introduce i = N + 1 as a generic

future patient and define the utility u(dn = 1, tn+1, t1...n, r1...N+1, v) for the entire trial as a

weighted average of the utilities v for each of the patients in the trial plus the utility of the

recommended treatment for future patients. The option of recommending no treatment is
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included as tn+1 = 0.

u(dn = 1, tn+1, t1...n, r1...N+1, v) =

= α v(tn+1, rN+1) + (1− α)
1

N

{
n∑
i=1

v(ti, ri) +
N∑

i=n+1

v(tn+1, ri)

}
, (1)

where α ∈ [0, 1] is the relative weight of the benefit for future patients treated with the

recommended treatment versus the patients in the trial. A special case of (1) is u equal

to the total number of responses, for patients in and beyond the trial (Berry and Stangl,

1996). A default choice for the weight is α = 1/(N + 1). The hypothetical future patient,

beneficiary of the recommended treatment of the trial, is just like any other patient in the

trial. This is what we used in our implementation. The optimal decision tn+1 is found by

computing the expected utility

Un(dn = 1, tn+1, t1...n, r1...n, v) = E{u(dn = 1, tn+1, rn+1...N+1, t1...n, r1...n, v) | tn+1, t1...n, r1...n}

(2)

for all possible decisions tn+1. The expectation is with respect to the future outcomes

rn+1...N+1. The relevant distribution is the posterior predictive distribution of rn+1...N+1

under the treatment tn+1, given the current history, p(rn+1...N+1 | tn+1, t1...n, r1...n). However,

since (1) is a weighted sum over v(·, ri), the only relevant probabilities are the marginal

posterior predictive probabilities p(ri | tn+1, t1...n, r1...n) for each ri, i = n + 1, . . . , N + 1.

Note that p(ri | tn+1, t1...n, r1...n) is identical across i = n + 1, . . . , N + 1. We generically

denote the common distribution by p(r | tn+1, t1...n, r1...n) and evaluate Un as

Un(dn = 1, tn+1, t1...n, r1...n, v) = (1− α)
1

N

n∑
i=1

v(ti, ri)+

R∑
r=1

{(
α + (1− α)

N − n
N

)
v(tn+1, r)

}
p(r | tn+1, t1...n, r1...n).

Maximize Un(·) in tn+1 to find the optimal decision t∗n+1. The expected utility of continuation

(dn = 0) is more difficult. To compute the value of continuation we need to know the optimal
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decision in the next period n + 1, and so forth, until the horizon N , when continuation is

not possible. Evaluating expected utilities in such sequential decision problems is solved

by backward induction (DeGroot 1970, chapter 10). The algorithm starts at time N , when

we have no option but to stop the trial and maximize expected utility. The overall utility

U∗N(t1...N , r1...N , v) at time N is equal to the expected utility of stopping and choosing the

optimal treatment:

U∗N(t1...N , r1...N , v) = max
tN+1=0,1,...,T

UN(dN = 1, tN+1, t1...N , r1...N , v).

We use U∗n to denote the value of the optimal decision at time n. At any interim stage n < N

the utility of continuing the trial, dn = 0, with treatment tn+1 is

Un(dn = 0, tn+1, t1...n, r1...n, v) =
R∑

rn+1=1

U∗n+1(t1...n+1, r1...n+1, v) p(rn+1 | t1...n+1, r1...n). (3)

The overall utility is

U∗n(t1...n, r1...n, v) = max
dn=0,1

{ max
tn+1=1,2,...,T

Un(dn, tn+1, t1...n, r1...n, v)}. (4)

The two steps (3) and (4) define the alternating sequence of expectation and maximization

characteristic for the backward induction algorithm. The double maximization in (4) is an

artifact of our notation, splitting the decision at time n into the pair (dn, tn+1).

The outlined backward induction algorithm provides, in theory, the optimal design for

a given utility function v. In practice, however, backward induction even for moderate N

is only computationally feasible with a small number T of treatments and a small number

of responses R, say T ≤ 2 and R ≤ 3 (see Berry and Stangl, 1996). In general it is not

feasible to implement backward induction, let alone the calculation of non dominated sets

of treatments discussed below. We therefore propose to use a 2-step look-ahead procedure

(Berger, 1985, chapter 7). That is, at any time n assume the trial is finishing after two more

patients are enrolled, and perform backward induction under that assumption, i.e., starting

with time n+ 2.
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3.2 Randomization

We now relax the setup to consider a family of utility functions v ∈ V. We modify the

optimal design described earlier in two directions. First, instead of selecting one unique

optimal dose t∗n+1 at each time we report the set A∗ of all non-dominated doses and allow

randomization over A∗ to assign a dose to the next patient. Second, we only stop, dn = 1,

if stopping dominates continuation under all v ∈ V .

In summary, we propose the following design with randomized dose allocation

1. For all v ∈ V , calculate Un(dn, tn+1, t1...n, r1...n, v) using backward induction, i.e., eval-

uate (3) and (4) for N,N − 1, . . . , n.

2. If stopping, dn = 1, dominates, i.e.,

max
tn+1=0,1,...,T

Un(dn = 1, tn+1, t1...n, r1...n, v) ≥ max
tn+1=1,2,...,T

Un(dn = 0, tn+1, t1...n, r1...n, v)

for all v ∈ V , then stop the trial. Otherwise, randomize the next patient among the

non-dominated set of treatments, using Un(dn = 0, tn+1, t1...n, r1...n, v) to define the

non-dominated set.

3. When the trial stops report the non dominated set A∗ of treatments, using Un(dn =

1, tn+1, t1...n, r1...n, v) to define the non-dominated set.

The main features of the proposed design are as follows. Treatments are included or

excluded into the randomization based on their performance provided by all available data.

No patients are assigned to clearly inferior (dominated) treatments. Early stopping is imple-

mented. Multiple winners are possible. When stopping, the cardinality of the non dominated

set may be greater than 1. The first three characteristics have been described as desirable fea-

tures to be included in a clinical trial design (see Pocock, 1983, chapter 7). The fourth allows

for the commonly not considered conclusion that treatments may be considered equivalent.
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In general, it might not be trivial to find the non dominated set of treatments at each

stage, making even a 2-step look-ahead scheme not feasible. Note that, in principle we would

need to calculate a backward–induction for each v ∈ V . Even for a finite action space, an

algorithm for finding non dominated sets in general may be computationally demanding

(see Rios-Insua et al., 1997). However, by restricting the utility set V to have a small

cardinality with some fixed structure, calculations may be feasible. A shuffled utility set

is such that V = {v(t, r) = ctvM(t, r) + (1 − ct)vm(t, r) : ct = 0, 1}, for vM(t, r) ≥ vm(t, r)

for all t = 0, 1, 2, . . . , T , r = 1, 2, . . . , R. A shuffled utility set is compatible with the idea

of having utilities that vary independently within maximum and minimum values. That

is v(t, r) ∈ {mtr,Mtr}, with no further structure. Thus V includes 2T+1 possible utility

functions. Nonetheless, some further structure may be necessarily in particular examples

with utilities varying in more systematic ways. For example, v(t, r) = p vM(t, r) + (1 −

p) vm(t, r) for p ∈ [0, 1]. In such problems, the solution assuming a shuffled utility set

provides a reasonable approximation to the optimal solution.

We consider a shuffled utility set in the PEG intron case study below. A detailed algo-

rithm for the general k-arm clinical trial design is presented in the Appendix.

4 The PEG Intron Trial – Results

We consider the Phase I/II trial described in Section 2. The protocol allows for a maximum

of N = 100 patients, T = 3 dose levels and R = 3 responses. The dose levels are 1.0

µg/kg/wk (t = 1), 1.25 µg/kg/wk (t = 2) and 1.5 µg/kg/wk (t = 3). Recall that t = 0

indicates no treatment. We code responses as r = 1 for CR/PR, r = 2 for SD, and r = 3 for

ID.

For each treatment we assume a multinomial sampling model p(ri|ti = j) = Mn(πj1, πj2, πj3),

with a conjugate Dirichlet prior (πj1, πj2, πj3) ∼ Dir(αj1, αj2, αj3). The prior model as-
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sumes independence across treatments j = 1, . . . , T . Alternatively, a dose-response curve

for response probabilities across treatments could be assumed. This would allow borrow-

ing strength across treatments and to enforce monotonicity if appropriate. However, the

proposed design approach remains the same, independently of the underlying probability

model. All we need to assume of the probability model is that it be possible to compute

the posterior predictive probabilities p(rn+1 | tn+1, t1...n, r1...n). For the conjugate multino-

mial/Dirichlet model these posterior predictive probabilities are evaluated analytically. For

more general models the evaluation might require numerical integration techniques.

4.1 The Utility Set

Consideration of the utility set V is a delicate matter. The strategy we follow here is to

establish the utility in terms of Quality Adjusted Life Years (QALY, see Kaplan, 1995),

relative to failure response. For treatment t and response r, let atr be the life expectancy

(in weeks, months, etc.), and ptr ∈ [0, 1] the quality of life, for a hypothetical patient with

the eligibility characteristics of the trial. The exact value of atr and ptr are difficult to fix.

Instead we allow them to take on maximum and minimum values, that is atr ∈ {amtr , aMtr }

and ptr ∈ {pmtr , pMtr }. The ratio atrptr/at3pt3 represents the relative QALY with respect

to failure response (r = 3). We will use it as utility for response r to treatment t, i.e.,

v(t, r) = atrptr/at3pt3.

Since no considerable adverse events are expected for the selected three doses, we set

pmtr = pMtr = 1 and also amtr = mr and aMtr = Mr. That is, utility is solely dependent on

relative QALY’s of responses. Setting m3 = M3 = 1 the range of utilities then simplifies

to v(t, r) = atr, with atr ∈ {mr,Mr}), t ∈ {0, 1, 2, 3} and r ∈ {1, 2, 3}. For r = 1, 2, we

define m1 = 1.75, M1 = 2, m2 = 1.2 and M2 = 1.5. This reflects a judgment of a 75 –

100% increase in QALY for CR/PR relative to ID, and 20 – 50% relative increase for a SD
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outcome.

4.2 Operating Characteristics

The proposed approach is based on an expected utility argument, leading to an algorithm

that decides treatment allocation and stopping to maximize an underlying utility function in

expectation under the appropriate posterior predictive probabilities. While we consider this a

desirable property, we are also concerned about frequentist properties of the derived decision

rules. This leads us to investigate frequentist operating characteristics of the proposed

trial design. The use of frequentist properties to validate Bayesian inference is common

practice in the context of medical decision making. Thall, Simone and Estey (1995), who

use frequentist error rates to calibrate tuning parameters in a Bayesian decision rule, is a

typical example. We consider six different scenarios, i.e., assumed values for the multinomial

probabilities (πj1, πj2, πj3), t = 0, . . . , 3. Under each assumed scenario we generated 5,000

possible realizations of the entire trial. Results are summarized in Tables 1 through 3. The

tables report for each scenario the assumed true multinomial cell probabilities, the average

number of patients allocated to each treatment, and for each treatment the probability of

selecting the treatment in the recommended (non-dominated) set upon termination of the

trial. Here, the average and the probability are with respect to repeated simulation under

the respective assumed true scenario, i.e., frequentist expectations and probabilities.

– Place Tables 1 through 3 around here.

In all scenarios in Tables 1 through 3 the utility set is as described in Section 4.1,

the prior parameters for the experimental treatments are αtr = 1/3, r = 1, . . . , R and

t = 1, . . . , R. The prior parameters for no treatment (“standard of care”), t = 0, are

(α01, α02, α03) = (5, 5, 90). In all six scenarios the assumed true parameters for the simulation

are (π01, π02, π03) = (0.05, 0.05, 0.90) for no treatment. Thus the chosen prior parameters
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represent a vague prior for the response probabilities under the experimental treatments and

a highly informative prior for standard of care. A maximum of N = 100 patients is set for

all scenarios.

Scenario 1 represents the case where all experimental treatments are ineffective. There

is no difference between treatments and standard of care. Patients are randomly allocated

between treatments. The average trial length is 87.8 patients. The second scenario represents

the case where the standard of care is better (4–7% increase in QALY) than any of the

experimental treatments (0.8% to 1% increase in QALY). Patients are randomly allocated

between treatments, with an average trial length of 75.2 (with a high probability of stopping

early, 95%). As desired, 92% of the cases t = 0 is included in the recommended set. Scenarios

3 and 4 represent two cases where one treatment is superior. In both cases, randomization is

more likely to include only the superior treatment, and the superior treatment is commonly

included in the recommend set (88% and 97%). Scenario 5 contains two non-dominated

treatments. These treatments are far more often included in the randomization than the

dominated treatments, and with high probability they are included in the recommended set.

The trial length is shorter, with a probability of 35% of stopping early. Finally, Scenario 6

is set up with treatment 3 superior to the other treatments (17% to 26% increase in QALY

compared to 5% to 8% increase in QALY). We find an average number of patients of only

60.4, and a probability of stopping early of 70%.

The proposed randomization scheme is adaptive. A treatment is dropped when it is found

dominated by other treatment, but possibly included in the randomization again at a later

time when posterior probabilities change and the treatment reenters the non-dominated set

A∗. Figure 2 shows an illustration of how treatments enter and leave the non-dominated set

A∗, using a simulation under Scenario 6.
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5 Discussion

We presented a Bayesian approach for phase II clinical trials including randomization. The

mechanism to formally construct randomization is to stop short of identifying a single utility

function and proceed with a set of possible utilities. Treatments are randomly allocated

within the non-dominated set. The non-dominated set is computed using myopic sequential

design. Early stopping is included as a possible action in the sequential design. In this

paper we used a simple multinomial model. More complicated models may be used with no

changes in the sequential algorithm.

Here we assume to have one single prior distribution π0. More generally, π0 may be

considered to vary within some prior set D0 (see Chaloner, 1996). The same line of argument

may be followed as above, with the premise that domination is now considered for all v ∈ V

and all π0 ∈ D0 (see Rios–Insua et al., 2000). Conceptually the design remains basically the

same, however with the substantial increase in implementation difficulties.

We have considered that patients are accepted one at a time and, ideally, their response

is obtained before the next patient is considered. A more generally applicable strategy would

be to accept patients in blocks or batches (see Pocock, 1977). This mitigates problems arising

from delayed responses and other logistical complications.

Interested readers can obtain copies of the programs used to implement the examples

in this paper. A program written in R, for illustration and comparison purposes is avail-

able from http://www.cimat.mx/∼jac/software.html. For computing intensive simulations,

a C++ program is available. Contact Kyle Wathen wathen@odin.mdacc.tmc.edu.
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Appendix

Let πtr be the probability of result r under treatment t; t = 0, 1, 2, . . . , T and r = 1, 2, . . . , R.

We assume that (πt1, πt2, . . . , πtR) has a Dirichlet distribution with parameters (αt1, αt2, . . . , αtR).

At any given time in the trial, let S[t, r] denote the number of responses r observed under

treatment t. The T ×R matrix S is a sufficient statistic for the posterior distribution on the

multinomial probabilities πtr given all data observed so far. Substituting S for (t1...n, r1...n)

we use notation like Un(dn, tn+1, S, v) for the expected utilities Un(dn, tn+1, t1...n, r1...n, v), etc.

Also, we use the notation S+(t1, r1) (and S+(t1, r1)+(t2, r2)) to indicate S plus a treatment

t1 with a response r1 (and a treatment t2 with a response r2). We use p(r | t, S) to denote

the predictive probability of obtaining a response r, using treatment t, given the current

summary statistic S. We find

p(r | t, S) =
αtr + S[t, r]∑R

r′=1 αtr′ + S[t, r′]
,

for t = 1, 2, . . . , T and r = 1, 2, . . . , R.

Algorithm

At any given time we compute the 2-step myopic sequential design. The following steps

parallel the structure shown in the decision tree Figure 1. To clarify structure we first
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discuss a straightforward implementation of backward induction for a 2-step myopic design.

Many simplifications are possible in the actual implementation. Details are shown in the

following subsection. To simplify notation we will use subindices 0,1,2 and 3 instead of n,

n+ 1, n+ 2 and n+ 3, respectively. Recall that U∗n(·) denotes expected utility achieved by

the optimal decision (d∗n, t
∗
n+1) at time n.

1. Consider continuing, d0 = 0, with t1 = 1, . . . , T

1.1. For r1 = 1, . . . , R

1.1.1. Consider continuation, d1 = 0:

(a) Consider continuation with t2 = 1, . . . , T

U1(d1 = 0, t2, S + (t1, r1), v) =
∑
r2

p(r2 | t2, S + (t1, r1))×

max
t3

U2(d2 = 1, t3, S + (t1, r1) + (t2, r2))

(Decision d2 = 1 is forced by the myopic nature of the 2-step look-ahead

procedure.)

(b) Consider continuation with optimal t2 = t∗2(0):

U1(d1 = 0, t∗2(0), S + (t1, r1), v) = max
t2

U1(d1 = 0, t2, S + (t1, r1), v).

1.1.2. Consider stopping, d1 = 1. Find the optimal t2 = t∗2(1) as

U1(d1 = 1, t∗2(1), S + (t1, r1)) = max
t2

U1(d1 = 1, t2, S + (t1, r1), v)

with t2 ∈ {0, 1, . . . , T}.

1.1.3. Optimal utility at n+ 1:

U∗1 (S + (t1, r1)) = max
d1

U∗1 (d1, t
∗
2(d1), S + (t1, r1)).
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1.2. Expected utility at n when continuing with t1

U0(d0 = 0, t1, S) =
∑
r

U∗1 (S + (t1, r1)) p(r1 | t1, S).

2. Expected utility at n when continuing. Find the optimal treatment t∗1:

U0(d = 0, t∗1(0), S) = max
t1

U0(d1 = 0, t1, S).

3. Expected utility at n under stopping:

U0(d = 1, t∗1(1), S) = max
t1

U0(d0 = 1, t1, S).

4. Optimal utility at n:

U∗0 (S) = max
d
U0(d, t∗1(d), S).

Implementation Notes

Actual implementation of the algorithm simplifies significantly by noting that many in-

termediate results need not be saved. In particular, U1(d1 = 0, t2, S + (t1, r1), v) is only

required to find the optimal t∗2(0) in U1(d1 = 0, t2, S + (t1, r1), v). It can be evaluated

as needed, and need not be saved. Evaluation can be implemented as a function. And

U1(d1 = 0, t∗2(0), S + (t1, r1), v), in turn, is only required to evaluate U0(d0 = 0, t1, S). It can

be evaluated when needed.

Evaluating Un(dn = 1, . . .):

The (expected) utility of stopping the trial, and deciding in favor of t, given S, is

Un(dn = 1, tn+1 = t, S, v) =

= α V (t, S, v) + (1− α)
1

N

{
(N − n)V (t, S, v) +

T∑
t′=1

R∑
r=1

S[t′, r]v(t′, r)

}
,

where V (t, S, v) =
∑R

r=1 v(t, r)p(r | t, S), is the current expected utility of treatment t.
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Evaluating Un(dn = 0, . . .):

At any time n, n = 0, . . . , N − 2, evaluate U0(d0 = 0, S, t1, v) for t1 ∈ {1, . . . , T}, using the

nested steps 1-3, below,

1. Expected utility under d0 = 0: Implement step 1.2. in the algorithm by evaluating for

t1 ∈ {1, . . . , T}:

U0(d0 = 0, t1, S, v) =
R∑

r1=1

p(r1 | t1, S)U∗1 (S + (t1, r1), v).

For each r1, use step 2, below, to evaluate U∗1 (S + (t1, r1), v).

2. Optimal expected utility at time n+ 1: For each r1 evaluate U∗1 (S + (t1, r1)):

U∗1 (S + (t1, r1), v) = max

{
max

t2=1,2,...,T
U1(d1 = 0, t2, S + (t1, r1), v),

max
t2=0,1,...,T

U1(d1 = 1, t2, S + (t1, r1), v)

}
.

This implements steps 1.1.3 and 1.1.2 in the algorithm.

For each t2, use step 3, below, to evaluate U1(d1 = 0, t2, S + (t1, r1), v).

3. Expected utility under d1 = 0: Implement step 1.1.1. by evaluating for each t2 ∈

{1, . . . , T}:

U1(d1 = 0, t2, S + (t1, r1), v) =
R∑

r2=1

p(r2 | t2, S + (t1, r1))

max
t3∈{0,1,...,T}

U2(d2 = 1, t3, S + (t1, r1) + (t2, r2), v).

At stage n = N − 1, evaluate U0(d0 = 0, S, t1, v) for t1 ∈ {1, . . . , T}, using step 1, above,

substituting U∗1 (S + (t1, r1), v) = maxt2=0,1,...,T U1(d1 = 1, t2, S + (t1, r1), v). This is simply

step 2 without the option of further continuation.
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Optimal decision:

For any stage n < N , if maxt1=0,1,...,T U0(d0 = 1, t1, S, v) ≥ maxt1=1,2,...,T U0(d0 = 0, t1, S, v),

then stop the trial and recommend the non-dominated set of treatments, using U(d = 1, t1 =

t, S, v) to define the non-dominated set. Otherwise, randomize a new patient within the

non-dominated set of treatments according to U0(d0 = 0, t1 = t, S, v) (not including t = 0),

increase n by one, add the patient’s response to S, and go back to 1. If n = N , stop the trial

and recommend the non-dominated set of treatments according to U0(d0 = 1, t, S, v). An

efficient algorithm to calculate non-dominated sets may be found in Rios-Insua et al. (1997).
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Figure 1: Decision tree at stage n.
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Figure 2: Treatments taken into randomization (dots) as a function of time. Time is mea-
sured by the number of enrolled patients. At each time all treatments in the non-dominated
set A∗ are marked with a bullet. Simulation was done under Scenario 6, with treatment
3 dominating t = 0, 1, 2 in the true simulation model (see Table 1). Note how treatments
may leave and reenter again the non-dominated set. At the end of this simulated trial, the
superior treatment t = 3 is the only one considered for allocation, and the trial stops early,
well before the boundary of N = 100 patients.
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Scenario 1

l

l

Treatment
0 1 2 3

1.
02

1.
04

1.
06

1.
08

1.
10

U
til

iti
es

l

l

l

l

l

l

l

l

Trt True (πt1, πt2, πt3) n̄t % RS
( CPR, SD, ID ) (St.dev.)

0 ( 5, 5, 90 ) 0 ( 0 ) 9
1 ( 5, 5, 90 ) 29.2 ( 14.6 ) 54
2 ( 5, 5, 90 ) 29.2 ( 14.4 ) 54
3 ( 5, 5, 90 ) 29.3 ( 14.5 ) 54

n̄ (SD) 87.8 ( 28.8 )
% Stopped Early 31

Scenario 2

l

l

Treatment
0 1 2 3

0.
98

1.
01

1.
04

1.
07

1.
10

U
til

iti
es l

l

l
l

l
l

l
l

Trt True (πt1, πt2, πt3) n̄t % RS
( CPR, SD, ID ) (St.dev.)

0 ( 5, 5, 90 ) 0 ( 0 ) 92
1 ( 1, 1, 98 ) 24.1 ( 8.7 ) 11
2 ( 1, 1, 98 ) 25.1 ( 8.8 ) 11
3 ( 1, 1, 98 ) 25.0 ( 8.7 ) 11

n̄ (SD) 75.2 ( 15.0 )
% Stopped Early 95

Table 1: Operating characteristics. Treatment 0 is no treatment (standard of care) and
treatments 1 - 3 are experimental treatments. In the tables, the second column reports the
simulation truth (πt1, πt2, πt3), i.e., the assumed probabilities for outcomes CR/PR (CPR in
the table), SD and ID (in percent). The column n̄t reports the average number of patients
assigned to each treatment, and % RS is the percentage of simulations when a treatment is
contained in the recommend set (RS). For each scenario the graph to the left of the table
shows the expected utilities under the (true) parameters assumed in the simulation. The
true non-dominated set is indicated by the box around the utility ranges. Note that in all
cases no patients are assigned to treatment 0. This is an arbitrary design choice. If desired
randomization to placebo could be included in the protocol.
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Scenario 3

l

l

Treatment
0 1 2 3

1.
02

1.
06

1.
10

1.
14

1.
18

U
til

iti
es

l

l

l

l

l

l

l

l

Trt True (πt1, πt2, πt3) n̄t % RS
( CPR, SD, ID ) (St.dev.)

0 ( 5, 5, 90 ) 0 ( 0 ) 92
1 ( 1, 1, 98 ) 24.1 ( 8.7 ) 11
2 ( 1, 1, 98 ) 25.1 ( 8.8 ) 11
3 ( 1, 1, 98 ) 25.0 ( 8.7 ) 11

n̄ (SD) 75.2 ( 15.0 )
% Stopped Early 95

Scenario 4

l

l

Treatment
0 1 2 3

1.
02

1.
07

1.
13

1.
18

1.
23

U
til

iti
es

l

l

l

l

l

l

l

l

Trt True (πt1, πt2, πt3) n̄t % RS
( CPR, SD, ID ) (St.dev.)

0 ( 5, 5, 90 ) 0 ( 0 ) 1
1 ( 5, 5, 90 ) 19.5 ( 12.5 ) 19
2 ( 5, 5, 90 ) 19.3 ( 12.2 ) 10
3 ( 10, 20, 70 ) 38.7 ( 18.7 ) 97

n̄ (SD) 77.4 ( 29.9 )
% Stopped Early 48

Table 2: Continuation of Table 1, Scenarios 3 and 4.
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Scenario 5

l

l

Treatment
0 1 2 3

1.
02

1.
07

1.
13

1.
18

1.
23

U
til

iti
es

l

l

l

l

l

l

l

l

Trt True (πt1, πt2, πt3) n̄t % RS
( CPR, SD, ID ) (St.dev.)

0 ( 5, 5, 90 ) 0 ( 0 ) 0
1 ( 5, 5, 90 ) 16.9 ( 11.1 ) 15
2 ( 10, 10, 80 ) 29.6 ( 15.5 ) 60
3 ( 10, 20, 70 ) 37.1 ( 16.5 ) 89

n̄ (SD) 83.6 ( 27.6 )
% Stopped Early 35

Scenario 6

l

l

Treatment
0 1 2 3

1.
02

1.
09

1.
15

1.
22

1.
28

U
til

iti
es

l

l

l

l

l

l

l

l

Trt True (πt1, πt2, πt3) n̄t % RS
( CPR, SD, ID ) (St.dev.)

0 ( 5, 5, 90 ) 0 ( 0 ) 0
1 ( 5, 5, 90 ) 13.2 ( 9.8 ) 6
2 ( 5, 5, 90 ) 13.4 ( 10.2 ) 6
3 ( 20, 10, 70 ) 33.7 ( 22.3 ) 98

n̄ (SD) 60.4 ( 33.4 )
% Stopped Early 70

Table 3: Continuation of Table 1, Scenarios 5 and 6.
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