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Summary. We analyze data from a study involving 173 pregnant women. The data are ob-
served values of the β-HCG hormone measured during the first 80 days of gestational age,
including from 1 up to 6 longitudinal responses for each woman. The main objective in this
study is to predict normal versus abnormal pregnancy outcomes from data available at the early
stages of pregnancy. We achieve the desired classification with a semiparametric hierarchical
model. Specifically, we consider a Dirichlet process mixture (MDP) prior for the distribution of
the random effects in each group. The unknown random effects distributions are allowed to vary
across groups, but are made dependent by using a design vector to select different features
of a single underlying random probability measure. The resulting model is an extension of the
dependent Dirichlet process model, with an additional probability model for group classification.
The model is shown to perform better than an alternative model based on independent Dirichlet
processes for the groups. Relevant posterior distributions are summarized using Markov chain
Monte Carlo methods.

1. Introduction

We develop a semi-parametric Bayesian approach for classification based on longitudinal

markers. We define a suitable extension of hierarchical models to allow such classification.

We introduce a new class of models building on the dependent Dirichlet process (DDP)

models proposed in MacEachern (1999). In a motivating example we compare performance

of the proposed model with parametric Bayesian inference and with traditional maximum

likelihood based classification.

In many disease areas longitudinal markers allow early detection of a specific disease. A

typical example is the use of prostate specific antigen (PSA) profiles over time as marker

for prostate cancer (Morrell et al. 1995; Inoue et al. 2004). A common feature of infer-

ence related to such data is the need for classification rules that allow coherent and easy



sequential updating as the data for a new patient accrue over time. In this paper we pro-

pose a model-based semi-parametric Bayesian approach to classification that facilitates such

sequential updating. The motivating application concerns the classification of pregnancies

into normal and abnormal. To detect a number of complications during pregnancy, a variety

of quantities are measured at the antenatal examinations. One of these clinical variables is

the beta subunit of human chorionic gonadotropin (β-HCG) which shows dramatic changes

in women during pregnancy. It has been established that values of the β-HCG are different

in women who have normal pregnancies with terminal deliveries than in women who have

spontaneous abortions or other types of adverse pregnancy outcomes (France et al., 1996).

This association has made it possible to classify, with some degree of uncertainty, the out-

come of pregnancy. The inference problem is formally described as a discriminant analysis

based on the longitudinal β-HCG outcome.

Classical linear discriminant analysis classifies subjects into one of g groups or popula-

tions using multivariate observations. Usually, these vector-valued observations are obtained

from cross-sectional studies and represent different subject characteristics such as age, gen-

der or other relevant factors. In general, a common and unrestricted covariance matrix is

assumed in the g different groups. Modifications of this method have also been used to

classify subjects when the vector of multivariate observations represents repeated measures

collected in a longitudinal study. Azen and Afifi (1972) introduced a two-stage model in

which a discriminant function is obtained at each time point. In a second stage, the coeffi-

cients enter a linear regression versus time to obtain a slope and intercept. These slopes and

intercepts are then used as input for a final linear discriminant function. This method is

limited by the fact that multiple observations per subject are required to allocate a subject

to one of g groups at any point in time.

Albert (1983) extended the classical concepts of discriminant analysis to multivariate

response curves observed over fixed time intervals. Using interpolation or curve fitting

procedures, a time-varying distance measure between the individual curve and group-specific

curves is used to allocate a subject to a group. This methodology requires that the response

curves in the training sample are fully observed over the considered time interval.

Albert and Kshirsagar (1993) proposed an exploratory method based on a growth curve

structure embedded in a canonical variate analysis to achieve dimension reduction in a

discriminant analysis framework. The authors suggested this approach for classification but

did not apply it in that setting. No longitudinal data structures other than growth curves

were considered.

An important limitation in the use of linear discriminant analysis for longitudinal data

is that the method is only applicable for essentially balanced data, an increasingly excep-

tional situation in longitudinal studies. Therefore, an approach is needed that does not rely
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on complete observations over time. In recent years some work has been done regarding

discriminant analysis for longitudinal data using both linear and nonlinear random effects

models. Tomasko et al. (1999) modified linear discriminant analysis using the mixed model

MANOVA for the estimation of fixed effects and for a determination of various structures

of covariance matrices, including unstructured, compound symmetry, and autoregressive of

order 1. Brown et al. (2001) discussed Bayesian methods in discriminant analysis using lin-

ear random effects models. Marshall and Barón (2000) considered nonlinear random effects

models to describe profiles in different groups and state the optimal allocation rule. Fieuws

et al. (2002) used linear as well as nonlinear random effects models for the description of

group-specific profiles. Recently, De la Cruz-Meśıa and Quintana (2006) give a Bayesian

version to the classification problem for longitudinal data.

All these approaches consider parametric models for the random effects. Unrelated to

the classification problem, several recent references generalize restrictive parametric models

for longitudinal data by placing a nonparametric prior on the random effects distribution.

The literature includes, among many others, Bush and MacEachern (1996), Davidian and

Gallant (1993), Ishwaran and Takahara (2002), Kleinman and Ibrahim (1998), Mentré and

Mallet (1994), Müller, Quintana and Rosner (2004), Müller and Rosner (1997), Walker and

Wakefield (1998), and Zhang and Davidian (2001). In this paper we develop a variation of

these semi-parametric Bayesian longitudinal data models suitable for sequential classification

as desired for inference with longitudinal markers. Specifically, we use an ANOVA-DDP

model (De Iorio et al. 2004) to introduce semi-parametric random effects models that include

dependence across the subpopulations of women with normal and abnormal pregnancies. We

complete the model by adding a probability for group indicators. The augmented model

for the repeated measurements and group indicators allows us to formalize the desired

classification.

The paper is organized as follows. We first give a brief description of the dataset in

Section 2. In Section 3, we extend the framework of traditional classification methods to

the longitudinal hierarchical setting. Section 4 provides a discussion of nonparametric mod-

els based on the Dirichlet process, including methods for introducing dependence across

related random probability measures. In Section 5 we illustrate the proposed longitudinal

classification method using data on β-HCG measured in women with normal and abnor-

mal pregnancy outcomes. An appropriate posterior simulation scheme based on the Gibbs

sampling algorithm is described. Lastly, Section 6 concludes with a final discussion.
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2. Data

We consider a data set reporting repeated measurements on β-HCG for n = 173 young

women, representing 173 different pregnancies over a period of two years in a private ob-

stetrics clinic in Santiago, Chile. The values of β-HCG were measured during the first 80

days of gestational age. The women were classified as normal pregnancies if they had a

normal delivery, or as abnormal pregnancies if they had any complication resulting in a

non-terminal delivery and loss of the fetus. The 173 women altogether contribute a total of

375 observations. Each woman is measured from 1 up to 6 times. These data were originally

presented in Marshall and Barón (2000). Approximately 30 percent of the women had one

β-HCG measurement, 31 percent had two, 33 percent had three, and 6 percent had four or

more measurements.

Figure 1 presents the subject-specific log β-HCG profiles for normal and abnormal

women. The two populations appear clearly distinct when considering the ensemble of

profiles. However, for any one of the profiles the classification into one or the other sub-

population is far less certain, in particular when considering series of partial responses. The

main inference goal in analyzing these data is to provide a rule to classify a new patient. The

rule should allow sequential updating as data accrues for the new patient. The classification

will critically hinge upon the implied inference on the distribution of profiles for each of the

two subpopulations. The proposed semi-parametric model defines a richer class of random

effects distributions than other models.

3. Classification Using Hierarchical Models

We use an augmentation scheme of semi-parametric longitudinal data models to develop the

desired model-based classification for longitudinal marker data.

Let yi = (yi1, . . . , yini
)′ represent the observed response vector for the i-th patient,

recorded at known times t′i = (ti1, ti2, . . . , tini
). Here ni is the number of repeated measure-

ments recorded for patient i. Let xi ∈ {0, 1, . . . , g− 1} denote the known class label for the

ith patient. In our application g = 2, with xi = 0 and xi = 1, indicating normal and abnor-

mal pregnancy, respectively. The label xi is known for women with already reported delivery,

but unknown for women with partial data before delivery. Without loss of generality we as-

sume that xi, i = 1, . . . ,m, is known, and xm+1 is unknown. Also without loss of generality

we assume that xi ∈ {0, 1} takes only two possible values. Let ym = (y1, . . . , ym, x1, . . . , xm)

denote all data, including the recorded class memberships xi, up to the m-th patient. The

classification problem is formalized as reporting p(xm+1 | ym, ym+1). Here ym+1 is the

currently available partial response vector for the new patient m + 1. We now construct a

probability model to allow evaluation of the desired classification probabilities.
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Consider a generic semi-parametric hierarchical model of the form

(yi | θi) ∼ p(yi | θi), (θi | xi, φ,G0, G1) ∼ Gxi
(θi | φ), (G0, G1 | ψ) ∼ Fψ. (1)

In words, data yi for the ith experimental unit is sampled from a probability model pa-

rameterized by a random effects vector θi. The θi are generated from a random effects

distribution Gx, with x = xi. The random effects distribution depends on a covariate xi

specific to the i-th sampling unit and possibly additional hyperparameters φ. In general,

the parameter vector θi might be partitioned into common fixed effects θF and unit-specific

random effects θRi . Fixed effects are in common to all patients, and have no patient index

i. In our example we use this partition. The model is completed by assuming a prior model

for the unknown Gx. If Gx were indexed by a finite dimensional vector of hyperparameters,

for example, normal moments, then the model would reduce to a traditional parametric

hierarchical model. In contrast, in a non-parametric Bayesian approach Gx is assumed to

be a random probability measure with an appropriate prior probability model Fψ for the un-

known distribution. In other words, Fψ is a distribution on distributions. Here ψ indicates

hyperparameters in the definition of Fψ . A popular approach is to assume that each Gx

arises from a Dirichlet process prior, independently across x, conditional on ψ. The random

measures could be linked at the level of the hyperparameters. We discuss more details of

this construction and the proposed alternative model in the next section.

For the top-level sampling model p(yi | θi) in (1) we assume a nonlinear regression

yij = f(θi; tij) + εij , (2)

with a mean function f(θ; ·) parameterized by θ and evaluated at known times tij , j =

1, . . . , ni. The residual term εij is assumed to be normally distributed with mean 0 and

variance σ2.

Model (1) specifies a joint probability model

p(y1, . . . , ym | φ, x1, . . . , xm, ψ),

after marginalizing with respect to G0, G1 and θi, i = 1, . . . ,m. To facilitate classification

we augment the model with a marginal probability for xi:

Pr(xi = x) = πx. (3)

The augmented model implies the desired classification as a conditional probability p(xm+1 |

ym, ym+1), marginalizing with respect to the unknown θi, Gx and other possibly unknown

hyperparameters.

In maximum likelihood classification theory, the probability that a future unit ym+1

belongs to group or population x, is estimated as

p(xm+1 = x | ym+1, y
m, Θ̂) ∝ πx p(ym+1 | xm+1 = x, Θ̂)
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where Θ̂ indicates the maximum likelihood estimate of the fixed-effect parameters that

remain after integrating out all the random effects. The unit is then classified in that group

for which the highest probability is attained.

From a Bayesian viewpoint the classification probabilities are obtained by weighting with

the posterior distributions of the parameters. Let Θ = (φ, ψ, θ1, . . . , θm, θm+1) denote the

vector of all parameters in the model, including those for the new (m+1)-st patient. Using

Bayes’ rule we find the probability that a new unit ym+1 belongs to group x as

P (xm+1 = x|ym+1, y
m) =

∫

p(xm+1 = x|ym+1, y
m,Θ)p(Θ|ym+1, y

m) dΘ

∝

∫

πxp(ym+1|Θ, xm+1 = x)p(Θ|ym) dΘ. (4)

To verify (4) use p(xm+1 = x|ym+1, y
m,Θ) = πxp(ym+1|Θ, xm+1 = x)/p(ym+1|Θ), and

p(Θ|ym+1, y
m) ∝ p(ym+1|Θ)p(Θ|ym). The integration is usually analytically intractable.

Therefore, we shall construct a set of Markov chain Monte Carlo (MCMC) samples {Θ(b), b =

1, . . . , B} from the posterior distribution and use the Rao-Blackwellization

p̂x ≡
1

B

B
∑

b=1

πx p(ym+1 | Θ(b), xm+1 = x) (5)

to approximate (4). If the prevalences πx are unknown hyperparameters as well, then (5)

would use the imputed values π
(b)
x .

Using a percentage correctly classified loss function (McLachlan, 2004), the Bayes classi-

fication of a future ym+1 is given by

x̂m+1 = arg max
x

{p(xm+1 = x | ym+1, y
m)}.

The unit is classified in that group for which the highest posterior probability is attained.

4. Semi-parametric Models for Longitudinal Classification

We now discuss specific choices for the random probability measure Fψ in (1). We start

with a review of the Dirichlet process (DP) and some extensions.

The DP is a probability measure on the space of distributions functions defined on some

space X (equipped with a σ-field B). We use DP(M,G?) to denote the DP, where M > 0 is

a scalar (precision parameter) and G? is a specified baseline distribution defined on (X ,B).

A random distribution function G on (X ,B) generated from DP(M,G?) is almost surely

discrete and admits the following representation. Letting δa denote a Dirac measure at a

we have

G =
∞
∑

`=1

ω`δµ`
. (6)
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The weights ωl and locations µ` are generated by the following stick-breaking scheme: ω1 =

z1, ω` = z`
∏`−1
r=1(1 − zr), l = 2, 3, . . . , with z`

iid
∼ Be(1,M), and µ`

iid
∼ G?, independently of

the ω` (Sethuraman, 1994).

The use of DPs to model random distributions entails some limitations. In particular,

the random probability measure G is almost surely discrete. A commonly used extension

to mitigate this limitation is the DP mixture model (Antoniak, 1974). DP mixture (DPM)

models avoid the discreteness by introducing an additional convolution with a continuous

kernel. This model has become popular in applied Bayesian nonparametric work. The

typical DPM model assumes

θ1, . . . , θm
iid
∼ GM (θ),

with GM (θ) =

∫

f(θ | µ) dG(µ), and G ∼ DP(M,G?), (7)

that is, a mixture with a DP prior on the random mixing measure G. We use GM to

denote the random mixture model with mixing measure G. The mixture model (7) can be

equivalently written as a hierarchical model by introducing latent variables µi and breaking

the mixture as θi|µi ∼ f(θ | µ) and µi
iid
∼ G, i = 1, . . . ,m, and finally G ∼ DP(M,G?). One

of the attractive features of DPM models is the straightforward nature of posterior MCMC

simulation. The computational effort is, in principle, independent of the dimensionality of

µi. Efficient MCMC simulation for general DPM models is discussed, among others, in Bush

and MacEachern (1996), Escobar and West (1995), MacEachern and Müller (1998), Neal

(2000) and Jain and Neal (2004).

Several papers have considered extensions of DP and DPM models to hierarchical models

over related random distributions, as needed to model the joint prior on (G0, G1) in (1).

Some of the earliest developments of dependent DP models appeared in Cifarelli and Regazz-

ini (1978), who defined dependence across related random measures {Gx} by introducing

a regression for the baseline measure G?x of marginally DP distributed random measures,

Gx ∼ DP (M,G?x). The model is used, for example, in Muliere and Petrone (1993), who

define dependent nonparametric models Gx ∼ DP(M,G?x) by assuming a regression in the

baseline measure G?x = N(βx, τ2). Comparing with the notation in (1), the hyperparame-

ters here are ψ = (M,β, τ). Similar models are discussed in Mira and Petrone (1996) and

Giudici, Mezzetti and Muliere (2003).

Linking the related nonparametric models through a regression on the parameters of the

nonparametric models limits the nature of the dependence to the structure of this regression.

MacEachern (1999) proposes the dependent DP (DDP) as an alternative approach to define

a dependent prior model for a set of random measures {Gx}, with Gx ∼ DP marginally.

Recall Sethuraman’s stick-breaking representation (6) for the DP random measure, Gx =
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∑

h ωxhδµxh
. The key idea behind the DDP is to introduce dependence across the measures

Gx by assuming the distribution of the point masses µxh to be dependent across different

levels of x, but still independent across h. In the basic version of the DDP the weights

are assumed to be the same across x, that is, ωxh = ωh. To introduce dependence of µxh

across x MacEachern (1999) uses a Gaussian process. An application to spatial modeling is

further developed in Gelfand et al. (2005) by allowing the locations θ to be drawn from a

random field (a Gaussian process). The same method to induce dependence is used in De

Iorio et al. (2004) to achieve an analysis of variance (ANOVA)-type structure on µxh across

x. Griffin and Steel (2006) introduce dependence in nonparametric distributions by making

the weights in the Sethuraman representation dependent on the covariates. We chose to

fix the weights wxh across covariates and introduce the dependence through the point mass

locations µxh, mainly because of computational simplicity.

The construction introduced in De Iorio et al. (2004) is a natural approach to introduce

dependent DP measures to implement (1). Specifically, let d′i = (1, 0) if xi = 0 and d′i =

(1, 1) if xi = 1. We assume:

θi ∼ GMx (θi), with GMx (θ) =

∫

N (θ|αdi, τ
2) dG(α), G ∼ DP(M,G?ψ). (8)

Here ψ indicates hyperparameters in the definition of the base measure. In words, the

trick to construct dependent random measures GMx is to start with a random measure on

the coefficients α. Depending on xi, a design vector di selects a linear function of the

α. Finally, using an additional convolution with a normal kernel we define continuous

and dependent random measures GMx . Introducing latent variables αi, model (8) can be

equivalently rewritten as a hierarchical model:

θi = αidi + ηi, αi ∼ G, G ∼ DP(M,G?ψ), (9)

with ηi ∼ N (0, τ2). Let p denote the dimension of θi. The latent variable αi is a (p × 2)

random matrix. The first column, αi0, is the random effects vector for a patient from group

x = 0. The second column, αi1 is the offset to generate a random effect for a patient

from group x = 1. The proposed modeling strategy implies that the αi0 parameters are

estimated from data coming from both groups. At the same time, we can learn about

possible dependencies between αi0 and αi1 that may be group-specific. Learning about such

features is not possible with alternative models involving a priori independent nonparametric

models, e.g. two independent DPs. Under a model with two independent DPs we would

only learn about αi0 for patients from the group xi = 0, and about αi0 + αi1 for patients

from the group xi = 1. Inference about the dependence of αi0 and αi1 for a future patients

would not be possible. Later, in Section 5.2 and Table 2, we will show how in the example

the increased borrowing of strength in the dependent model leads to a small improvement
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of the misclassification rate, from 21.9% to 19.6%. The model is completed with a sampling

model for yi, yi ∼ p(yi | θi), a marginal prior, Pr(xi = 1) = π1, for xi, and hyperpriors

on unknown hyperparameters, including τ 2,M, ψ and π1. See Section 5 for an example of

specific choices in an application.

The equivalent hierarchical model (9) highlights the nature of the model as a DP mixture

model, allowing the use of any of the posterior MCMC simulation methods proposed for

such models. Compared to MCMC for DP mixture models, as summarized, for example,

in MacEachern and Müller (2000), the only additional step is the imputation of the latent

group indicators xi. We briefly summarize key features of the MCMC implementation. The

discrete nature of the DP random measure G implies a positive probability for ties among

the latent quantities αi in (9). The configuration of ties determines many details of the

MCMC. Let k denote the number of distinct values among {αi, i = 1, . . . ,m} and let

{α∗

j , j = 1, . . . , k} denote such values. Recall from the discussion after (6) that α∗

j ∼ G?,

i.i.d. We define configuration indicators si with si = j if and only if αi = α∗

j . The

unique values (α∗

1, . . . , α
∗

k) and configuration indicators s together provide an alternative

representation of (α1, . . . , αm). The marginal prior for (s1, . . . , sm | G?,M), marginalizing

in particular with respect to the random probability measure G can easily be described.

It is known as the Polya urn scheme (Blackwell and MacQueen, 1973). This fact greatly

simplifies posterior MCMC simulation for the DP mixture models, such as (9) together

with (3) and the sampling model (2). We outline the transition probabilities used in the

MCMC implementation. We use notation [x | y, z] to indicate that the parameter x is

updated conditional on currently imputed values for y and z. We use Y to generically

denote all data, θ to indicate the set of all θi, and s−i = (s1, . . . , si−1, si+1, . . . , sm), etc.

Also, φ = (τ2, β1x, β2x, σ
2
x, x = 0, 1) and ψ = (ξ, R,M). Each iteration of the MCMC

consists of the transition probabilities [α∗

j | s, θ, ψ, φ], [αi | θi, α−i, ψ, φ], [θi | αi, φ, Y ],

[β | θ, φ, Y ], [xm+1 | . . .], and transition probabilities to change the remaining parameters

σ2
x, τ

2, ξ, R, and M .

Note that changes in the sampling model (2) would not impact the transition probabili-

ties for αi and the parameters specific to the DP model. Updating θi proceeds like inference

in a fully parametric model with sampling model (2) and normal prior θi ∼ N(αidi, τ
2). In

other words, the computational effort related to the longitudinal model is the same as in a

fully parametric model.
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5. Application

5.1. Model specification
We apply the proposed model to the analysis of the longitudinal β-HCG data. Mean values

of the log β-HCG for the 173 women show a nonlinear relationship with days of pregnancy.

Figure 1 shows time profiles for normal and abnormal pregnancies. The analysis in Marshall

and Barón (2000) suggests that woman-to-woman variation is adequately accounted for by

the introduction of random effects to model the asymptotic behavior of the log β-HCG level

(θi below). They proposed the following nonlinear random effects model. Recall that yi =

(yi1, . . . , yini
)′ are the observed log β-HCG measurements at occasions ti = (ti1, . . . , tini

)′

for woman i = 1, . . . ,m = 173, and x = 0, 1 indicate, respectively, normal and abnormal

pregnancy groups.

yi|(xi = x) ∼ N (µix, σ
2
xIni

), with

µix = θi [1 + exp{−(ti − β1x)/β2x}]
−1
. (10)

Here θi is a scalar subject-specific random effect, and βx = (β1x, β2x), x = 0, 1, are bivariate

fixed effects for the abnormal and the normal group, respectively. In model (10), the vector

(θi, β1x, β2x) characterizes the profile for the ith woman in group x. Marshall and Barón

(2000) and De la Cruz-Meśıa and Quintana (2006) assumed θi ∼ N (θx, τ
2
x).

A simple parametric model with a normal random effects distribution is adequate to

describe subject-specific profiles and to fit smooth profiles to observed data. However, de-

tailed features of the random effects model can critically change the predictive classification

probabilities for patients with random effects that are imputed away from the center of

the estimated random effects distributions. This leads us to consider the semi-parametric

model (8), or its equivalent version (9). We will later compare the proposed non-parametric

inference with a comparable parametric model and show how the nonparametric extension

changes critical predictions.

In (9) we assume for the baseline distribution G? a 2-dimensional normal distribution.

Specifically, we take G? = N2(ξ, R). To complete the model specification, we assume inde-

pendent hyperpriors

βx ∼ N2(β0x, B0x), σ2
x ∼ IG(a0x, b0x), τ2 ∼ IG(c0, d0),

ξ ∼ N2(ξ0,Σξ), R−1 ∼ Wishart2
(

q, [qR0]
−1

)

(11)

Here, IG(a, b) denote the inverse gamma distribution, parameterized to have mean 1/(b(a−

1)). The Wishart prior on R−1 is parameterized such that E(R−1) = R−1
0 . The first

parameter of the Wishart distribution is the scalar parameter; the second is the matrix

parameter.
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The implementation of model (9) requires adopting specific values for M , a0x, b0x, c0,

d0, q, β0x, ξ0, B0x, Σξ and R0. The parameter M of the DP prior DP(M,G?) controls how

close a realization of the process is to the baseline distribution G?. Additionally, in the DP

mixture model, M controls the distribution of the number of distinct elements of the vector

(α1, . . . , αm) and hence the number of distinct components of the mixture (see Antoniak,

1974, and De Iorio et al., 2004, for more details). TreatingM as an unknown hyperparameter

and assuming a gamma prior, M ∼ G(aM , bM ), Escobar and West (1995) derive an efficient

posterior sampling scheme for M . We follow this approach, using aM = bM = 1.

The values of the other hyperparameters in (11) were taken as β00 = β01 = ξ0 = (0, 0)T ,

B00 = B01 = Σξ = 10000× I2, q = 3, R0 = I2, a00 = a01 = c0 = 3, and b00 = b01 = d0 =

0.01. These choices imply a prior mean variance of σ2
k and τ2 equal to 2,500. Here I2 is the

2 × 2 identity matrix. Prior probabilities of group membership were assumed proportional

to the size of the groups in the training sample. We also performed the analysis with

different hyperparameter values, obtaining very similar results. This suggests robustness to

the hyperparameter choices.

Updating the latent mixture parameters αi and the hyperparameters βx, σ
2
x, τ

2 and M

proceeds with standard posterior simulation methods for DP mixtures. See, for example,

MacEachern and Müller (1998) and De Iorio et al. (2004) for a full description of the Gibbs

sampling scheme.

The full conditionals for implementing the Gibbs sampler, are not available in closed-

form for β1x and β2x. To update β1x and β2x we thus use a Metropolis-Hastings step with

a normal approximation to the full conditional as the candidate distribution. Resampling

M is done by introducing a latent beta-distributed variable, as described by Escobar and

West (1995), based on West (1992).

To perform the Gibbs sampling, we chose starting points in a neighborhood of the MLEs

of model parameters. In theory the Markov chain convergence and ergodic properties are

independent of the initial values. In practice, however, a good choice of starting points

shortens the number of iterations required until practical convergence. We generated 100,000

iterations. After 10,000 iterations, samples were collected, at a spacing of 90 iterations, to

obtain approximately independent samples, leaving us with a total of B = 1, 000 posterior

Monte Carlo samples for calculating posterior quantities of interest.

To diagnose convergence, we used methods available in the BOA package (Smith, 2004).

Because of the high dimensional parameter vector, we prefer to use diagnostics, such as

those proposed by Geweke (1992), which do not require multiple parallel chains.
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5.2. Results
Panel (a) in Figure 2 shows histograms of the subject-specific parameters θi estimated using

the empirical Bayes methods as implemented in the SAS System. Specifically, it shows the

posterior means of θi conditional on all ther other hyperparameters being evaluated at their

MLE’s, for model (10) with normally distributed random effects (see, e.g. Vonesh and Chin-

chilli, 1997). Panel (b) shows posterior predictive draws under the Bayesian semiparametric

approach (BSP) for both abnormal and normal groups, respectively. In panel (b), a smooth

curve shows the posterior estimated random effects distribution GM (θ) = E(GM (θ) | ym).

For comparison, panel (a) shows a kernel density estimate based on the histogram of

the corresponding estimates. To evaluate the posterior mean GM we exploit the identity

GM (θ) = p(θm+1 | ym), which follows from

p(θm+1 | ym, xm+1 = x) =

∫

p(θm+1 | GMx )dp(GMx | ym) =

∫

GMx (θm+1)dp(G
M
x ) = GM .

We can, therefore, approximate GM by a kernel density estimate of posterior predictive

draws, θm+1 ∼ p(θm+1 | ym). The MLE estimates show asymmetry in the normal group

and bimodality in the abnormal group. A nonparametric specification of the distribution of

the random-effects allows for the flexibility to estimate such features. See Figure 2b.

The parameter M induces a distribution on the number of clusters into which the obser-

vations fall. Recall the definition of configuration indicators si in the discussion following

(9). We refer to sets of observations with equal configuration indicators, i.e., a common value

αi, as clusters. The DDP model that we use to implement inference in this article relies

on a single mass parameter, M . For this model, clusters of observations occur both within

and across groups. The number of clusters is stochastically increasing with the number of

observations (see De Iorio et al. 2004). Recall that k was defined as the number of clusters.

Let kx denote the number of clusters of observations in group x. We find the posterior mean

E(kx | ym) (standard deviation SD(kx | ym)) to be 5.9 (1.8), and 5.2 (1.5) for x = 0 and

x = 1, respectively. The posterior mean E(k | ym) (standard deviation SD(k | ym)) is 6.3

(1.9).

As part of the analysis we estimated individual β-HCG profiles and standard errors.

These profiles can be used to assess goodness of fit. Fitted profiles with ±2 posterior

standard deviations curves are displayed for six selected patients in Figure 3. Three of them

in the normal group (patients 2, 66, 75) and the remaining three in the abnormal group

(patients 15, 29, 45). Based on these plots we informally assess the goodness of fit of the

model to the data. The posterior inference captures the varying observation error between

subjects.

Next, we consider the problem of evaluating the classification rule. This is naturally

carried out through an estimate of the associated misclassification rates. At this point we
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could apply the rule to the observed data and count the (relative) frequencies of misclassified

observations. In doing so, we conclude that the BSP yields the best results (data not shown).

However, it can be argued that this yields overly optimistic misclassification error rates as the

same observations are used to determine and to evaluate the classification rule (McLachlan,

2004). Another traditional approach is cross-validation (Lachenbruch and Mickey, 1968). It

computes the classification rule by leaving out one subject at a time and records whether

this observation is correctly classified or not. Here, we classify an observation as abnormal

if the posterior probability for xi = 0 is greater than one half. Table 1 presents the results

using cross-validation based on the method described in Section 4, the Bayesian parametric

approach developed by De la Cruz-Meśıa and Quintana (2006) and a frequentist method

developed by Marshall and Barón (2000). We found interesting differences between the

three approaches. The misclassification rate under the BSP model is 14.5% (25/173), which

is less than under the Bayesian parametric (BP) model and the MLE-based method, 17.3%

(30/173) and 18.5% (32/173), respectively. A traditional way to summarize the above

results is a Receiver Operating Characteristic (ROC) curve, which plots the true positive

rate against the false positive rate for the different possible cutpoints of the classification rule

(0.5 was used when calculating the results displayed in Table 1). Figure 4 shows this curve for

both Bayesian models. We see how the BSP model improves upon the BP method (higher

area under the curve). To further understand the corresponding classification, Figure 5

shows estimated classification probabilities for all 173 women, arranged by true xi, and

within each group sorted in decreasing order. We see how the BSP model dominates the

BP model for most of the range, in the sense of implying higher and lower probabilities

for normal and abnormal pregnancies, respectively. The most noticeable exception is the

rightmost part of the abnormal cases (lowest classification probabilities), where this trend is

reversed. But this is of little concern, as at that range of values for the probabilities, almost

any rule would classify these women as abnormal.

The reported ROC curve provides a conservative comparison in the following sense. It

is based on classification of patients with complete data recorded over the first 80 days of

gestational age. More important for an informed clinical treatment decision are differences in

early prediction, based on early responses only. To illustrate this use, we generate from the

posterior predictive distribution data for one future patient for each group and evaluate (4)

for up to five possible observations. Figure 6 shows how the classification probabilities change

as we accrue more data. The figure compares inference under the proposed semi-parametric

model and a corresponding parametric model fixing the random probability measureG at the

base measure G?. For the normal patient, we observe a steady growth of the probabilities.

In contrast, for the abnormal patient this probability first increases and starts to decrease

to values that leave no question about the classification. A possible explanation for this
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is the rather heterogeneous patterns found for abnormal patients. Indeed, many of these

show an initial increase in the log10 β-HCG responses (just as all the normal patients do)

followed by a decrease in some of the patients. Thus the classification probabilities for

abnormal patients require a few more observations than the normal ones to reflect the

correct outcome. For the abnormal patient the predictive classification probabilities using

the BSP model decrease more rapidly than under the BP model. After two observations we

find a difference greater than 10% in predictive probabilities. From a clinical perspective, a

10% difference in predicted probabilities can be key to making the right treatment decision

at this critical early time. The ROC curve shown in Figure 4 evaluates classification based

on profiles over the entire observation period. As shown in Figure 6, the improvement for

classification based on the first two or three observations is even larger.

To assess the model fit and compare different models, we calculate the conditional pre-

dictive ordinate (CPO) (Gelfand et al., 1995) for each observation. Chen et al. (Chap. 10,

2000) show in detail how to obtain Monte Carlo estimates of the CPO statistics. We can

compare different models using sums of log CPOs of the individual observations. Define

ĈPOi to be the Monte Carlo estimates of the ith subject’s CPO statistic. Greater values

of S =
(

∑

log ĈPOi

)

indicate a better fit. We found S = −117.2 for the BSP model. For

the BP model we found S = −124.1. The difference suggests that the BSP model provides

a marginally better fit to the log β-HCG data than its parametric counterpart.

We next investigate the effect of the dependence introduced in the DDP compared with

a model with two independent DP mixtures. Figure 7 displays the results of 500 posterior

predictive draws from the bivariate distribution p(αm+1 | Y ). We can identify two large

clusters, each suggesting negative correlation among main effect and abnormal pregnancy

offset parameters. The resulting covariance structure clearly differs among these compo-

nents. Note that such findings would not be possible under a model with two independent

DPs. To compare our model with that defined by two independent DP mixtures we changed

(8) by using d′i = (1, 0) and d′i = (0, 1) for xi = 0 and xi = 1, respectively. We use iBSP

to refer to the new model. For a fair comparison we use the same hyperparameter choices

as before, implying in particular that the marginal probability models for the random ef-

fects distributions GMx , x = 0, 1, remain unchanged under the BSP and the iBSP models.

We carried out the same inference as described in Figure 6, focusing on the classification

for a future woman, m + 1, after the first nm+1 = 2 observations, assuming that the un-

known truth is xm+1 = 0, i.e., an abnormal pregnancy. Figure 6 reports the classification

probabilities Pr(xm+1 = 1 | ym+1,1, ym+1,2, y
m) = 50% for the proposed BSP model, and

63% for the BP model. For the iBSP model we find a probability of 55%, justifying the

minor additional effort to implement the DDP model. However, this depends on a single

patient, as just described. We investigated this issue further, considering the classification
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of every patient, based only on the first two observations, and assuming the same propor-

tion of normal pregnancies as was empirically observed. This is essentially equivalent to a

cross-validation of the inference for all patients. Table 2 summarizes the classification as

Normal/Abnormal under each of the competing models. The reported misclassification rates

show an improvement under the dependent model compared to the independent model.

Finally, we investigate the effect of hyperparameter choices on the reported inference.

Again, consider the predicted classification for a future woman (assuming the unknown truth

to be xm+1 = 0) based on one or two observations. Table 3 shows these probabilities for

different combinations of M , E(τ 2) and E(σ2
x). The corresponding probabilities do exhibit

some variation, but the implied classifications remain unchanged. In fact, the estimated

error rates are the same as reported in Table 1 in all cases (data not shown).

6. Discussion

We have proposed a model-based approach to classification of longitudinal profiles. The un-

derlying models in each group or population are given by nonlinear semiparametric models.

Flexibility for relaxing the distributional assumptions is introduced using a nonparametric

specification on the random effects models. Dependence in the growth curves is introduced

through a design vector indicating group membership and selecting appropriate features of

a common underlying random probability measure. The approach is appropriate for classi-

fying longitudinal profiles of datasets with unbalanced data structure. It uses all available

information for classifying subjects over time, regardless of the number or timing of the

observations. Moreover, the influence on discrimination of both the between-group and

within-group components variability can be readily quantified, and the posterior simula-

tion scheme is straightforwardly implemented. The approach is particularly appropriate for

decision-making in clinical practice where the number and times of observations are often

arbitrary and depend on the progression of the patient.

A key feature of our approach is the flexibility provided by the nonparametric model for

random effects. A straightforward generalization of our approach could accommodate more

information available. This can be done by inclusion of more covariates or by considering

other markers, thus extending the framework to a multivariate one.

Limitations of the proposed model are the reliance on posterior simulation and the nature

of the non-parametric generalization. Although posterior simulation is straightforward, it

does require some problem-specific software development. The non-parametric modeling is

on the random effects distribution only, but still requires the user to chose a parametric

model for p(yi | θi). Alternative models could use the available data from patients i =

1, . . . ,m, to learn about the nature of the longitudinal dependence, using, for example,
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methods reviewed in Denison et al. (2002). Another possible extension is the use of problem-

specific decision rules. In the reported inference we classified patients by maximum posterior

predictive probability of group membership. Alternatively, one could imagine an approach

that takes into account the sequential nature of the decision problem. It is conceivable that

even with high probability of abnormal pregnancy a clinician might decide to wait for one

more measurement, trading off the additional information with a possible loss in treatment

options.

Finally model (8) and (9) allows an easy generalization to more general nonparametric

priors on G. In particular, one can easily replace the DP model by a species sampling model

(Pitman 1996), which allows more general prior distributions on configurations of the α

parameters. See further discussion of such models in Ishwaran and James (2003) and in

Quintana (2006).
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Mentré, F., and Mallet, A. (1994). Handling Covariates in Population Pharmacokinetics.

International Journal of Biomedical Computing, 36, 25–33.

Mira, A., and Petrone, S. (1996). Bayesian Hierarchical Nonparametric Inference for

18



Change-Point Problems. in Bayesian Statistics 5, eds. J. M. Bernardo, J. O. Berger,

A. P. Dawid, and A. F. M. Smith, Oxford: Oxford University Press.

Morrell, C.H., Pearson, J.D., Carter, H.B. and Brant, L.J. (1995). Estimating unknown

transition times using a piecewise nonlinear mixed effects model in men with prostate

cancer. Journal of the American Statistical Association, 90, 45-53.

Muliere, P., and Petrone, S. (1993). A Bayesian Predictive Approach to Sequential Search

for an Optimal Dose: Parametric and Nonparametric Models. Journal of the Italian

Statistical Society, 2, 349-364.

Muliere, P. and Secchi, P. (1995). A note on a proper Bayesian Bootstrap, Technical
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Table 1. Classification results using Bayesian parametric
(BP), semiparametric (BSP) and Classical methods.

Classification

Classical BP BSP

Groups n a n a n a

Normal (n) 113 11 115 9 117 7 124

Abnormal (a) 21 28 21 28 18 31 49

134 39 136 37 134 39 173

Table 2. Cross-validation using the first two observa-
tions for DDP and DP

Classification

DDP DP

Groups n a n a

Normal(n) 118 6 116 8 124

Abnormal(a) 28 21 30 19 49

146 27 146 27 173
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Fig. 1. Observed profiles of β-HCG for all 173 women.
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Fig. 3. Fitted Curves for three patients in the normal group (patients 2, 66, 75), and three in the ab-
normal group (patients 15, 29, 45). The points are the actual observations. The solid lines represent
the fitted curves; the dashed lines represent fitted curve ± two posterior standard deviation.
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Table 3. The effect of hyperparameter choices
on the classification probabilities. We report, for
different combinations of M , E(σ2

x) and E(τ 2),
the classification probability for a normal patient
(i.e. the unknown truth is xm+1 = 0) given one
(p1) and two (p2) observations. Here, 1∗ denotes
that for this case M ∼ G(1, 1).

M

E(σ2
x) E(τ 2) 1∗ 5 10

5 0.819 0.816 0.820 p1

0.954 0.950 0.950 p2

5 50 0.822 0.818 0.818 p1

0.955 0.964 0.955 p2

500 0.818 0.816 0.814 p1

0.955 0.961 0.956 p2

5 0.822 0.821 0.817 p1

0.955 0.954 0.951 p2

50 50 0.824 0.818 0.814 p1

0.957 0.961 0.959 p2

500 0.819 0.819 0.814 p1

0.954 0.955 0.958 p2

5 0.819 0.813 0.815 p1

0.954 0.942 0.947 p2

500 50 0.824 0.818 0.819 p1

0.959 0.958 0.957 p2

500 0.818 0.807 0.804 p1

0.955 0.949 0.947 p2
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