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Summary. We develop a Dependent Dirichlet Process model for survival

analysis data. The model extends the ANOVA DDP that was presented in

De Iorio et al. (2004) to handle continuous covariates and censored data. A

major feature of the proposed approach is that there is no necessity for result-

ing survival curve estimates to satisfy the ubiquotous proportional hazards

assumption. An illustration based on a cancer clinical trial is given where

survival probabilities for times early in the study are estimated to be lower

for those on a high dose treatment regimen than for those on the low dose
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treatment, while the reverse is true later for later times, possibly due to the

toxic effect of the high dose for those who are not as healthy at the beginning

of the study.

Key words: Censoring, Dependent Dirichlet process, Markov chain Monte

Carlo

1. Introduction

Bayesian nonparametric and semiparametric models in survival analysis have

become popular recently due to the advances in computing technology and

the development of efficient computational algorithms. The Dirichlet process

(Ferguson, 1973; Ferguson, 1974) is probably the most frequently used tool in

Bayesian nonparametric inference. The Dirichlet process (DP) is a probabil-

ity model for random probability distributions. The DP is indexed with two

parameters, the mass parameter M and the base measure F0. One of the crit-

ical properties of the DP is the almost sure discreteness of the random mea-

sure F ∼ DP (M,F0). Sethuraman (1994) provides a constructive definition

of the DP. Let δ(x) denote a point mass at x. We write F =
∑∞

h=0 phδ(θh),

for the discrete random probability measure F with probability masses ph at

locations θh. Sethuraman (1994) shows that the locations θh are independent,

identically distributed (i.i.d.) samples from the random measure F0, while

the weights are generated by a rescaled Beta distribution, vh ∼ Beta(1,M)

and ph = (1 −
∑

i<h pi)vh. In many data applications the discreteness of the

random measure is inappropriate. Dirichlet process mixture models (DPM)

avoid the discreteness in the sampling distribution by adding an additional
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convolution with a continuous kernel (Antoniak, 1974). The typical DPM

model assumes

yi
iid
∼ H with H(y) =

∫

f(y | µ)dF (µ), F ∼ DP (M,F0) (1)

i.e., a mixture with a DP prior on the random mixing measure. One of

the main attractions of DPM models is computational simplicity. In fact,

posterior simulation for DPM models is well understood (Escobar and West,

1998; MacEachern and Müller, 1998; Neal, 2000).

Some of the earliest work on the Dirichlet process in the context of sur-

vival analysis models dates back to Ferguson and Phadia (1979) and Susarla

and Ryzin (1976) who obtained the Bayesian estimate of the random survival

function and also derived the posterior distribution of the cumulative distri-

bution function with right censored data. Kuo and Smith (1992) proposed

a Gibbs sampler in the case of a Dirichlet process prior with left, right and

interval censored data. Doss (1994), Doss and Huffer (1998) and Doss and

Narasimhan (1998) discussed the implementation of a mixture of Dirichlet

process priors for F (t) = 1−S(t) in the presence of right censored data using

the Gibbs sampler, where S(t) is the survivor function. We refer to Ibrahim

et al. (2001) for a thorough review of Bayesian methods in survival analysis.

An important problem with DP based models in survival analysis is the

inclusion of covariates, since the DP does not have a direct representation

through either the hazard or cumulative hazard function (Hjort, 1990). An

alternative possibility is to specify a DP prior for the distribution of the

random error in the accelerated lifetime model. For such a model to be
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identifiable, we need to centre the residual distribution at zero. This is not

easily accomplished with a DP prior (Ibrahim et al., 2001). However, the

problem can be resolved by modelling the error distribution with a Polya tree

prior (Lavine, 1992). Alternatively, Hanson and Johnson (2002) proposed

a median regression model in which the error distribution is modelled as

a mixture of absolutely continuous Polya trees constrained to have median

zero. Gelfand and Kottas (2003) developed a semiparametric median residual

life regression model. The model is induced by a semiparametric accelerated

failure time regression modelling for log survival time, based on a DP mixture

for the error distribution.

The main contribution of this paper is to propose a model for survival

regression based on a DP prior that allows for the introduction of covariates

in a computationally tractable and naturally interpretable manner. De Iorio,

Müller, Rosner and MacEachern (2004) considered dependent nonparamet-

ric models for a set of related random probability distributions or functions.

They proposed a model that describes dependence across random distribu-

tions in an ANOVA-type fashion. Suppose that the set of random distribu-

tions {Fx, x ∈ X} are indexed by a p-dimensional vector x = (x1, . . . , xp)

of categorical covariates. For example, in a clinical trial F(x1,x2) could be the

random distribution of response times for patients treated at levels x1 and

x2 of two drugs. The probability model for the collection of random distri-

butions (Fx, x ∈ X) is such that marginally, for each x, the random measure

Fx follows a DP(M,F0x) with total mass parameter M and a base measure

F0x. See later for a definition of F0x. The dependence for Fx across x is intro-
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duced using the dependent Dirichlet process (DDP) as defined by MacEach-

ern (1999) to allow regression on a covariate x. The random measures Fx

are almost surely discrete with the point masses generated marginally from

the base measures F0x. MacEachern (1999) introduces dependence across

random measures generated marginally by a DP by imposing dependence

in the distribution of these point masses, maintaining the base measure as

the marginal distribution of the point masses. The model proposed in this

paper extends the work of MacEachern (1999) and De Iorio et al. (2004) to

the survival regression framework. Alternative constructions of families of

dependent random measures with marginal DP distributions are proposed in

Griffin and Steel (2006) and Dunson and Pillai (2006).

In section 2 we will briefly review the DDP model and the ANOVA DDP

model and in section 3 we extend the ANOVA DDP to include continuous

covariates. In section 4 we introduce a survival regression model based on a

Dependent Dirichlet process prior. In sections 5 and 6 we illustrate the pro-

posed model on two real data examples: a cancer clinical trial and data from

the Colombia National fertility survey conducted in 1976. In the appendix

we give details of the Gibbs sampling algorithm needed to simulate from the

model.

2. ANOVA DDP

MacEachern (1999) generalises the DP to the DDP, defining a probability

model for a collection of random distributions, the realisations of which are

dependent. Let {Fx, x ∈ X} be a set of random distributions indexed by x,

5



where X is any covariate space. The collection of random distributions is

then specified as follows

Fx =
∞

∑

h=1

phδ(θxh), for each x ∈ X (2)

where
∑∞

h=1 ph = 1. The dependence across the measures Fx is introduced by

assuming that the locations θxh are dependent across different levels of x, but

still independent across h. Let θh = (θxh, x ∈ X). A probability model for θh

defines a stochastic process indexed by x, for fixed h. The sample path of θxh

provides the locations at each value of the covariate and therefore the degree

of dependence among the random distributions, {Fx, x ∈ X}, is governed by

the level of the covariate x. Let F0x denote the marginal distribution of θXh

at X = x. The marginal distribution, Fx, follows a DP with mass M and

base measure F0x, Fx ∼ DP (M,F0x), for each x ∈ X.

De Iorio et al. (2004) consider an extension of the dependent Dirichlet

process to multiple categorical covariates and illustrate its use as a com-

ponent in modelling complex hierarchical Bayesian models. Assume that

F = {Fx, x ∈ X} is an array of random distributions, indexed by a categori-

cal covariate x. The dependence across the random distribution is introduced

by imposing an ANOVA-type probability model for the locations θxh. To ease

the explanation, assume for the moment that x = (v, w) is a bivariate co-

variate with v ∈ {1, 2, . . . , V } and w ∈ {1, 2, . . . ,W}. The covariates (v, w)

could be, for example, the levels of two treatments in a clinical trial and

Fx could be the random distribution of the recorded measurements for each

patient. The ANOVA DDP model allows us to introduce an ANOVA-type
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dependence structure on F . For example, we might want Fx and Fx′ for

x = (v1, w1) and x′ = (v2, w1) to share a common main effect due to the

common factor w1. The desired construction of dependence is achieved by

imposing the following probability model on the locations θxh

θxh = mh + Avh + Bwh (3)

with mh
iid
∼ po

m(mh), Avh
iid
∼ po

Av
(Avh) and Bwh

iid
∼ po

Bw
(Bwh) and independence

across h, v and w. The joint probability model on F = {Fx, x ∈ X} is

referred to as ANOVA DDP(M, po), where M is the mass parameter and

po is the base measure on the ANOVA effects in eq. (3). Marginally for

each x = (v, w), Fx follows a DP process with mass parameter M and base

measure F0x given by the convolution of po
m, po

Av
and po

Bw
and the dependence

among the random distributions is defined by the covariance structure of the

point masses θxh across x. One great advantage of the ANOVA DDP model

is its interpretability in terms of standard ANOVA concepts. In fact, mh can

be interpreted as an “overall mean”, while Av and Bw are the “main effects”

for covariate levels v and w. Moreover, the ANOVA DDP model is easily

generalised to p-dimensional categorical covariates x = (x1, . . . , xp):

θxh = mh +

p
∑

i=1

Aih(xi)

where Aih(xi) is the main effect due to covariate xi. The inclusion of interac-

tion effects is straightforward as well as the imposition of constraints on some

of the offsets. A crucial feature of the model is that model specification and

computation are dimension independent. As in standard ANOVA models,

we can introduce identifiability constraints for interpretability.
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3. Extension to continuous covariates

In the described construction the ANOVA DDP model requires categorical

covariates. In many data analyses this limits the applicability of the model

when we wish to include continuous covariates. Discretizing the continuous

covariates would involve a loss of information. For simplicity of explanation,

consider the case with bivariate covariates x = (v, z), where v is categorical

and z is continuous. The dependence across the random distributions can be

achieved by imposing a linear model on the point masses:

θxh = mh + Avh + βhz (4)

with mh
iid
∼ po

m(mh), Avh
iid
∼ po

Av
(Avh) and βh

iid
∼ po

β(βh) and independence

across h. As in a standard linear model βh can be interpreted as a slope

coefficient. The model is parametrised by the mass parameter M and the base

measure po on the ANOVA effects and the slope coefficient in (4). Marginally,

for each x = (v, z), the random distribution Fx follows a DP. As in the

ANOVA DDP case, model (4) defines dependence across x by defining the

covariance structure of the point masses θxh across x. We refer to the joint

probability model on F as (Fx, x ∈ X) ∼ LINEAR DDP(M, po).

The model is easily genarilised to more than one continuous covariate.

Moreover, it is not restricted to univariate distributions Fx as the point

masses θxh can also be multidimensional.

4. DDP Survival Regression

Let T be a continuous non-negative random variable defined on [0,∞) de-

noting the event times of individuals in some population of interest. Let
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f(t) and F (t) denote the probability density function and the distribution

function of T , respectively. Then the probability of an individual surviving

until time t is given by the survivor function

S(t) = 1 − F (t) = P (T > t)

Let t1, . . . , tn be n independent and identically distributed survival times,

where ti is the survival time, or time to event, of the i-th individual. A

particular feature of this type of data is censoring, i.e. some lifetimes (often

a non-trivial part of the dataset) are known to have occurred only within

certain intervals, while the remaining lifetimes are known exactly. In this

paper we will deal only with right-censoring, which implies that the event is

observed only if it occurs prior to some prespecified times. But the model

can be easily generalised to account for different types of censoring.

Let νi be the censoring indicator for individual i, where νi = 0 if ti is

right-censored and νi = 1 if ti is an observed event time. Let xi be the p-

dimensional vector of categorical and continuous covariates for individual i

and let fx(t) and Sx(t) denote the density and the survivor function of an

individual with covariates x, respectively. Let φ denote all model parameters

and let D = {ti, νi, xi}
n
i=1 denote the data. The likelihood function is

L(φ | D) =
n

∏

i=1

fxi
(ti | φ)νiSxi

(ti | φ)1−νi

Let N(· | µ, σ2) denote a Normal density function with moments µ and σ2.

For each xi we define a mixture of Normals sampling model fxi
(ti | φ).

p(ti | xi = x, Fx) =

∫

N(ti | µ, σ2)dFx(µ) (5)
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Using the DDP framework we then introduce dependence across covariate

values xi. We assume

{Fx, x ∈ X} ∼ LINEAR DDP(M,F0) (6)

Convolving the discrete measure generated from a DP is an instance of the

general DPM defined in (1).

Posterior inference in model (5)-(6) is most easily performed in the frame-

work of DPM models. For simplicity of explanation, consider a bivariate

covariate x = (v, z), where v denotes a categorical covariate with levels

v = 1, . . . , V and z is a continuous covariate. Let αh = [mh, A2h, . . . , AV h, βh]

denote the row vector of parameters corresponding to the h-th point mass in

the random measures. We set A1h equal to zero to ensure identifiability. Let

di denote a design vector that represents the appropriate ANOVA effect and

the value of the continuous covariate corresponding to xi, so that θxh = αhdi

for x = xi. The generalization to more than two covariates is straightforward.

The model specified in eq. (4)-(6) can then be written as a DP mixture of

linear models

p(ti | xi = x, F ) = Hx(ti), Hx(t) =

∫

N(t | αdi, σ
2)dF (α), and F ∼ DP (M,F0)

(7)

with base measure F0 = (po
m, po

Av
, po

β). To verify that (7) is equivalent to (5)

and (6) note that α ∼ F and θ = αdi imply θ ∼ F0x for x = xi. This is true

by definition of the base measure F0x(θ) in (4). Introducing latent variables
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αi, we can rewrite model (7) as a hierarchical model

ti | xi, αi ∼ N(ti | αidi, σ
2) (8)

p(αi | F ) = F and F ∼ DP(M,F0)

In words, the observations ti are sampled from a mixture of linear models,

with a DP prior on the unknown mixing measure. This representation implies

that any Markov chain Monte Carlo (MCMC) scheme for DP mixture models

can be used for posterior simulation. For example, Neal (2000), MacEachern

and Müller (1998) and Jain and Neal (2004) describe specific algorithms to

implement posterior MCMC simulations in DPM models, while in De Iorio

et al. (2004) relevant modifications needed for the ANOVA DDP model

are discussed. In the appendix we show how the existing algorithms can

be modified to take in account the presence of censored observations in the

data. The conjugate nature of the base measure F0 and the kernel greatly

simplifies posterior simulation.

Other choices of kernels are possible without significantly complicating

inference. A natural alternative for non-negative event times is a mixture

of log normal distributions for the event times and therefore specifying the

model as

p(ti | xi = x, Fx) =
1

ti

∫

N(log(ti) | µ, σ2)dFx(µ) (9)

{Fx, x ∈ X} ∼ LINEAR DDP(M,F0)

As before, we can rewrite model (9) as a DP mixture. This modelling strat-

egy allows for efficient computations. Other alternatives, such as assuming
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an exponential or a Weibull kernel for the lifetimes, are possible. But in re-

gression settings the lack of conjugacy would make computations more costly

and require the use of less efficient MCMC schemes.

We complete model (7) and similarly model (9), by specifying a prior

probability model on the remaining parameters in eq. (8):

σ2 ∼ Inverse-Gamma(
γ

2
,
δ

2
)

M ∼ Gamma(a, b)

F0 = N(c, C), c ∼ N(η, τ 2I) and C−1 ∼ Wishart(γ0, γ
−1
0 Φ0)

Here, I denotes the identity matrix of appropriate dimension, while γ0 and Φ0

are the parameters of the Wishart distribution. Note that the mass parameter

M induces a distribution on the number of clusters in which the observations

fall. See Escobar (1994) for a discussion of the Gamma prior on the total

mass parameter M .

5. Cancer clinical trial

We illustrate the proposed approach with inference for a cancer clinical trial.

The trial is described in Rosner (2005). The data are summarised in table 1.

The data record the event-free survival time in months for 761 women, i.e.

ti denotes the time until death, relapse, or treatment-related cancer. Fifty

three percent of the 761 observations are censored. Researchers are interested

in determining whether high doses of the treatment are more effective for

treating the cancer compared to lower doses. High doses of the treatment

are known to be associated with a high risk of treatment related mortality.
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The clinicians hope that this initial risk is offset by a substantial reduction

in mortality and disease recurrence or relapse, consequentely justifying more

aggressive therapy. In the analysis we consider two categorical covariates

and one continuous covariate: treatment dose (0 = low, 1 = high), estrogen

receptor (ER) status (0 = positive, 1 = negative) and the size of the tumour

in centimetres (cm).

[Table 1 about here.]

The primary reason for carrying out the clinical trial was to compare low

versus high dose. For preliminary analysis, we carried out a Cox proportional

hazards regression analysis, using tumour size and ER status as covariates

and stratifying by treatment dose. Since treatment enters in the model as a

stratification factor, no assumption is made about how this variable affects

survival, i.e. each stratum is permitted to have a different baseline hazard

function, while the coefficients for the remaining covariates are assumed to

be constant across strata. In figure 1 the estimated survivor functions for

the two groups are shown. The two curves intersect, indicating that the

proportional hazards assumption would be inappropriate for the treatment

variable. A further limitation of the proportional hazards approach is its

inability to examine the effects of the treatment. In contrast, the proposed

model-based Bayesian inference provides a full probabilistic description of

uncertainties in addition to the point estimates of the survivor function. In

particular, the model includes inference about any functional of interest of

the survivor function.
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[Figure 1 about here.]

We have performed a Bayesian analysis of these data using the model

specified in (5) and (6). In this case, the latent variable vector α in eq.

(7) is a four-dimensional vector, α = [ME,A(HD), A(ER), βTS], where ME

corresponds to an overall mean effect, while A(HD) and A(ER) are the off-

sets for high treatment dose and positive ER status respectively and βTS

denotes the coefficient for the tumour size. The design matrix could be

extended to include interactions, nested effects, etc., as desired. We imple-

mented the algorithm described in the appendix to obtain posterior simu-

lations for these data. In the analysis, we fix the mass parameter of the

Dirichlet process, M , equal to 1. We assume F0 = N(m,C), m ∼ N(η, 100I)

and C−1 ∼ Wishart(γ0, γ
−1
0 I 1

10
), with η = (0, 0, 0, 0)′ and γ0 = 6. The prior

distribution for σ2 is an Inverse-Gamma with mean 25 and variance 10.

Figure 2 shows the posterior estimates, E(S | Data), of the survivor

functions for different combinations of the categorical covariates and fixing

tumour size at 3.8cm . The survivor functions corresponding to the two

treatment groups cross (both for positive and negative ER status), showing a

higher level of risk associated with high treatment dose in the first 20 months.

After that, the plot shows an increase in the survival probability compared

to low dose. Figure 3 illustrates posterior uncertainty, which is quite similar

across treatment groups. In figure 4 we show the estimated survivor curves

obtained using the LINEAR DDP model, the Cox model (stratifying by

treatment dose) as well as the Kaplan-Meier curve. The curves are shown
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for low treatment dose, positive ER status and tumour size equal to its

mean value in the data. In the case of the Kaplan-Meier method a separate

curve needs to be fitted for each covaiate level, not allowing any borrowing

of information. We fitted the Kaplan-Meier curve not taking into account

tumour size. The three methods lead to similar estimates of the survival

probabilities, but one of the major advantages of the Bayesian framework is

that it allows us to quantify the treatment effect and assess the precision of

such estimates. For example, figures 5(a) and 5(b) show the difference in

survival rates between the two treatment groups for positive ER status at

10 months and 40 months, respectively. Figure 6(a) shows the difference in

survival probabilities over the months of the study between the two treatment

groups for negative ER status.

[Figure 2 about here.]

[Figure 3 about here.]

[Figure 4 about here.]

[Figure 5 about here.]

For comparison, we have also performed an analysis of the data using the

semiparametric accelerated failure time (AFT) median regression model with

a mixture of Polya trees on the error distribution. The model is described

in Hanson and Johnson (2002). For the Polya tree prior we have chosen as

centering distribution a Weibull distribution and the weight c was set equal

15



to 1. Figure 6(b) presents estimated survivor functions corresponding to

the two treatment groups. The two curves are practically indistinguishable.

The model fails to capture different shapes for the two groups. The DDP

regression model presents greater flexibility allowing for curves with different

shapes for the two groups (compare with Figure 2).

[Figure 6 about here.]

In table 2 we report the posterior inferences for 10 month survival prob-

abilities for the two treatment groups and different tumour sizes.

[Table 2 about here.]

6. Childhood mortality in Colombia

We analyse data collected to study infant and childhood mortality in Columbia

(Somoza, 1980). The data were collected in The Colombia National Fertil-

ity Survey which was carried out in 1976 by the Corporación Centro Re-

gional de Población (CCRP) and the Departmento Administrativo Nacional

de Estad́istica (DANE) as part of the World Fertility Survey and with the

financial support of the U.S. Agency for the International Development (In-

ternational Statistical Institute, 1978; Hobcraft, 1990). A questionnaire was

administered to a sample of women between the ages of 15 and 49 eliciting

their maternity history, educational level, age, union status and information

on the sex, date of birth and survival status (at the date of interview) of all

their children and, if applicable, age at death.

We consider data on a sub-sample of 1437 children (corresponding to the

oldest child for each mother). The response of interest is the survival time
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(in years) of a child at the time of the maternal interview. The covariates of

interest are: gender (0=male; 1=female), birth cohort (1=1941-59; 2=1960-

67; 3=1968-76) and a binary variable indicating whether a child was born in a

rural area (1=yes; 0=no). Around 87% of the observations in the dataset are

censored. The original research was conducted to investigate how patterns of

childhood mortality have changed over time. Also of interest are urban/rural

and gender differences.

We have fitted the model specified in (9), i.e. assuming a mixture of log

normal distributions for the survival times. The baseline survivor function

corresponds to a male child, born in an urban area and belonging to the

third birth cohort. In this application the vector α of ANOVA effects is five-

dimensional and α = (ME,S,R,BC1, BC2)′, where ME is the overall effect

and S, R, BC1 and BC2 denote the offsets corresponding to a female child, a

child born in rural area, a child belonging to the first birth cohort and to the

second birth cohort respectively. In performing the analysis of these data, we

assume that σ2 ∼ Inverse-Gamma(2.5, 5), the base measure of the DP is Nor-

mal, F0 = N(a, C), a ∼ N(η, 100I) with η = (−0.43, 0.32,−1.29, 0.77, 0.45)′,

C−1 has a Wishart distribution with 7 degrees of freedom and prior mean

E(C−1) = 0.1I and the precision parameter M of the DP is set equal to 1.

[Figure 7 about here.]

Figure 7 shows the posterior estimates of the survivor curve for some

typical children born in the third birth cohort. Male children born in urban

areas have higher survival probability over time than male children born in
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rural areas, but slightly lower survival probability if compared with females

born in the urban area. In figure 8 we have plotted the posterior estimates

of the survivor function corresponding to different age groups. While in the

urban area no evident difference appears between birth cohorts, in rural areas

children belonging to the first birth cohort (i.e. born between 1941 and 1959)

have a lower life expectancy.

[Figure 8 about here.]

7. Discussion

We have presented a flexible nonparametric model that can be used to intro-

duce categorical and continuous covariates in survival models based on DP

priors. The inclusion of continuous covariates by imposing a linear model

on the random point masses of the DP provides a natural generalization of

the ANOVA DDP model (De Iorio et al., 2004). Advantages of the DDP

survival regression model include ease of interpretability and computational

tractability.

A limitation of the model is the need to use a conjugate base measure

and mixing kernel in eq. (7) to be able to utilize efficient MCMC schemes.

Models with non-conjugate base measure and mixing kernel could still be

used, but at a greater computational cost (see, for example, Neal (2000)

or MacEachern and Müller (1998)). Moreover, more complex DDP models

could be used as priors in survival regression settings, although they would

necessarily result in less efficient computational strategies.
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Appendix

Posterior simulations

We briefly describe how to implement posterior simulations for the DDP

survival regression model defined in eq. (7), and we show how to mod-

ify existing MCMC algorithm to account for censoring. See, for example,

MacEachern and Müller (1998) or Bush and MacEachern (1996) for a review

of efficient Gibbs sampling schemes to estimate DPM models. The almost

surely discreteness of the random distribution F implies that there is a pos-

itive probability for ties among the αi. Let {α⋆
1, . . . , α

⋆
k} be the set of k ≤ n

distinct elements in {α1, . . . , αn} and let si = j iff αi = α⋆
j denote config-

uration indicators. Also let nj be the number of si equal to j. Note that

the same type of algorithm can be applied if we model the event times with

a lognormal distribution by substituting ti with log(ti) in the normal pdf

below, and multiplying the normal pdf by 1/ti (model (9)).

Resampling σ2 given all the other parameters and the data.

σ2 | all the rest ∼ Inverse-Gamma

(

γ + n

2
,
δ +

∑n

i=1(ti − αidi)
2

2

)

Resampling si given all the other parameters and the data. To sample si,

we marginalise over αi.
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Let p(α⋆
j | tl, l 6= i, sl = j, all other parameters) be the conditional

posterior pdf for α⋆
j .

- Event times. If ti is not censored,

Pr(si = j | s−i, ti, all the rest ) ∝


















n−
j

∫

N(ti | α⋆
jdi, σ

2)p(α⋆
j | tl, sl = j, l 6= i, all the rest )dα⋆

j j = 1, . . . , k−

M
∫

N(ti | αdi, σ
2)dF0(α; c, C) j = k− + 1

Here s−i denotes the vector (s1, . . . , si−1, si+1, . . . , sn), n−
j denotes

the size of the j-th cluster with αi removed from consideration

(n−
si

= nsi
− 1, while n−

j = nj for j 6= si), and k− denotes the

number of clusters when αi is removed. If n−
si

= 0, we relabel the

remaining clusters j = 1, . . . , k− = k − 1.

- Censored observations. If ti is censored, let pj(t) be the condi-

tional predictive density for cluster j, obtained excluding the i-th

observation:

pj(t) =

∫

N(t | α⋆
jdi, σ

2)p(α⋆
j | tl, sl = j, l 6= i, all the rest )dα⋆

j

and

po(t) =

∫

N(t | αdi, σ
2)dF0(α; c, C)

Then

Pr(si = j | s−i, t = ci, all the rest ) ∝



















n−
j

∫ ∞

ci

pj(t)dt j = 1, . . . , k−

M
∫ ∞

ci

po(t)dt j = k− + 1
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where ci is the actual censoring time of the i-th observation. Once

si has been resampled impute ti from a left truncated normal, that

is sample ti from psi
left truncated in ci.

After resampling si, set k = k− if si ≤ k− and k = k−+1 if si = k−+1.

Resampling α⋆
j . The full conditional distribution for α⋆

j is obtained by con-

sidering the simple Bayesian model

α⋆
j ∼ F0(c, C)

and

ti ∼ N(α⋆
jdi, σ

2)

for all i such that si = j.

Resampling M . See West (1992).

Resampling c. This is straightforward update. The full conditional for c is

the same as obtained in the simple Bayesian model

c ∼ N(η, τ 2I)

α⋆
j ∼ N(c, C), j = 1, . . . , k

Resampling C. The full conditional for P = C−1 is a Wishart with γ1 =

γ0 + k degrees of freedom and scale matrix S−1 where

S = γ0Φ
−1
0 +

k
∑

j=1

(α⋆
j − c)(α⋆

j − c)′
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Figure 1. Survivor Curves from a Cox proportional hazards model with two
strata (low and high dose). The two curves are estimated at the mean value
of tumour size and for positive ER status on the left and negative ER status
on the right.
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Figure 2. Posterior estimated survivor functions. The solid lines correspond
to a patient in the low dose treatment group while the dashed lines correspond
to the high dose group. The two curves are estimated for tumour size equal
to 3.8 cm and for positive ER status (left panel) and negative ER status
(right panel).
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Figure 3. Posterior estimated survivor function (solid line) and 95% credible
interval (dotted lines). The curve corresponds to a patient with positive ER
status, who receives high treatment dose and has a tumour of size 3.8cm.
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Figure 4. Estimated survivor curves from the LINEAR DDP model (solid
line), the Cox proportional hazards (dashed line) model and Kaplan-Meier
curve (dotted line). The curves correspond to a patient with positive ER
status that receives low treatment dose. In the case of the Cox and the
LINEAR DDP model tumour size was fixed equal to 3.8 cm.
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Figure 5. (a) Posterior distribution of the difference in survival probabilities
at 10 months between a patient that receives high treatment dose and one
that receives the low dose. The histogram is shown for positive ER status
and tumour size equal to 3.8 cm. (b) Posterior distribution of the difference
in survival probabilities at 40 months between a patient that receives high
treatment dose and one that receives the low dose. The histogram is shown
for positive ER status and tumour size equal to 3.8 cm.
Note the almost non-overlapping nature of the supports of the two marginal
distributions, and the change in sign of the treatment effect.
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Figure 6. (a) Posterior estimate (solid line) and 95% credible interval
(dashed lines) of the difference in survival probabilities between the high
dose treatment group and the low dose treatment group. The difference is
shown for negative ER status and fixing tumour size at 3.8 cm. (b) Poste-
rior survivor functions using the AFT median regression model. The curves
are estimated for tumour size equal to 3.8 cm. The solid line refers to low
treatment dose and negative ER status. The dashed line corresponds to high
treatment dose and negative ER status, while the long dashed line shows
the survival for a patient in the low dose group but with positive ER status.
Compare the almost vanishing difference between the solid and the dashed
line with the differences reported in panel (a).
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Figure 7. Posterior survivor functions (solid lines) with respective 95%
credible interval (dotted lines). The figures represent the survival probability
for a child belonging to the third birth cohort. The first panel shows the
survivor function for a male child born in a rural area, the second one shows
the survivor function of a male child born in an urban area and the third
panel shows the survivor function of a female child born in an urban area.
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Figure 8. Posterior survivor functions. The solid line corresponds to chil-
dren in the third birth cohort, the dotted line represents a child in the second
birth cohort and the dashed line refers to children in the first birth cohort.
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Table 1

Summary of Cancer Data

Survival time (months) Status (freq.) Dose (freq.) Tumour size (cm) ER status (freq.)

Median 21.88 Censored 400 High 385 Mean 3.8 Positive 528

IQR 33.54 Event 361 low 376 STD 2.4 Negative 233
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Table 2

10 months survival probabilities

Tumour size 1 cm 3.8 cm 8cm

LD 0.94 (0.011) 0.93 (0.008) 0.91 (0.014)

HD 0.90 (0.009) 0.89 (0.006) 0.87 (0.010)

Posterior mean (standard deviation) of 10 months survival probability for different
size of tumour and treatment dose. Results are shown for positive ER status. HD
stands for high treatment dose and LD for low dose.
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