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Abstract

We consider dependent non-parametric models for related random probability distributions.
For example, the random distributions might be indexed by a categorical covariate indicating
the treatment levels in a clinical trial, and might represent random effects distributions under
the respective treatment combinations. We propose a model that describes dependence across
random distributions in an ANOVA type fashion. We define a probability model in such a
way that marginally each random measure follows a Dirichlet process (DP) and use the
dependent Dirichlet process (MacEachern, 1999) to define the desired dependence across the
related random measures. The resulting probability model can alternatively be described as
a mixture of ANOVA models, with a DP prior on the unknown mixing measure. The main
features of the proposed approach are ease of interpretation and computational simplicity.
Since the model follows standard ANOVA structure, interpretation and inference parallels
conventions for ANOVA models. This includes the notion of main effects, interactions,
contrasts, etc. Of course, the analogies are limited to structure and interpretation. The
actual objects of the inference are random distributions instead of the unknown normal means
in standard ANOVA models. Besides interpretation and model structure, another important
feature of the proposed approach is ease of posterior simulation. Since the model can be
rewritten as a DP mixture of ANOVA models it inherits all computational advantages of
standard DP mixture models. This includes availability of efficient Gibbs sampling schemes
for posterior simulation and ease of implementation of even high dimensional applications.
Complexity of implementing posterior simulation is — at least conceptually — dimension

independent.
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1 Introduction

We consider dependent non-parametric models for related random probability distributions
or functions. A typical application arises in modeling random effects distributions for related
submodels in a hierarchical model. We propose a model that describes dependence across
random distributions in an ANOVA type fashion. Specifically, assume that random distri-
butions F, are indexed by a p-dimensional vector z = (z1,...,z,) of categorical covariates.
For example, in a clinical trial Fy, ,, could be the random effects distribution for patients
treated at levels x; and x5 of two drugs. We define a non-parametric probability model for
F, in such a way that marginally, for each x, the random measure F, follows a Dirichlet
Process (DP), DP(M, F?), with total mass parameter M and base measure F? (Ferguson,
1973). But we introduce dependence across z, i.e, dependence for (F,, x € X), using the
dependent Dirichlet process (DDP) as defined by MacEachern (1999, 2001). The random
measures F), are almost surely discrete with the point masses generated marginally from the
base measure F?. The DDP introduces dependence across x by imposing dependence in the
distribution of these point masses. We use the DDP to define ANOVA type dependence
across related random measures by assuming ANOVA models for these point masses. The
resulting probability model defines an overall average effect and offsets for each level of the
categorical covariates. If desired this can be generalized to include interaction effects. We
propose a Markov chain Monte Carlo scheme to implement full posterior inference in the
proposed model.

Our model is based on DP prior distribution (Ferguson, 1973; Antoniak, 1974). The DP
is a probability model for random probability distributions. It plays a central role in non-
parametric Bayesian inference and it has been successfully applied in many problems. One of
the critical properties is the a.s. discreteness of a random measure F' ~ DP(M, Fy). Letting
6(z) denote a point mass at z we can write F = o wy, 6(6). Here wy, are the weights of
point masses at locations 6. Sethuraman (1994) gives a constructive definition of the DP.
The weights are generated from rescaled Beta distributions, ws/ [[7—] (1 — w;) ~ Be(1, M),
and the locations 6, are i.i.d. samples from the base measure Fj.

Another property that will feature importantly in the following discussion is the Polya
Urn representation for the marginal distribution of a sample from a random DP distribution.
Assume y; ~ F,i = 1,...,n, is sampled from an unknown distribution F which in turn, is
generated by a DP, FF ~ DP(M, Fy). The marginal distribution of y = (y1,...,ys) is
described by the following Polya Urn scheme (Blackwell and MacQueen, 1973): y; ~ Fy and

d(y;) with probability 1/(M +m —1), i=1,...,m—1
PYmlY1, - -, Ym-1) = _ N (1)
Fy,  with probability M /(M +m — 1).



The m-th sample point is either a tie with a previous sample y;, or it is a new draw from
the base measure. The positive probability of ties in (1) is due to the discrete nature of the
random distribution F' ~ DP(M, Fy).

In many data analysis applications this discreteness is inappropriate. DP mixture models
(DPM) avoid this discreteness in the sampling distribution by adding an additional convo-

lution with a continuous kernel. The typical DPM model assumes

w ™ H with H(y) = [ [(yu)aF(u), F ~ DP(M,Fo), ©)
i.e., a mixture with a DP prior on the random mixing measure F'. Many applications use a
normal kernel f(y|u) = N(u,S) with a common covariance matrix S, leading to a discrete
mixture of normals H(y) = > ;> wyN (s, S). One of the main attractions of DPM models
like (2) is computational simplicity. Also, posterior simulation algorithms are dimension
independent. See, for example, Escobar and West (1998) or MacEachern and Miiller (2000)
for a review of models based on (2).

Several papers have considered extension of DP and DPM models to hierarchical models
over related random distributions. In the context of parametric models, i.e., models with
finite dimensional parameter vector, such hierarchies with submodels for related experiments
are standard modeling tools. In non-parametric models such extensions are complicated by
the infinite dimensional nature of the random distribution. Some of the first developments of
dependent DP models appear in Cifarelli and Regazzini (1978) who define dependence across
related random measures by introducing a regression for the base measure of marginally DP
distributed random measures. The model is used, for example, in Muliere and Petrone (1993)
who define dependent non-parametric models F,, ~ DP(M, F?) by assuming a regression in
the base measure, F? = N(fx,0?). Similar models are discussed in Mira and Petrone (1996)
and Giudici et al. (2002). A similar strategy of linking dependent random DP measures F,
at the level of the base measure is used in Tomlinson and Escobar (1999). They achieve
increased flexibility by assuming a DPM hyperprior on the common base measure. Gelfand
and Kottas (2001) define dependent non-parametric models by considering a representation
of random measures as products of DP distributed factors. This allows them to enforce
stochastic ordering. Tomlinson and Escobar (1999) and Gelfand and Kottas (2001) are
appropriate to model dependence across several related random measures. However, they
are not naturally extended to include regression on covariates.

MacEachern (1999) defines the dependent DP (DDP) to allow a regression on a covariate
z. Consider a family of random measures F = (F,, x € X) indexed by a covariate z.
MacEachern (1999) defines a probabilty model for F such that marginally, for each z, F, =
> wp 0(0z,) follows a DP. We use an additional subindex z for the point masses 6, to

indicate the point masses in the random measure F,. In the basic DDP model the weights
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wy, are common to all F,. The DDP model induces dependence across x by assuming that
0n, = (0zn, x € X) are i.i.d. realizations of a stochastic process (in x). For example, 6,;, might
be assumed a Gaussian process. Independence across h, together with the stick breaking
prior for the weights wy, guarantees that F, marginally follows a DP. Dependence in the
sample path of the stochastic process 6, introduces the desired dependence across x. We use
this DDP structure to develop an ANOVA like probability model over an array of random
distributions. The DDP model provides a convenient starting point for the discussion. But
the proposed model is more general. It can be rewritten as a DP mixture model. With
minimal changes in the computational algorithms the DP can be replaced by any non-
parametric model that allows a constructive definition by a stick breaking algorithm as in
Sethuraman (1994). See, for example, Ishwaran and James (2001) for discussions of such
probability distributions.

In Section 2 we develop the basic model as a dependent DP model. In Section 3.1 we
rewrite the model as a DP mixture of ANOVA models. Building on this representation we
discuss computational implementation issues. Section 3.3 discusses the use of the ANOVA
DDP model to define random effects distributions in hierarchical models and other applica-
tions. Section 4 illustrates the proposed models with three examples. Section 5 concludes

with a final discussion.

2 The ANOVA DDP

Assume F = (F,, ¢ € X) is an array of random distributions, indexed by a categorical
covariate x. For simplicity of explanation, assume for the moment that z = (v, w) is bivariate
with v € {1,...,V} and w € {1,...,W}. The covariates (v, w) could be, for example, the
levels of two treatments in a clinical trial, and the distributions F, might be sampling
distributions for recorded measurements on each patient, or distributions for random effects.
In the latter case, an additional layer in the model hierarchy defines a sampling distribution
for the observed outcomes conditional on the random effects.

In this context we wish to develop a probability model for the random distributions F
that will enable us to build an ANOVA type dependence structure. For example, we want
the random distributions Fj and Fy for x = (v, w;) and 2’ = (v, wy) to share a common
main effect due to the common factor v;. The model should allow us to incorporate prior
information about the presence of interaction between the covariates. If interactions are
present, the effect of v = v; should be allowed to depend on the level of the other covariate
w. The model described below gives a formal definition to notions like “main effect” and
“interaction”. Briefly, instead of a non-zero additive effect on the mean of the response

variable in an ANOVA model, an effect is recast as a difference in distribution of some
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quantity that has, in turn, an impact on the distribution of the final response. Thus, the
models we create allow us to transfer both the interpretation and structure used for unknown
normal means in the traditional ANOVA model to unknown random distribution functions.
Like standard ANOVA models the proposed model can be justified by a judgement of
partial exchangeability for observed data. Assume y,;, 1 = 1,2, 3,... are observed data, with
Yz denoting the ¢-th observation under condition x, for example, the response of the i-th
patient assigned treatment combination x in a clinical trial. If for each z, the subsequence
Ye = (Y21, Yz2, - - ) is judged exchangeable, then by de Finetti’s representation theorem y,;
can be assumed an i.i.d. sample from some distribution F,. Bernardo and Smith (1994,
chapter 4) show how additional assmumptions, including in particular that sample mean
and variance are sufficient predictive statistics, leads to an ANOVA model. Stopping short
of the assumption about predictive sufficiency naturally leads to assuming a non-parametric
prior for F
We achieve the desired model structure by using the DDP framework. Specifically, let
Fp =Y wpd(0yp) for x = (v, w). We assume Sethuraman’s (1994) stick breaking prior for the
common weights, wy,/ Hfz_ll(l —w;) ~ Be(1, M). On the locations 6, we impose additional
structure,
Ozn = mp, + Ay, + Bun- (3)

As in standard ANOVA models we need to introduce an identifiability constraint for inter-
pretability. We may impose any of the standard constraints, for example, A1, = By, = 0. For
the remaining parameters we assume 7y, d P2, (mp), Ay, d %, (Ayn), and By, i D% (Buwh),
with independence being across h, v and w. We refer to the joint probability model on
F as (Fy, v € X) ~ ANOVA DDP(M,p°). The model is parametrized by the total mass
parameter M and the base measure p° on the ANOVA effects in (3). Marginally, for each
x = (v, w), the random distribution F}, follows a DP with mass M and base measure F? given
by the convolution of p?,, p%, and p%,,. Model (3) defines dependence across x by defining
the covariance structure of the point masses 6, across x. As in standard ANOVA the struc-
tural relationships are defined by the additive structure (3) and the level of the dependence
is determined by the variances in p? , p%, and p%,,. For example, consider two treatment
combinations z = (v,1) and 2’ = (v,2) and random samples y, ~ F, and y, ~ Fp. Assu-
ming normal priors p2, = N (tm,02,), D%y = N (v, 03), and p%,, = N(tiw, 0%) we find the
marginal covariance cov (Y, yy) = (02, + 04)/(M + 1). Compare this with the covariance
cov (Yz, Yor) = (02, + 0%) that would arise in a standard ANOVA with the base measure p°
as prior for the ANOVA effects. The ANOVA DDP model introduces an additional level of
uncertainty by defining the random measures (F,, F;s). The resulting covariance structure
remains unchanged except for the attenuation factor 1/(M + 1) corresponding to the addi-

tional uncertainty about F,. The same result remains true for arbitrary ANOVA structure,



including more factors and possibly interactions. In general, the marginal covariance for the
observable responses vy, is the covariance under the corresponding fully parametric ANOVA
model, reduced by a factor 1/(M +1). The marginalization is over the random distributions
F, with respect to the ANOVA DDP prior.

Model (3) is not constrained to univariate distributions F;. The point masses 6, and the
ANOVA effects my,, Ayn, By can be g—dimensional vectors. This is important, for example,
if the random distributions F, are used as random effects models in a hierarchical model.
In the example discussed in Section 4.2 we use 7-dimensional random effects vectors. It is a
critical advantage of the ANOVA DDP model that model specification and computation are
dimension independent.

Another important generalization of model (3) is to more complex ANOVA structure.

The model is easily generalized to a p—dimensional categorical covariate = (1, ...,Zp):

p
Opn = mp + Z Aj(zs), (4)
i=1
where A;(z;) is the main effect due to treatment z;. Further extensions to include interactions
A;j, etc., are equally straightforward. For example, in (3) we could introduce additional terms
Cyw,n- See the examples in Section 4 for an illustration. However, the same caveat as with
corresponding parametric models applies. Meaningful inference for interactions can only be
achieved with sufficiently many data observed under different covariate levels z.

Like standard Bayesian ANOVA, the model allows us to incorporate differential prior
information for the various levels of the covariate. This is accomplished through choice of
different prior distributions p%, for the different levels of v. In the context where v =1
indicates a control and v = 2,...,V are exchangeable treatments, we might take p%, to be
degenerate at 0 for the control and to be an identical distribution with a larger spread for
each of the treatments. As an analog of a linear contrast in standard ANOVA, we might take
the distributions p?%, to have non-zero means falling along a line; including further structure
on the means of these distributions lets us expand our models in a fashion similar to the
classical expansion through orthogonal polynomials, though the realizations will not exactly
follow the possibly lower dimensional model.

One can also place constraints on the estimated effects. Enforcing a dependence above
that forces the A, to lie on a line (to do so, we need to violate the condition of independence
of A,y across levels of v) produces a lower-dimensional component in the model. Alterna-
tively, a constraint such as monotonicity of the effect A,, in v can be enforced. Such a
constraint ensures that the random distributions F} are stochastically ordered with respect
to v. This type of constraint is meaningful, for example, if v is the toxicity level of an anti

cancer agent in a chemotherapy treatment.



3 Mixture of ANOVA Models

3.1 A DP Mixture of ANOVA Models

Most applications of DP models in data analysis add an additional layer in the model to
convolve the discrete measure generated from a DP with a continuous, typically normal,
kernel, to construct DPM models as in (2). For the same reasons we propose to add an
additional normal mixture to the ANOVA DDP model. This leads to models of the form

(vias = ) ~ Hy(y), with H(y) = / Nylu, ) dFs(u),

(F,,z € X) ~ ANOVA DDP(M, p°), (5)

with appropriate hyperpriors for the common normal variance S and the ANOVA DDP
parameters.

Implementation of posterior inference in the ANOVA DDP model (5) is most easily
developed on the basis of an equivalent reformulation of the model as a mixture of ANOVA
models. Consider, for example, model (3) for g-dimenensional random measures Fj. Let N
denote the number of ANOVA effects in (3) and let o, = [mp, Ao, ..., Ayh, Bon, - . ., Bwa]
denote the (¢ x N) matrix of ANOVA parameters correponding to the h-th point mass in the
random measures. Let d; denote a design vector to select the appropriate ANOVA effects
corresponding to z;, i.e., Oy, = a4 d; for £ = z;. Using this notation, model (5) with base

measure (p2,, P%,, P%,) €an be rewritten as:
(0 2) ~ Ha(w). Holy) = [ Nylad, ) dF(@), and F~ DPOLI). (6)

In words, data g; are sampled from a mixture of ANOVA models, with a DP prior on the
unknown mixing measure. As usual in mixture models posterior simulation is based on

breaking the mixture in (6) by introducing latent variables «;,
yi=a;d; + €, a;~Fand F~ DP(M,p°), (7)

with ¢, ~ N(0,S5). It follows from this equivalence that any Markov chain Monte Carlo
(MCMC) scheme for DP mixture models can be used for posterior simulation in DDP
ANOVA models of the type (5). The conjugate nature of the base measure p° and the
kernel in the error distribution p(e;) in (7) greatly simplify posterior simulation. See, for
example, MacEachern and Miiller (1998) for details of posterior MCMC simulation for DPM
models. A description of the relevant modifications needed for the ANOVA DDP is given
in Appendix A. Since the MCMC simulation proceeds by marginalizing with respect to the

unknown measures Fj, inference about the unknown distribution F} itself is not a standard
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part of MCMC in DP mixture models and can be difficult. See Gelfand and Kottas (2002)
for a discussion and for inference about F} in general. However, some important simplifi-
cations are possible. For any fixed y, the value of H,(y) in (6) takes the form of a linear
functional of a DP random measure for which Regazzini et al. (2002) give results for ex-
act inference. Guglielmi and Tweedie (2001) discuss an MCMC implementation to evaluate
linear functionals. Further, in many applications the desired inference on F) is constrained
to reporting the posterior mean measures E(H, | Y), and sampling from p(H, | Y). Here
Y denotes the observed data. But the posterior mean E(H, | Y) is equal to the posterior
predictive distribution p(yn+1 | n+1 = z,Y") for a future observation in the DPM model (6).
We can exploit this to easily evaluate F(H, | V). Proceeding with Rao-Blackwellization as
usual in MCMC implementations (Casella and Robert, 1996) it is possible to further sim-
plify computations and estimate E(H, | Y) as an average of complete conditional posterior
distributions that are already evaluated in the course of the MCMC simulation. Details of
this estimate as well as a computationally efficient algorithm for approximate sampling from
p(H, | Y) are described in Appendix A.

While the DP mixture representation of the ANOVA DDP model is helpful to derive
posterior simulation methods, the proposed model goes beyond standard DP mixture models.
One crucial difference between the DDP model that we present and corresponding DPM
models is in where the models are defined. The DPM models are defined at a fixed, finite set
of covariates while the DDP model may be defined over a much broader space. The study
in Section 4.2 concerns a factorial design with two factors (doses of two drugs) studied at 3
and 4 levels, respectively. Potential doses for each drug range along a continuum. The DDP
model specifies a prior distribution which, when updated with the data, allows us to make
posterior inference at an arbitrary combination of doses. Such a specification is consistent
with the DDP model of reduced dimension that we use for computational purposes. Of
course such inference would require the prior specification for the ANOVA effects to extend
over a continuum of covariates. For example, in (3) we could use a Gaussian process prior
on A, as a function of a continuous dose v.

Inference for a DDP model with a typical prior specification has a particularly attrac-
tive feature, namely appropriate asymptotic degeneracy and non-degeneracy. Recall that
a=[m,Ay, ..., Ay, Bs,...,By], @ ~ F, is the matrix of ANOVA effects in (6). Suppose
that an augmented set of treatment combinations includes a dose combination z* that was
not recorded in the observed data, and let d* denote the design vector corresponding to
x*. If the base measure p° is a non-singular multivariate normal distribution, then the con-
ditional distribution of the mean effect ad* at the new dose combination, conditional on
the mean effect at the studied dose combinations, is a non-degenerate normal distribution.

This conditional non-degeneracy is typical of a DDP prior specification. The consequence of



non-degeneracy is that, even if ad, at the studied dose combinations x were known exactly,
the posterior distribution at the new dose combination would be non-degenerate. Thus,
even if the posterior distribution on the mean effect at observed treatment combinations
concentrates asymptotically, the posterior distribution at other dose combinations does not
concentrate. This behavior is in keeping with our prior beliefs in most settings.

The parameter M induces a distribution on the number of clusters into which the obser-
vations fall. Clusters are defined by ties in the latent «; introduced in (7). In DPM models,
summaries of this distribution, such as its mean and variance are often used to judge whether
a particular prior distribution provides a match to prior beliefs. See, for example, Escobar
(1994), who also uses these summaries to motivate a distribution over M. The DDP model
which we use in this paper relies on a single mass parameter, M. For this DDP model,
clusters of observations occur both within a treatment and across treatments. The number
of clusters is stochastically increasing in the number of observations. See Appendix B for
a formal statement and proof. Consequently, varying sample sizes across treatments im-
ply different distributions for the number of within-treatment clusters as well as a different
distribution of the number of clusters across all treatments.

For illustration we computed summaries of the prior distribution on the number of clusters
in a setup as in the case study analyzed in Section 4.2, i.e., we assume the same number
of dose combinations z and the same sample sizes within each dose combination xz. Let k,
denote the number of clusters of observations with covariate x, and let £ denote the number of
clusters among all observations. Note that £ < Zm k. since clusters can extend over multiple
values of z. Considering four alternative prior assumptions for the total mass parameter M
we evaluated prior mean and standard deviation for the number of clusters. Specifically,
we computed prior summaries for k, and & under a Gamma prior, M ~ Ga(5,0.5), and
assuming fixed values M = 1,10 and 25. Let n, denote the number of observations with
covariate level z. For a treatment with n, = 6 observations, and assuming M ~ Ga(5,0.5),
M = 1,10 and 25, we find the prior mean F(k,) (standard deviation SD(k,)) to be 4.8 (1.0),
2.5 (0.98), 4.9 (0.91) and 5.5 (0.68), respectively. For a treatment with n, = 10 observations
we find prior moments of 6.9 (1.6), 2.9 (1.2), 7.2 (1.3) and 8.6 (1.1), respectively. For a
treatment with a relatively large number of observations, n, = 12, we find prior moments of
7.9 (1.9), 3.1 (1.2), 8.2 (1.5) and 10.0 (1.1), respectively. Finally, for the entire study, with
n = 52 patients, we find prior moments for k£ of 18.0 (5.2), 4.5 (1.7), 18.7 (3.1), and 28.5
(3.3), respectively. In summary, the impact of the different numbers of observations (6, 10,
and 12) at the different treatments is relatively modest. There is, however, a substantial
difference when moving from the individual treatments with n, = 6,10 and 12, to the entire

experiment, with n = 52.



3.2 Other Mixture of ANOVA Models

Rewriting the ANOVA DDP as (7) highlights the generality of the underlying model struc-
ture. The use of a DP prior for the discrete mixing measure is motivated by technical
convenience, and because the parsimonious parametrization of the DP avoids difficult prior
elicitation problems. On the other hand, the fact that the DP is parametrized by a base
measure and one scalar precision parameter M only could sometimes be a limitation. Green
and Richardson (2001) argue for the use of more general mixture models and show appropri-
ate posterior simulation schemes. Muliere and Tardella (1998), Gelfand and Kottas (2002)
and Ishwaran and James (2001) discuss finite truncations of DP priors. Ishwaran and James
(2001) propose alternative non-parametric priors based on similar stick-breaking represen-
tations. Any of these non-parametric priors can be substituted in (7) without changing the

model structure, and requiring only minimal changes in the posterior simulation schemes.

3.3 Hierarchical Models and Other Extensions

Consider a generic hierarchical model of the form

yi ~ p(il6i), (Oifz: = 2) ~ Hy(0]). (8)

In words, data y; for the i-th sampling unit, e.g., a patient, is sampled from a probability
model parametrized by a random effects vector ;. For example, this could take the form of
a non-linear regression

Yij = f(tij; 0;) + €5 (9)
with a mean function f(-;6) parametrized by 6#; and evaluated at known times t;;, j =
1,...,n;. The 6; are generated from a random effects distribution H,. The random effects
distribution depends on a covariate specific to the sampling unit and possibly additional
hyperparameters ¢.

If the covariates are, for example, treatment indicators for the i-th patient, then ANOVA
DDP models as in (5) are appropriate prior probability models for (H,,z € X). The random
effects vector ; takes the place of y; in (5), and H,(-) = [ N(:|u, S) dF,(p). In general,
the ANOVA DDP model can be used whenever the random effects distributions H, are
indexed by some categorical covariates x; specific to the i-th unit with a notion of ANOVA
type dependence across the random distributions. Section 4.2 discusses a typical example.
Posterior inference is implemented as in (5), with an additional step to update the random
effects vectors 6; which now replace the data y; in the ANOVA DDP model (5). The details of
this step are problem specific. For example, if p(y;|6;) is a non-linear regression as in (9) then

updating 6; amounts to a posterior draw from the parameters in a non-linear regression with
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data y;;, j =1,...,n; and prior 6; ~ N(«a;d;, S). Here q; is the latent variable introduced to
break the mixture model in (7). The latent variable o; is imputed in the course of updating
the ANOVA DDP model. See, for example, MacEachern and Miiller (1998) for details.

The hierarchical model (8) is only one of many diverse modeling contexts and applications
that gives rise to structure as in (5). The ANOVA DDP model (5) allows a convenient
formalization of regression for survival data. Consider observations y;, censoring indicators
0;, with ; = 1 if y; is a censoring time and §; = 0 if y; is an observed event. Assume
different subpopulations are indexed by a categorical covariate z;. Using (2) to represent
p(y; | x;,6; = 0) one can represent the sampling distribution of event times under z; as a
DP mixture model. Such models are used, for example, in Doss (1994), Gelfand and Kuo
(1991) and Kuo and Mallick (1997). Kuo and Mallick (1997) include a regression in an
accelerated failure time model. The DDP-ANOVA model allows to introduce dependence
across subpopulations indexed by x; when stronger assumptions like proportional hazards,
additive hazards, or accelerated failure time are too stringent.

The basic ANOVA-DDP model (5) is easily extended to categorical or ordinal data. Let
zi = (zi1, - - -, %ip) denote a vector of observed categorical outcomes for experimental unit 7.
A multivariate probit model for z; represents the sampling distribution for z; by introducing
a latent multivariate normal vector y;. Specifically, assume z;, € {1,..., R} is ordinal with
R possible outcomes. We introduce cutoffs —oco =0y < ... < 0, < ...0g = 0o and assume
zip = r if and only if 6, ;| < yi < 6,. See, for example, Albert and Chib (1993), Cowles
et al. (1996), and Chen and Dey (2000) for inference in such models. Replacing the normal
distribution of the latent variable y; by an unknown distribution with a non-parametric prior
provides a natural generalization of the probit model. Kottas et al. (2002) show that without
loss of generality the cutoffs 6; can be fixed when using a non-parametric prior model for
the latent variables ;. Consider now data recorded for different subpopulations indexed by
z;. For example x; could be different hospitals, different treatments or different raters. The
DDP-ANOVA model (5) formalizes a non-parametric regression of z; on the covariates x;.
The categorical cell probabilities 7,, = Pr(z | ) are modeled as corresponding quantiles of
H,, ie., m,y = [dH,(y) with the integral extending over the range of y corresponding to
categorical outcomes z.

Another interesting application is to classification. Assume we have data (z;,v;), i =
1,...,n, under sampling model (5) for p(y; | ;). Data could be repeated measurement data
with the basic model being extended as in (8). Assume a new observation y,,; with unknown
label 1 is recorded, and interest focuses on inference about x,.;. Augmented by a prior
p(z;), the DDP-ANOVA model allows a model based flexible framework to implement the

desired classification as p(zn41 | Yni1, Y)-

11



4 Examples

4.1 Simulation Example

Consider a two way bivariate ANOVA model with two factors v and w. Assume the number
of levels are V = 2 and W = 2 for v and w, respectively. Let a =[m, Ay, A, By, Bs] denote

w=1 W=2
20 20
18 18
16 16
14 14
v=1
12 12
10 10
8 8
6 6
) 0 2 4 6 8 10 -2 0 2 4 6 8 10
20 20
18 18
16 16
14 14
vV =2
12 12
10 10
8 8
6 6
) 0 2 4 6 8 10 -2 0 2 4 6 8 10

Figure 1: Posterior estimated distributions. The grey shades show the posterior mean distri-
butions E[H,, () | Y]. For comparison the overlayed contours show the estimated distribu-
tions under a bivariate two-way ANOVA model, assuming a single bivariate normal sampling
distribution for each combination of (v, w).

overall mean and main effects for v = 1,2 and w = 1, 2, respectively. Such data might arise,
for example, when investigating differential expression patterns of proteins across major sub-
types of ovarian cancer. Assume expression is measured by immunohistochemical staining of
tissues. The bivariate outcome could be the level of expression of the two proteins of interest,
and histologically different subtypes might be defined by type v (serous, endometrioid and
mucinous) and degree of differentiation w (low and high).
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We simulated 100 observations y; ~ N(q; d;, I) with randomly selected designs d; and
generating
.

32 5 -1 —-1
166 7 4

with probability 0.5

3 05 35 —25 2.5
1 75 75 85 5.5

with probability 0.5,

\

i.e., we generate from model (6) with a two point discrete mixing measure F(«a). We
proceeded to fit the ANOVA DDP model (5) with an ANOVA structure as in (3). Let
Hyy(-) = [ N(+|p, S)dFy (1) denote the unknown distribution for factor levels (v, w) and let
Y = (y1,...,yn) denote the observed data. Figure 1 plots contours of the estimated distribu-
tions E(H,, | Y). Posterior inference correctly recovers the true mixture. For comparison we
estimated a bivariate normal regression on (v, w), i.e., a standard bivariate ANOVA model.
For a fair comparison the prior probability model for the bivariate ANOVA model and the
hyperprior for the base measure p° in the DDP model are matched. In both models the
residual covariance matrix S is assumed to be diagonal, S = 021, with a conjugate Gamma
prior on 1/0%. Thus both models have almost the same number of hyperparameters, with
the only additional hyperparameters in the ANOVA DDP model being the prior parameters
for the total mass M. The posterior mean bivariate ANOVA model is shown in Figure 1,
as contours overlayed over the grey shades for the estimated DDP model. Forced to fit a
single normal the bivariate ANOVA model approximates the mixture by a bivariate normal
distribution centered between the locations of the two mixture terms. Failing to model the
heterogeneity in the data the bivariate ANOVA model reports the mode of the distribution
in a low density area between the two modes. The estimated residual variance is inflated
to allow for the approximation. The marginal posterior means E(c? | Y) are 1.01 and 3.57
under the ANOVA DDP model and the bivariate ANOVA model, respectively.

4.2 Hierarchical Models

Miiller and Rosner (1997) describe an analysis of hematologic data arising from a dose-
escalation study (Lichtman et al. 1993). The data are white blood cell counts over time for
each of n patients receiving relatively high doses of cancer chemotherapy. The treatment
included a commonly used drug, cyclophosphamide, that is known to lower a person’s white
blood cell counts as the dose increases. Having very low white blood cell counts can be life-
threatening, since these cells include the ones that are part of the human immune system.
Thus, the investigators are keenly interested in knowing about the effect of dose on the white

blood cell counts in order to guard their patients against severe and life-threatening toxicity.
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Unfortunately, there is no standard measure in use for characterizing this form of toxicity.
Is it the smallest WBC or is it the length of time a person’s WBC is below a threshold
value? Analyzing the entire profile of blood counts over time allows one to characterize
depressed counts in any way one would like. The modeling approach of Miiller and Rosner
(1997) allows such full modeling. However, a critical limitation of the approach discussed
in Miiller and Rosner (1997) is the way how it implements regression on patient-specific
covariates, in particular the assigned dose of chemotherapy. We re-analyze the data, using
the DDP ANOVA model instead. The ANOVA structure allows us to characterize dose-
specific differences in WBC profiles between the doses.

The data record white blood cell counts over time for each of n = 52 chemotherapy
patients. Denote with y;; the measured response on day t for patient ¢. The profiles of
white blood cell counts over time look similar for most patients. Figure 2 shows some typical
patients. There is an initial base line, followed by a sudden decline when chemotherapy
starts, and a slow, S-shaped recovery back to approximately base line after the end of the
treatment. Profiles can be reasonably well approximated with a regression function with two
change points corresponding to the beginning of the decline and the nadir, a horizontal line for
the base line to the left of the first change point, a straight line for the rapid decline between
the two change points, and a shifted and scaled logistic for the final S-shaped recovery to
the right of the second change point. We parametrize this piecewise linear-linear-logistic
regression with a 7-dimensional parameter vector 6 (Miiller and Rosner, 1997). But the non-
linear regression parameters differ significantly across patients. Thus we introduce a patient
specific random effects vector ;. Conditional on 6; we assume a non-linear regression using

the piecewise linear-linear-logistic regression model
Yie = f(t; 0;) + €. (10)

The model is completed with a random effects model H,. The random effects distribution
H, depends on the treatment levels for patient i. There are two treatments, the actual
anti-cancer agent cyclophosphamide (CTX), and a second drug (GM-CSF) given to mitigate
some adverse side effects of the chemotherapy. We impose an ANOVA structure on H, with
rows and columns in the two-way ANOVA indicating levels of CTX and GM-CSF. We code
the levels of CTX as v = 1,...,4 (corresponding to dose levels 1.5, 3.0, 4.5 and 6.0 gm/m?)
and the levels for GM as w = 1,2,3 (dose levels 2.5, 5 and 10 pg/kg). Let x; = (v;, w;)
denote the treatment for patient ;. The number of patients observed at each treatment
combination x varies between n, = 6 for x € {(1,3),(2,1),(2,2),(2,3),(4,2)}, n, = 10 for
z = (3,3), and n, = 12 for z = (3,2). We assume

(0i|z; = x) ~ Hy(0), (H;, z€ X)~ ANOVA DDP(M,p°) (11)
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Posterior predictive inference for future patients depends on the observed historical data
only indirectly through learning about the random effects distribution (11). Conditional
on the random effects distributions H,, observed and future data are independent. Thus a
structured, flexible hyperprior for H, is critical to achieve the desired learning.

Figure 3 summarizes some critical aspects of the analysis. In this example, the random
effects distributions H,(-) are 7-dimensional. We summarize inference on H,(-) by showing
implied profiles. Let Y denote the observed data. For example, for z = (1,1) we show
f+(t) = E{[ f(t; 0) dH,(0)|Y'}, the posterior mean hematologic profile over time ¢ for a
patient treated with doses z = (1,1). Imposing identifiability constraints A;, = By, = 0
the corresponding design vector in (6) is d = (1,0,...,0), including a main effect only. The
figure shows the estimated mean curve f,(¢) in the right lower panel.

For patients treated at other doses, we display corresponding offsets in a familiar ANOVA
fashion. For example, for x = (2,1) the figure plots the posterior expected mean curve
corresponding to design vector d = (0, 1,...,0) with an offset for v = 2. The second panel
in the top row shows f,(t) = E{[ f(t; = ad) dF () | Y} . The other panels in the same
figure have analogous interpretations. Interpretation of Figure 3 needs to take into account
that the additive ANOVA structure applies only for the ANOVA effects in (3). The plotted
mean profiles are only convenient summaries of the 7-dimensional distributions, and are
not additive. Since inference is based on posterior simulation, any other desired posterior
summary can be derived. For example, Figure 4 shows posterior predictive distributions
for the likely responses of a future patient treated at any of the 12 possible treatment

combinations.

4.3 Categorical Outcome

Fluorescence activated cell-sorter (FACS) analysis is used to measure properties of cells in
flow (Melamed et al., 1990). Freedman et al. (2002) use FACS to measure the proportion
of monocytes in a blood sample that express certain surface markers. Using multi-color
FACS analysis up to four different surface markers can be recorded simultaneously. The
instrument reports the number of cells that express each of the identified surface markers
beyond a certain preset threshold. If data is reported for blood samples collected under
different treatment conditions z; € X the resulting data format fits the categorical data
model described in Section 3.3, with z;, € {0, 1} reporting presence and absence of the k-th
surface marker.

We set up a simulation study mimicking the setup in a currently ongoing clinical trial.
The trial proposes chemoimmunotherapy for ovarian cancer. Two agents, denoted here as

G and I, are used for the immunotherapy. FACS analysis is used to measure the expression
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Figure 3: Estimated main effects A,, B, and overall mean effect m. For identifiability, we
constrained Ay, = By, = 0. The right lower panel shows the estimated hematologic profile
for a patient treated with dose levels (CTX = 1.5,GM = 2.5), i.e., corresponding to the
overall mean m. The other figures summarize the offset corresponding to the respective
main effect. For each ANOVA effect, the plot shows E { [ f(t; 0 = ad) dF(a) | Y}, where
d is the design vector corresponding to the respective ANOVA effect. The dashed curves
show corresponding pointwise one posterior standard deviation margins. See the text for a

detailed explanation.
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(v, w), arranged by v and w. The solid line shows the pointwise

posterior predictive mean E(y;|x;,y), plotted against t. The dashed lines show pointwise

one posterior standard deviation margins.
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Table 1: Observed (a) and fitted (b) cell probabilities 7,, = Pr(z | z). Table (b) reports in
parentheses the marginal posterior standard deviations. For comparison, table (c) reports

the posterior mean cell probabilities under a bivariate probit model.

(a) Observed frequencies (in %) (b) Estimated probabilities (in %)
z = (21, 22) z = (21, 22)
(G,I) | (1,1) (1,0) (0,0) (0,1) (GI)| (1,1) (1,00 (0,00 (0,1)
(0,0) 29 7 59 ) (0,0) [27(5) 8(3) 59 (6) 6 (3)
(0,1) 26 8 64 2 (0,1) [27(5) 8(4) 62(6) 3(2)
100 | 10 26 4 60 (1,0) |10(4) 25(6) 5(3) 60 (6)
(1,1) 7025 39 20  (L1)| 7@ 25(5 39(6) 29 (6)

(c) Estimated probabilities (in %)
(bivariate probit)

GJI | (1,1) (1,00 (0,0) (0,1)

16 21 45 18

12 22 51 15

28 8 24 40

15 17 46 21

of a variety of surface markers in blood samples collected under different treatment condi-
tions. The first agent, G, has a growth factor stimulating effect. It can expand and prime
monocytes, a type of white blood cell. The hypothesized effect of the second agent, I, is
to serve as an activator to mature and fully activate these cells. As part of the protocol,
blood samples will be analyzed for the number and activation status of monocytes. FACS
analysis will be used to record expression of selected markers that are modified on activated
monocytes. For this simulation study we consider two markers and samples under four dif-
ferent treatment conditions z;, z; = (G,I) € {(0,0),(0,1),(1,0),(1,1)}. A pair of binary
outcomes, z; = (z;1, 2i2) reports whether markers 1 and 2, respectively, are upregulated.
The conjectured role of I as an activator of cell populations expanded by G makes it im-
portant to include interactions in the model. We proceed with the ANOVA DDP model for
ordinal data proposed in Section 3.3. We include main effects for G and I, plus an additional
interaction I x G. We generated hypothetical data for four blood samples, one under each
treatment combination. We assume 100 cells are measured in each sample, with observed

frequences reported in Table la. Let m,, = Pr(z | x) denote the probability of binary out-
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Figure 5: Posterior distribution for the unknown cell probabilities 7,, arranged by covariate

z = (G, I) (rows) and by outcome z (columns).

comes z under subpopulation x. Using the DDP ANOVA model the cell probabilities 7,, are
expressed as the corresponding quantiles under H,. For example, myy = fi)oo fi)oo dH,(y1,Y2),
using the cutoff 6, = 0.

Table 1b shows the posterior estimated cell probabilities, together with marginal posterior
standard deviations. Marginal posterior distributions for the categorical cell probabilities
are shown in Figure 5. For comparison Table 1c shows inference under a bivariate probit
regression. To allow a fair comparison we use the base measure p° as prior for the parametric
probit model. Although the two models have a comparable number of hyperparameters, the
non-parametric mixture in the ANOVA DDP model allows signficantly more flexibility in

fitting the observed frequencies.

5 Discussion

We have introduced a probability model for random distributions arranged in an ANOVA
like array. The main features of the proposed model are ease of interpretation, facility to
impose structure in the usual ANOVA like fashion, and efficient computation.

Limitations of the ANOVA DDP model are the need of MCMC simulation for posterior
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inference, and the practical limitation to stick-breaking priors for the non-parametric mixing
measure. Also, the model inherits limitations inherent in the DP prior. For example, the
model includes only one scalar precision parameter for the random mixing measure. This
makes it impossible to express different levels of prior precision across the sample space of
the base measure. On the other hand, the parsimonious prior parametrization facilitates
prior elicitation.

The ANOVA model that we have developed and illustrated in the examples relies on a
particularly simple version of the DDP model. In this simple model, the weights of the point
masses, wy, do not depend on the level of the treatment. This model has the advantage of
allowing us to rely on computational strategies developed for DPM models. More complex
DDP models allow the wy, to vary across the treatments, but would necessitate more complex
computational strategies that include additional parameters (the treatment-specific wy or
equivalent) in the Gibbs sampling steps. Inclusion of these additional parameters can, in
other words, be described as forsaking a possible marginalization of them. The result of not
marginalizing parameters when they can be marginalized is a poorer mixing Markov chain
(Liu, 1994; MacEachern, 1994). An alternative approach to fitting the more complex DDP
models is to use the model we have fit as an importance sampler. The two complex and simple
models may be matched so as to provide the same marginal prior distributions at each level
of the treatment. They would differ only in how the structure is connected across treatments,
with this difference appearing in the prior distribution on the configuration vector, s (see
the appendix for a description of s). As a consequence, the importance sampling weights
would be determined by the two distributions on s.

Appendix

A. Posterior MCMC Simulation

We briefly describe the implementation of posterior simulation in the ANOVA DDP model
(6). Since F' is almost surely discrete (see Ferguson, 1973), there is a positive probability
for ties among the ;. Write {of, ..., a;} for the of k£ < n distinct elements in {o, ..., a,}.
Set s; = j iff a; = aj. Let n; be the number of s; equal to j, i.e. n; is the size of the jth
cluster and let I'; = {i : s; = j}. Let n denote possibly unknown hyperparameters, including
hyperparameters in the base measure p°, the total mass parameter M and the covariance
matrix S in (5). See, for example, MacEachern and Miiller (1998) or Bush and MacEachern
(1996) for a full description of Gibbs sampling scheme to estimate DPM models.
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1. Resampling s; given all the other parameters:
Marginalize over o; and sample s; from
n;p(yz ‘ S = j, S_iy S: , y*l) ] = 15 ) k™

Pr (Si :.7 ‘ S—iy Y, 1, S) X
M [N(yi;ed;, S)dp°(e) j=k"+1

where Y_; = {yl, e Yi1, Yir 1, yn}, S_; = {81, vy Si—1, S04+ - - - 8[},
_ n; — 1 lf] = 8;
nj - .
n; otherwise
and k= = # of clusters with o; removed. If n;, = 0, we relabel the remaining clusters

j=1,....,k= =k — 1. After sampling s;, set

L k- if s, < k™
) k41 ifs; =k +1

Note that by conditional independence, in p(y; | s; = 7, 5-, S, 1, y—;) the data y_; can
be replaced by {y;, | € I';,l # i}.

2. Resampling oj:

The posterior distribution p(a} | s,y,7,S) is

p(e; | 5,9,m,8) o | [ N(yss ajeiy ) | p°(05 | m).
i€l
With a normal base measure p° the posterior distribution of ¢} is normal with mean

and covariance matrix that can be found by standard calculations.

3. Resampling 7 conditional on the currently imputed values s,a*, k follows standard

posterior simulation for DP mixture models.

To report posterior inference on H, the MCMC simulation can be augmented as follows.
Let @ denote the vector of all model parameters, and let #®) denote the parameters imputed
after ¢ iterations of the MCMC simulation. We evaluate E(H, | Y) = p(Ynt1 | Znt1 = 2,Y)

as

T
1 i
PUn+1 | Tns1,Y) = Ep(yni1 | 241, Y, 0) [ Y] & T Zp(yn+1 | Tn41,609,Y) =
i=1
T

1 .
T Zp(ym—l | $n+1,9(z))-

=1
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The terms in the last average are easily computed. We use a superindex @ to identify the
imputed parameter values after i iterations of the MCMC simulation. Let d, denote the
design vector for x = x, ;. We find

k@
P(Yns1 | g1, 09) o D 0N (yn+1; o dy, S(i)) +M® / N(ys; adg, SV) dp°(a)  (12)
7j=1

Uncertainty in H, is illustrated through posterior draws of H,. For the following argu-
ment we consider augmenting the imputed parameter vector 8% with the random distribution
F defined in (6). Given ) the conditional posterior for F' is a DP with updated parameters,

20!
(F [09,Y) ~DP(q, M® + n) with g oc MPp° + )~ ngi)éa;(i). (13)
j=1
The large total mass parameter M@ + n implies that the random measure F' is close to
the conditional expectation ¢, the DP base measure in (13). We exploit this to approxi-
mate a posterior draw F ~ p(F | 9,Y) as F =~ ¢, and thus a posterior draw for H, as
[ N(ad,, S9) dg(w), ie
k(3)
Hx(y)ocM(i)/ (y; ady, SP) dp(« -I—Zn IN(y; ) d, )

The latter is simply the predictive distribution conditional on #® in (12).

B. Stochastic Monotonicity of &

The two results below are stated for the ANOVA DDP model that we develop in this paper.
The results apply more generally, with substitution of essentially any DP or DDP model
for the model in (5). The first result describes the impact of the mass parameter on the

distribution of the number of clusters in prior and posterior.

Result 1. Consider a family of DDP models of the form given in (5), indexed by M. That
is, the models have identical prior specifications except for the mass parameter of the DDP.
Then both the prior distribution and the posterior distribution on the number of clusters is
stochastically increasing in M.

Proof. 'The probability of obtaining k£ clusters from a sample of size n when the mass
parameter of the Dirichlet process is M is given by the expression

M’“F
Pu(k) = (M +n) ZHFM

23



where the sum runs over vectors of length £ having components n;, with n = Zle n;. This
expression follows from the Polya urn scheme and holds for £ =1,...,n.

Consider two values of the mass parameter, M; < Ms. Then

Puy(k) _ (M\* T(My) T(M,+n)
<E> U(Mi+n) T'(Ms)

PM2 (k)

for K = 1,...,n. This ratio of probabilities is monotone decreasing in £, and so the prior
distribution of the number of clusters for mass M, is stochastically greater than that for
mass M;.

Conditional on the number of clusters, k, the distribution on the configuration vector,
s, does not depend on M. Consequently, with matched priors on hyperparameters and the
shape of the base measure, the likelihood for the data depends on M only through k. Thus

we may write

Pas, (KIY) _ Pas, (Y|}) Py (k) (%)’“

P (K[Y) — Pay(Yk)Pry (k) \ Mo
As before, monotonicity of these ratios in k£ leads to the conclusion that the posterior distri-
bution for the number of clusters is stochastically increasing in M.

This result describes the impact of the sample size on the number of clusters. While
the qualitative result follows from the Polya urn scheme (a new draw from the DDP may
either join an already existing cluster, or it may begin a new cluster—it cannot remove an
existing cluster), the recursion in the proof below is useful for quick computation of the prior
distribution on the number of clusters. This distribution is useful for marginalizing the mass

parameter through preintegration, as described in MacEachern (1998).

Result 2. Consider the model in (5). The number of clusters is stochastically increasing in

n.

Proof. Let p™™) represent the vector of length n with components Py, (k). p-M) = (1) for
all M. To find the corresponding distribution for a sample of size n+1, given the distribution

for a sample of size n, note that

(n+1,M) n(pmM) o) 4

- 0, pmM)y
M+n(p : (0,p™™*))

P M +n

This yields the result.
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