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SUMMARY: 

Most phase II screening designs available in the literature consider one treatment at a time. Each 

study is considered in isolation. We propose a more systematic decision-making approach to the 

phase II screening process. The sequential design allows for more efficiency and greater learning 

about treatments. The approach incorporates a Bayesian hierarchical model that allows 

combining information across several related studies in a formal way and improves estimation in 

small data sets by borrowing strength from other treatments. Computer simulations show that 

this method has high probability of discarding treatments with low success rates and moving 

treatments with high success rates to phase III trial.  
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1. Introduction 

Many authors have proposed phase II clinical study designs in the literature over the last three 

decades, both frequentist and Bayesian approaches.  These papers typically consider a binary 

outcome for which we use the generic terms “success” and “failure.”  Gehan (1961) and Simon 

(1989) proposed popular 2-stage designs that fix the total sample size.  Yao, Begg, and 

Livingston (1996) considered screening of new treatments as a continuous process,  namely, a 

sequence of clinical studies that ends once a promising treatment appears.  The sample size in 

each study is fixed, but the total sample size  in the studies until identification of a promising 

agent is not.  Their design aims to minimize the expected sample size until a promising treatment 

is identified.  In later work, Yao and Venkatraman (1998), Wang and Leung (1998), and Leung 

and Wang (2001) considered a variety of extensions leading to two-stage designs and fully 

sequential designs in the same setup.  Taking a Bayesian decision-theoretic approach, Rossell, 

Müller, and Rosner (2006) find optimal linear boundaries for fully sequential phase II screening 

studies.  Stout and Hardwick (2005) present a general decision-theoretic framework for finding 

optimal designs for screening trials. 

A common feature of these designs is the assumption that the prior distribution for the 

treatment-specific success probabilities is a uniform Beta (1,1) distribution.  In essence, these 

designs are based on classical statistical theory and driven by the desire to reduce the risk of 

making incorrect decisions with respect to statistical hypothesis tests: either deciding in favor of 

0
H  when 

1
H  is the true state of nature or deciding in favor of 

1
H  when 

0
H is correct.  In other 

words, these proposals seek to minimize frequentist error probabilities.  

There are essentially two Bayesian approaches to single-treatment studies, such as phase II 

studies in oncology.  One is a decision-theoretic approach, e.g., Sylvester and Staquet (1977, 
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1980), Sylvester (1988), Berry and Pearson (1985), Brunier and Whitehead (1994), Berry and Ho 

(1988), Stallard (1998), Stallard, Thall, and Whitehead (2000), and Stallard and Thall (2001).  

These designs are based on maximizing the expected value of a pre-specified utility function.  

The second Bayesian approach does not explicitly specify a loss function or cost of sampling.  

Instead, stopping criteria are based on whether the posterior probability of some clinically 

important event exceeding a threshold.  Thall and Simon’s (1994) design is an example that has 

led to many extensions.  Heitjian (1997) proposed stopping rules based on posterior probabilities 

computed using two different prior distributions. 

Whether one considers a frequentist or Bayesian approach, most screening design proposals 

in the oncology literature so far consider one treatment at a time.  Each study is considered in 

isolation without benefit of learning from past treatments.  The designs do not formally 

incorporate updating prior knowledge about the success probability of the next treatment under 

consideration.  

In this paper, we take a Bayesian decision-theoretic approach to the design of phase II 

screening trials.  Our approach allows combining information across several related studies in a 

formal way.  Furthermore, the design improves estimation in small data sets by borrowing 

strength from other studies and/or treatments through a Bayesian hierarchical structure.  

Additionally, our design considers the reasons for carrying out the studies and their goals 

through an appropriate utility function.  One can use whatever utility function makes sense for 

the particular application.  Here, we consider a utility function that incorporates costs and 

financial rewards arising from the drug development perspective.  There is a sampling cost per 

patient incurred in collecting the data, as well as a gain if the new treatment shows significant 

benefit in a future phase III randomized clinical trial.   Briefly, our approach allows one to 
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produce a decision table that one can use for all treatments or studies.  By incorporating 

Bayesian updating in a hierarchical model and basing decisions on the posterior mean, our 

design approach allows decisions about further development of new treatments to account for 

learning about the treatments that have already gone through the screening process.  

In the next section we describe the probabilistic setup of our model and the utility function 

we use.  We then discuss the determination of decision tables in Section 3.  In Section 4, we 

compare our method to the fully sequential design of Leung and Wang (2001) and present some 

simulation-based results relating to sensitivity of our method to prior specification.  We conclude 

with a discussion in Section 5. 

2. Design 

2.1 Setup 

We consider a sequential decision problem where later decisions depend on earlier outcomes.  

We assume a dichotomous clinical endpoint and an indefinite sequence of new treatments for 

testing.  The subscript t refers to the time of an analysis-decision.  For us, time is with respect to 

the first treatment or study and continues until one identifies a treatment for phase III evaluation.  

At analysis-decision time t , patient j  on treatment or study i  gives rise to a binomial random 

variable tij
y with unknown success probability 

i
! .  We assume that the response is observable 

soon enough to enable the sequential designs.   

We define the algorithm for a screening process that considers multiple studies 

simultaneously.  We present the method, however, in the context of a sequence of studies, one 

after another, for ease of exposition.  Besides, we mainly envision the use of the method in this 

sequential setting.   
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At each analysis-decision time t , we choose a decision 
ti
d  for the current study.  Assume 

}3,2,1{!
ti
d .  Decision 1=

ti
d  indicates abandoning the treatment in study i  (“stop and discard 

the experimental treatment”); 2=
ti
d  indicates that the current study (i) should stop and the 

treatment should progress to a phase III trial (“stop and switch to pivotal trial”); decision 3=
ti
d  

indicates continuation with new patients entering the study in period 1+t  (“continue sampling 

on the same experimental treatment”).  Let 
  

! 

d
t
= d

t1
,K,d

tk( ), with the understanding that 

! 

d
t
= d

t1
 

when considering only one study at a time, i.e., k=1.  Let ),...,( 1 tt
ddD =  be the decision on all 

the treatments up to time t .  We let ),...,( 1 tt yyY =  be all the data observed for all the patients 

and treatments up to time t , where ),...,1;,...,1;( titijt njkiyy === .  Define ),( 1 ttt
YDH !=  as 

all the decisions up to time 1!t  and all the data up to time t .  We call 
t

H  the history up to time 

t .  Decisions 
t
d  can depend on all the data up to time t  and all the decisions up to time 1!t , 

i.e., )(
ttt

Hdd = . 

Each study is a single-arm design in that we do not compare treatments.  The choice of a 

single-arm design has been made for two reasons.  First, classical two-arm trials often require 

larger sample sizes than are practical for phase II studies.  Second, the goal of many phase II 

trials, as in oncology, is to screen new treatments for activity, unlike phase III confirmatory 

trials.  Phase III clinical trials typically seek to provide definitive evidence of a treatment’s 

clinical effectiveness and its superiority (or noninferiority) relative to a placebo or standard 

treatment.  The goal of phase II trials does not imply an explicit comparison with existing 

treatments, per se.  That said, phase II studies implicitly have a comparative aspect that 

treatments have to show promise in order to pass the screening process and go to a phase III trial.   
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2.2 Hierarchical Model 
 

We assume a three-stage hierarchical model.  At the first stage of the hierarchy, we model the 

number of successes for each treatment at each analysis-decision time. The observed data for 

patient j  on treatment i  at analysis-decision t  is binomially distributed, ),1(~| iitij Biny !! .  At 

the second level, we specify a population distribution for the success probability of each 

treatment or in each study, 
i

! .  We assume a probit regression model )(
ii

µ! "= , where )(t!  

denotes the standard normal cumulative distribution function.  The next level of the hierarchy 

characterizes our uncertainty about the distribution of treatment-specific success probabilities via 

! 

µ
i
.  We consider that the probit model parameters (

! 

µ
i
, corresponding to the treatment-specific 

success probabilities θi) are normally distributed with mean 
0

µ .  At the bottom level, uncertainty 

about the hyper-parameter 
0

µ  is also characterized by a normal distribution.  The hierarchical 

probability model can be written as: 

! 

ytij |"i ~ Bin(1,"i)

"i =#(µi)

µi | µ0 ~ N(µ0,$
2
)

µ0 ~ N(%,& 2
)    %,$ 2

,& 2
  known

    (1) 

The first equation in the hierarchical probit model represents the likelihood.  The last three 

equations represent the prior distribution of the treatment- or study-specific success probabilities.  

Inference focuses on 
0

µ  and 
i

µ .  The posterior distribution of 
i

µ , and, therefore 
i

! , a 

deterministic function of 
i

µ , characterizes current knowledge about the success probability of 

treatment or study i .  Since all treatments are connected to each other through the hyper-prior 

normal distribution with parameter 
0

µ , we continually update our knowledge about 
0

µ over time 
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in light of data generated by the current and previous studies.  The marginal posterior distribution 

of 
0

µ  based on the first 1!i  studies can be considered as the prior for the i -th study.  In this 

way, we combine information across studies and treatments in a formal probabilistic way and 

improve estimation in small datasets by borrowing information from other treatments.  

We work with a mathematically equivalent statement of the transformation that is more 

amenable to the implementation of stochastic posterior simulation, as in Albert and Chib (1993).  

We introduce latent variables tij
z  for each patient j  on treatment i at the analysis-decision time 

point t .  In mathematical form, we can write )1,()|( iitij Nzp µµ =  with 

! 

ytij = 1 if ztij " 0; 0 otherwise{ }.  Since 

! 

P(ytij =1) = P(ztij " 0) = P(
ztij #µi

1
" #µi) =1#$(#µi) =$(µi) , we get ),1(~ itij Biny ! , as 

desired.  

 

2.3 Utility Function 
 

We consider a utility function on the basis of financial costs and potential gains from the drug 

developer’s perspective.  We assume a fixed sampling cost 
1
c  per patient in the phase II study.  

The fixed number of patients recruited between any two analysis-decision times in the phase II 

study is 
1
n .  With a maximum of T decision time points in each phase II study, the maximum 

number of patients is 

! 

T " n
1
 per study.  For the subsequent phase III trial, we let 

2
c  be the cost 

per patient.  Phase III clinical trials are usually more expensive, because they typically involve 

many hospitals, they often require longer follow-up, and regulatory agencies require more 

extensive data collection.   
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The gain in the utility function comes from the degree of benefit shown in the phase III 

study for the new treatment.  We define b  as the reward for one unit improvement of the success 

probability of the new treatment over the old or current standard treatment.  We define random 

variable! as the difference of success probabilities (new treatment minus the old one, i.e., 

oldnew
!! " ).  If we decide to initiate a pivotal phase III trial and this trial concludes that the drug 

is, in fact, an effective treatment, there is a positive benefit !"b .  If, on the other hand, the 

pivotal trial claims that the treatment is inefficacious, then there is no benefit at all.  

Mathematically the benefit can be written as 

! 

max(0,b"# ) $ I
significant outcome{ } , with 

! 

I
A{ }  and 

indicator function for event A.  The phase III benefit in the utility calculation is a probabilistic 

calculation involving the predictive probability of success for the new treatment in phase III, 

given the phase II data.  

Let 
t
Y  denote the data observed up to time t  from all the treatments under active evaluations 

in phase II.  We let 
III
Y  represent the future phase III trial data, with 

2
n  patients included in the 

phase III trial.  We follow current practice for determining the sample size for a phase III clinical 

trial in a frequentist hypothesis-testing framework.  Typical requirements: at most a 5% chance 

of wrongly deciding that the new treatment is better (Type I error rate ! ) and at least a 90% 

chance of detecting a clinically relevant difference 

! 

" > 0  when it is present (power of the test, 

!"1 ).  We set the difference !  to 0.3 in our example.  The success probability of the standard 

or control treatment 
old

!  is set to 0.2 for the purpose of illustration.  In the future phase III trial, 

we randomize 
2
n  patients equally to the new treatment and the standard one, testing 

oldnew
H !! =:
0

 vs. 
oldnewa

H !! >: .  We do not consider sequential sampling in the phase III 
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trial, although one could easily incorporate it via posterior predictive sampling of the future 

clinical trial.   

The utility depends on the outcome of the phase III trial, which is not yet known.  We 

compute the expected utility by integrating with respect to the predictive distribution of the phase 

III data.  The predictive distribution for the future phase III study integrates over the posterior 

distribution for the current treatment and the distribution of the success probability of the control 

treatment.  In our example, we characterize the variation of the success probability of the 

standard or control treatment, 
old

! , with a beta distribution having mean 0.2 and variance 0.002, 

i.e., beta (20, 80).  In general, one would want to allow for relative certainty about the standard 

or control treatment’s success probability in the future study and not set the variance to be too 

large.  

The test statistic is  

2

)ˆ1(ˆ

2

)ˆ1(ˆ

ˆˆ

2

22

2

11

21

n

pp

n

pp

pp
Z

!
+

!

!
= , 

where 
1
p̂  and 

2
p̂  are observed proportions of successes for the new treatment and the standard 

one, respectively.  These statistics are the usual frequentist estimates of the treatment-specific 

success probabilities 
new

!  and 
old

!  after conducting the phase III study.  The standard one-sided 

test calls the new treatment efficacious if !">
1
zz . 

The utility function can be expressed as follows. 

! 

u
t
(d

t
,",Y

t
,Y

III
) =

#c1 $ n1 $ t if stop to discard

#{c1 $ n1 $ t + c2 $ n2} +

b${"
new

#"
old

}I[z>z1#% ]

if stop to switch to phase III trial

& 

' 
( 

) 
( 

 (2) 
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3. Decision Tables 

The traditional solution to optimal sequential design problem is full backward induction, also 

known as dynamic programming (DeGroot, 1970).  Full backward induction is computationally 

very intensive, however.  Carlin, Kadane, and Gelfand (1998) address stopping a fully sequential 

clinical trial from a Bayesian standpoint.  They characterize the sequential design by a set of 

12 +k critical cutoffs for the posterior mean of a parameter that quantifies the advantage of a 

treatment over placebo.  They present a forward sampling algorithm that substantially eases the 

analytic and computational burdens associated with backward induction.  Brockwell and Kadane 

(2001) and Müller et al. (2006) construct a grid-based approximation to the expected loss at each 

decision time, viewing the expected loss at each decision time as a function of certain statistics 

of the posterior distribution of the parameter of interest.   

We utilize a dual strategy of forward simulation and constrained backward induction, as 

proposed by Berry et al. (2001), to maximize the expected utility and find the optimal sequential 

design.  In principle, the dual strategy divides the continuous posterior mean into discrete units.  

The backward induction is constrained to a set of values on a grid. We use a grid on the posterior 

mean 

! 

S
i
= E "

i
data( ) .  In general, any other suitable low dimensional summary statistic could be 

used.  The statistic should capture most of the information in the full summary statistics.  Besides 

the constant sampling cost, the utility function is determined only by possible advantage of the 

new treatment over the standard one. This motivates considering the posterior mean of the new 

treatment to be the summary statistic 
t
S  used in the constrained backward induction.  

Recall that the number of decision points within a given study has finite horizonT .  One can 

simulate as many sample paths for a study as one wishes.  We generate M  possible experiments 

,,...1),,( MiYw
i

T

ii
== ! with ),(~ !! p

i and )|(~ ii
ypy !  for all analysis-decision time points 
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.,...,1 Tt =   For each simulated experiment i
w , we record the summary statistic i

t
S  at .,...,1 Tt =   

Starting with the last analysis-decision time point and then working backwards, we choose the 

decision that maximizes the expected utility at each analysis-decision time point.  We call this 

decision the optimal one. 

We estimate the expected utility for each decision (1, 2, and 3) at each grid cell along the 

posterior mean axis by working backwards.  The decision table consists of 1s, 2s, and 3s, with 1 

indicating the decision “stop and discard the experimental treatment”, 2 indicating “stop and 

switch to phase III,” and 3 indicating “continue sampling on the same treatment”.  

An ideal decision table would have no islands within each region corresponding to a 

decision. That is, the region for decision 1 should not be contaminated with numbers 2 or 3, etc.  

Because of  simulation and round off, however, this is not always the case.  We utilized a linear 

spline to smooth ragged decision boundaries within each time to solve this problem.  

Figure 1 shows the decision boundaries for a design with analyses after cohorts of five 

patients and a maximum of forty patients per study.  The X-axis is the analysis-decision time, 

and the Y-axis is the posterior mean of the success probability of the new treatment.  The 

decision table indicates for each analysis-decision time point which decision is optimal, 

depending on the posterior mean.  If the posterior success probability of the new treatment is 

below the lower boundary, then it is optimal to stop the study and discontinue studying the new 

treatment; if the posterior mean is above the upper boundary, then the optimal decision is to stop 

the current study and switch to the phase III trial.  Continuing the current study is optimal if the 

posterior mean is between the two boundaries at an analysis.  As patient information 

accumulates, the continuation region becomes narrower, indicating greater certainty with more 

information.  
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At the last analysis-decision time, the maximum sample size forces us to stop and choose 

between abandoning the drug or moving to phase III.  At the final analysis in our example, it is 

better to move to a phase III trial if the posterior success probability is above 0.5; if the posterior 

mean is less than 0.5, then the optimal decision is to abandon further development of the 

treatment.   

For any particular maximum sample size per treatment, the decision table stays the same, as 

long as all the parameters in the utility function do not change.  In particular, the decision table 

will not change if the prior parameters 2
,!" , and 2!  in the hierarchical probit model (1) change.  

Changing the hyper-parameters only affects the posterior inference, not the decision tables.  

Thus, the same decision table can be used for all treatments.  

 

4. Evaluation of the Design  

This section examines some simulated examples of the decision rules.  We first compare our 

approach with a noninformative prior to Wang and Leung’s fully sequential design. Then, we 

present simulation results over a range of values for the hyperparameters and discuss the 

sensitivity of the results to the selection of the prior distributions.  

 

4.1 Comparison with Wang and Leung’s Approach 

We illustrate our method and compare it to the approach of Wang and Leung’s for two reasons.  

Both methods take a decision-theoretic approach, and both are fully sequential.  Making 

decisions after collecting data from a group of patients reduces the opportunity to stop the trial 

early.  Compared to Yao, Begg, and Livingston, Wang and Leung’s fully sequential design is 
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about 50% more efficient in most cases.  Efficiency here means that a small number of patients 

are needed to identify the first promising treatment.  

We base our comparison on the expected number of patients treated until one identifies the first 

promising treatment and the probability that a treatment is confirmed to be efficacious after the 

decision to move it to a phase III trial.  

In the simulations, we used a beta distribution with parameters a and b for the probability of 

success of the treatments under study.  We use the same combination of (a, b) as did Wang and 

Leung to facilitate comparison with their results.  We also use the same target value of 5.0
*
=! , 

i.e., we consider a treatment with at least 0.5 probability of success to be promising.   

Wang and Leung (WL) assume that the prior distribution of !  is uniform, i.e., beta(1,1).  We 

choose the parameter values 
  

! 

" = 0, # 2
= 0.8

2  and 22
8.0=!  in the hierarchical probit model (1), 

so that the prior distribution of the probability of success of the first treatment looks like a 

uniform (0, 1) distribution (cf. Figure 1).  We label the cases in Table 2 from Wang and Leung’s 

paper as case 1 to 16, consecutively by row, for ease of comparison.  We carry out simulation 

studies to evaluate the frequentist operating characteristics of the design.   

We consider two concepts similar to frequentist Type I and Type II error rates.  We call these 

decision errors, rather than Type I or Type II errors, since our two errors are measured using 

posterior distributions and are used in a Bayesian design.  We first define the terms “accept” and 

“reject” to avoid potential confusion with the same terms in hypothesis testing.  When we write 

“accept” or “accepted,” we mean that the phase II study leads to the decision to go to a phase III 

trial.  Similarly, “reject” or “rejected” means that the phase II study leads to the decision to 

discard the treatment.  Intuitively, we would like a treatment to be called efficacious with high 

probability in the confirmatory phase III trial when the treatment is accepted in phase II 



 14 

screening trial.  We call the event that a treatment is deemed efficacious in phase III, given that 

the treatment was accepted in the phase II study a “true positive” (TP).  The probability of a TP 

is denoted PTP.  We also want low probability of abandoning an efficacious treatment (i.e., 

rejecting) in the phase II screening trial.  We call this probability PFN, i.e., the probability of a 

false negative decision in the phase II study.  We summarize these terms in Table 1.   

One might wish to incorporate PFP and PFN in the utility function, although we do not in our 

example.  FP errors may result in further patients being treated with an ineffective treatment, 

while FN errors may have the effect of discouraging further experiments with a truly effective 

treatment.  From a drug development perspective, FN is a more serious mistake, because it may 

overlook an effective treatment (see Simon, 1989).  

Table 2 summarizes the simulation results comparing our method to WL.  We found that our 

method and WL had roughly the same expected number of treatments to screen out the first 

promising treatment.  Our proposal, however, required a smaller number of patients, on average, 

to screen out the first promising treatment, except in cases 2, 4, and 13.  We saw similar results 

when we examined the expected number of treatments until one finds a promising one (not 

shown).  The PTPs are quite similar for the method of Wang and Leung and our method (Table 

3).  PFNs are close in cases with )(!E equal to 0.2 and 0.3 (the first two columns in Table 4).  In 

cases 4, 8, 12 and 16, (i.e., Beta models for !  with mean 0.5), however, our design provided 

noticeably smaller PFNs.  Recall that we use 5.0
*
=!  as the target value in the phase III 

confirmatory trial.  It seems that when the mean probability of success for !  is close to the target 

value, the method we propose has better design characteristics.  
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4.2 Sensitivity of Posterior Inference to the Prior  

We investigated the sensitivity of the design’s operating characteristics to changes in the prior 

distributions of the hyper-parameters 2
,!" , and 2!   in model (1).  We considered the case of a 

fully-sequential design with maximum time horizon of 30 patients per study (or per treatment).  

For the purpose of illustration, we used a Beta(0.12, 0.48) distribution (mean = 0.2 and variance 

= 0.1) when generating a treatment’s success probability in the simulations.  This beta 

distribution assigns probability 0.71 to values less than or equal to 0.2 and probability 0.18 to 

values greater than or equal to 0.5. 

We evaluated the optimal design across several ranges of values for the hyperparameters.  

Figure 2 displays prior distributions of the success probabilities for the cases in which ! equals–

{0.5, 0, 0.5} and 2! and 2!  each equal { 22
5.0,3.0 , 2

8.0 }.  In each subplot, as !  increases from 

–0.5 to 0 to 0.5, the prior density of the success probability shift from the left to the right, 

meaning that the mean probability of success increases.  Looking across subplots in Figure 2, as 

the variance terms 2!  and 2!  increase, the density plots of prior distributions of success 

probability become flatter, meaning that the density has less precision around the prior mean 

probability of success.  A uniform prior corresponds roughly to the case of 

! 

" = 0.5  and 

! 

" 2
= # 2 = 0.8

2 . 

Table 3 shows that the expected number of patients treated before one identifies a promising 

agent increases as !  increases.  In the cases where 2!  and 2!  equal 2
3.0 , the expected number 

of patients to identify the first promising treatment increases from 31.25 to 48.15 to 54.05 as 

! increases from –0.5 to 0 to 0.5.  The expected number of treatments decreases, however, as do 

PTP and PFN.   
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Recall that the underlying probability of success of the treatments to test has mean 0.2 in the 

simulations.  If we start with an optimistic prior, i.e., a prior with mean probability of success 

higher than the mean probability of success of the treatments to be tested, it takes longer to 

screen out treatments with low efficacy.  Because it takes longer, the expected number of 

patients required increases, but the expected number of treatments decreases slightly.  Also, with 

an optimistic prior, there is a slightly smaller chance of falsely rejecting an effective treatment.  

This lower chance of falsely discarding a good treatment comes at the cost of a higher risk of 

picking out treatments that turn out not to be efficacious.  

Table 3 shows that for the same ! value, as the variance terms 2!  and 2!  increase, the 

expected number of patients decreases.  The higher the precision around the prior mean is, the 

larger the expected number of patients required.  In the case of 5.0!=" , the prior expected 

value of 

! 

"
1
 ranges from 0.35 (

! 

" 2
= # 2 = 0.8

2) to 0.31 (

! 

" 2
= # 2 = 0.3

2).  If, a priori, the treatments 

have low mean probability of success, it takes time to screen out the treatment with efficacy, 

increasing the expected number of patients to screen out the first promising treatment.  In the 

case of 0=! , the prior mean probabilities of success are very close to the target value 0.5.  It 

takes longer to screen out both inefficacious and promising treatments.  In the case of 5.0=! , 

the prior mean probability of success is larger than the target value 0.5.  This case shows that it 

will take longer to reject treatments with low efficacy (and increase the expected sample size) if 

we start with a prior having relatively high precision and centered at a probability of success 

greater than the target value.  PFNs are larger in the case of 5.0!="  than those of 0=!  and 

0.5.  From our example, we see that if the treatments have low mean success probabilities and we 

start with a prior that has mean probability of success closer to that of the treatments, then there 
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is a greater chance of falsely rejecting an efficacious one.  In this case, we may reject slightly 

more treatments than we might have wanted.  

 

5. Discussion 

In this paper we have applied Bayesian decision theory to phase II screening trials.  Our 

approach led to a decision table one can produce at the start of the sequence of trials and use 

throughout.  The methodology employed forward simulation of study data, a low-level summary 

statistic to characterize uncertainty about the overall parameter space, and backward induction 

over a grid, incorporating a utility function that characterizes appropriate costs and benefits.  

Because of the use of the low-level summary statistic (or statistics), the optimal decision at any 

time depends only on the value of this statistic at that time, no matter how one got there.  Our 

method allows one to incorporate covariates via a hierarchical probit model. 

Bayesian decision-making, although computationally intensive, provides an efficient and 

rational approach to the phase II screening process.  We want to rule out clearly ineffective 

treatments.  We do not, however, want to rush to a premature decision that a treatment is 

promising or useless based on a small sample.  Bayesian hierarchical models allow us to borrow 

strength from other treatments and improve estimation in terms of better precision.  The success 

probabilities are shrunk toward the overall average.  The shrinkage is advantageous because the 

decisions to abandon a treatment or to switch to pivotal trial are more conservative.  Being 

conservative in phase II screening trials is important when we are not sure about the true nature 

of the treatments and what works or does not work.  

Through the Bayesian hierarchical model, we continually update our knowledge about the 

underlying population distribution of treatment-specific success probabilities.  A consequence of 
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updating is that the expected number of patients depends on the data observed in those studies.  

The order in which the potential treatments to be evaluated arrive also plays an important role.  

An optimal ordering would be one in which the next treatment for evaluation is always chosen so 

as to maximize the expected utility from the start of the whole process.  The computation 

becomes more complicated, however.  This problem may be solvable for simple utility functions, 

but the backward induction is generally formidable.  A myopic strategy in which at most r  

future treatments would be considered can provide an approximate solution.  Because ordering 

matters, it might be sensible to reconsider previously rejected treatments at later stages.  

In order to enable the backward induction, we need to pre-specify the maximum sample size 

per trial.  In practice, the maximum sample size is determined based on assumed patient accrual 

rate, feasible trial duration, and monetary costs, in addition to the statistical properties of the 

design and reliability of parameter estimates.  A typical phase II clinical trial requires 30 to 80 

patients.  Trials with more than 100 patients are often impractical in terms of timing and cost of 

the trials.  We can consider frequentist properties when choosing a maximum sample size.  

One might also consider an evolving process in which the target response rate changes over 

time.  We are currently investigating this enhancement. 

In the discussion above, we used drug development as the paradigm.  The proposed 

methodology has broader application, however.  It is applicable in any setting in which one 

wishes to screen several contending innovations that appear over time.  The utility functions will 

change to reflect the circumstances.  
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Figure 1 shows the decision boundaries for a group sequential design with cohort size 5 and 

maximum 40 patients per study.  
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Figure 2. Prior distributions of the success probability of the first treatment with different !  

and the same ! and ! in each subplot.  The three parameters in the legend are ,,!" and ! , 

respectively. 
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Table 1: 2 x 2 table for Bayesian errors 

  Phase III (Efficacious)  

  Yes No Total 

Phase II Accept PTP PFP 1 

 Reject PFN PTN 1 

 

PTP = P (Phase III Yes | Phase II Accepted)  PFP = 1-PTP 

PFN = P (Phase III Yes | Phase II Rejected)    PTN = 1-PFN    
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Table 2: Comparison of the method of Wang and Leung (WL) and our proposed Bayesian 

optimal design approach (OPT). 

   E (! )   
Var (! )  0.2 0.3 0.4 0.5 

  1)a 2) 3) 4) 
0.08 

! 

EWL Np[ ]b 32 35 28 16 

 

! 

EOPT Np[ ]c 27 40 28 17 

 Max Td 60 130 100 60 
 

! 

PTP
WL

,

! 

PTP
OPT

 0.96, 0.95 0.93, 0.92 0.96, 0.94 0.96, 0.94 
 

! 

PFN
WL

,

! 

PFN
OPT

 0.08, 0.06 0.13, 0.11 0.22, 0.18 0.28, 0.18 
  5) 6) 7) 8) 

0.10 

! 

EWL Np[ ] 17 22 17 11 

 

! 

EOPT Np[ ]  13 15 14 11 

 Max Td 30 40 40 60 
 

! 

PTP
WL

,

! 

PTP
OPT

 0.93, 0.95 0.95, 0.94 0.95, 0.93 0.95, 0.97 
 

! 

PFN
WL

,

! 

PFN
OPT

 0.07, 0.06 0.12, 0.10 0.21, 0.17 0.26, 0.16 
  9) 10) 11) 12) 

0.12 

! 

EWL Np[ ] 12 13 11 8 

 

! 

EOPT Np[ ]  6 10 10 7 

 Max Td 30 40 20 30 
 

! 

PTP
WL

,

! 

PTP
OPT

 0.95, 0.96 0.96, 0.98 0.94, 0.98 0.96, 0.98 
 

! 

PFN
WL

,

! 

PFN
OPT

 0.04, 0.03 0.10, 0.08 0.17, 0.15 0.24, 0.19 
  13) 14) 15) 16) 

0.14 

! 

EWL Np[ ] 5 9 7 6 

 

! 

EOPT Np[ ]  8 7 6 5 

 Max Td 5 10 10 10 
 

! 

PTP
WL

,

! 

PTP
OPT

 0.95, 0.98 0.92, 0.93 0.94, 0.97 0.95, 0.96 
 

! 

PFN
WL

,

! 

PFN
OPT

 0.03, 0.02 0.08, 0.10 0.12, 0.11 0.18, 0.16 
 
a Case number (see text). 
b Expected pN  for WL (Wang and Leung, 1998). 

c Expected pN  for the Bayesian optimal design approach (OPT) proposed in this paper. 
d Maximum sample size per study, based on the table in Wang and Leung’s paper. 
e Probability of a True Positive (PTP) decision for WL and OPT. 
f Probability of a False Negative (PFN) decision for WL and OPT. 
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Table 3. Comparison of pN , the expected number of treatments until identification of the first 

active treatment, PTP, and PFN for priors with different combinations of 2
,!" , and 2! .  

Treatment-specific success probabilities followed a Beta(0.12, 0.48) distribution. 

 

 


