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Abstract

We review the use of semi-parametric mixture models for Bayesian in-
ference in high throughput genomic data. We discuss three specific
approaches for microarray data, for protein mass spectrometry experi-
ments, and for SAGE data. For the microarray data and the protein
mass spectrometry we assume group comparison experiments, i.e., ex-
periments that seek to identify genes and proteins that are differentially
expressed across two biologic conditions of interest. For the SAGE data
example we consider inference for a single biologic sample. For all three
applications we use flexible mixture models to implement inference. For
the microarray data we define a Dirichlet process mixture of normal
model. For the mass spectrometry data we introduce a mixture of Beta
model. And the proposed inference for SAGE data is based on a semi-
parametric mixture of Poisson distributions.

29.1 Introduction

We discuss semi-parametric Bayesian data analysis for high throughput
genomic data. We introduce suitable semi-parametric mixture models
to implement inference for microarray data, mass spectrometry data and
SAGE data. The proposed models include a Dirichlet process mixture
of normals for microarray data, a mixture of Beta distributions with a
random number of terms for mass spectrometry data, and a Dirichlet
process mixture of Poisson model for SAGE data. For the microarray
data and the protein mass spectrometry data we consider experiments
that compare two biologic conditions of interest. We assume that the
aim of the experiment is to find genes and proteins, respectively, that
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are differentially expressed under the two conditions. For the SAGE
example, we propose data analysis for a single biologic sample.

Several aspects of data analysis for microarray and other high through-
put gene and protein expression experiments give rise to mixture models.
One important application of mixture models is for flexible modeling of
sampling distributions. This is attractive, for example, when the number
of genes on a microarray is the relevant sample size, thus allowing flexible
semi-parametric representations. Such approaches are discussed, among
others, in Broet et al. (2002), Dahl (2003) or Tadesse et al. (2005). The
latter exploit the clustering implicitely defined by the mixture model
to identify biologically interesting subclasses. Also, see Dahl (2006);
Tadesse et al. (2006) in this volume. In this chapter we review three ap-
proaches that are typical examples of this literature. In Section 29.2 we
discuss the use of Dirichlet process mixtures for model based inference
about differential gene expression. In Section 29.3 we describe a mixture
of Beta model for the mass/charge spectrum in MALDI-TOF mass spec-
trometry experiments. In Section 29.4 we introduce a semiparametric
mixture of Poisson model for SAGE data.

Another important class of applications for mixture models in data
analysis for high throughput gene expression data are finite mixtures,
with each term in the mixture corresponding to a different condition
of interest. A typical example is the model used in Parmigiani et al.
(2002) who construct a sampling model for observed gene expression
in microarray experiments as a mixture of three terms corresponding
to normal, under- and over-expression. Newton et al. (2001) define a
Gamma/Gamma hierarchical model with a mixture induced by an indi-
cator for ties between two biologic conditions of interest. Kendziorsky
et al. (2005) use mixtures for expression QTL mapping. See also Chen
and Kendziorski (2006) in this volume. Kendziorsky et al. (2003) use
finite mixtures to identify patterns of differential expression across mul-
tiple biologic conditions.

Naturally, the distinction between the two types of mixtures, i.e., flex-
ible mixtures for an unknown sampling model versus mixtures of sub-
models with a biologically meaningful interpretation, is not strict. A
typical example is the use of semi-parametric mixtures to define a prob-
ability model for clustering of genes or samples. Inference about clusters
can often be interpreted as inference on biologically meaningful groups of
genes or subpopulations corresponding to biologically distinct sub-types
of a disease. From a modeling perspective, the intention of our distinc-
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tion is to focus on semi-parametric mixture models with a random and,
at least in spirit, unconstrained size mixture.

Also, approaches that use hierarchical models to define flexible sam-
pling models could alternatively be considered as mixture models. Col-
lapsing the hierarchical model by marginalizing with respect to some in-
termediate level parameters one can often rewrite the hierarchical model
as a mixture. See, for example, Hein et al. (2005) or Hein et al. (2006)
in this volume.

In this chapter we only focus on the use of semi-parametric mixtures
to represent an unknown sampling model, i.e., applications of infinite
size mixtures, and will not discuss the other type of mixture models.

29.2 A Non-parametric Bayesian model for Differential Gene
Expression

We consider inference for microarray group comparsion experiments.
Assume that the data has been summarized as a set of difference scores,
zi, i = 1, . . . , n, for n genes. The difference score zi could be, for exam-
ple, a two-sample t-statistic for observed fluorescence intensities for gene
i in samples under two biologic conditions of interest. See Efron et al.
(2001) for a discussion of appropriate data pr-eproscesing and Baggerly
et al. (2006), in this volume, for an explaination of the experimental
setup and important issues in data analysis for such experiments. We
assume that the set i = 1, . . . , n, of genes is partitioned into a subset of
differentially expressed genes and non-differentially expressed genes. In-
ference proceeds by assuming that for differentially expressed genes, the
difference scores zi arise by independent sampling from some unknown
distribution f1; for non-differentially expressed genes, zi are indepen-
dent samples from an unknown distribution f0. For a reasonable choice
of difference scores, the distribution f0 should be a unimodal distribution
centered at zero. The distribution f1 should be a bimodal distribution
with symmetric modes to the left and right of zero corresponding to
over- and underexpressed genes. Figure 29.1 show possible histograms
for observed difference scores generated from f0 and f1. Of course, the
partition into differentially and non-differentially expressed genes is un-
known. Thus, instead of samples from f0 and f1, we can only work
with the sample zi, i = 1, . . . , n, generated from a mixture of f0 and f1.
Let p0 denote the unknown proporition of non-differentially genes. We
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Fig. 29.1. Hypothetical distribution of difference scores for non-differentially
expressed (left, f0) and differentially expessed genes (center, f1), and the
observed mixture (right, f).

assume

zi
iid∼ f(z) = p0 f0(z) + (1− p0) f1(z), i = 1, . . . , n. (29.1)

The main goal of inference in the two group comparison microarray
experiment can be formally described as the deconvolution of (29.1).
We introduce a latent indicator variables ri ∈ {0, 1} to rewrite (29.1)
equivalently as a hierarchical model

p(zi | ri = j) = fj(zi)

Pr(ri = 0) = p0. (29.2)

The latent variable ri can be interpreted as indicator for gene i being
differentially expressed. Efron et al. (2001) propose cleverly chosen point
estimates for p0, f0 and f1 and report the implied inference for ri. To
develop the point estimate they introduce an additional set of difference
scores, zi, i = n + 1, . . . , 2n. The additional difference scores are gener-
ated using the same original data, but deliberately computing difference
scores for samples under the same biologic conditions. Thus,

zi ∼ f0(zi), i = n + 1, . . . , 2n,

for this additional null sample.
In Do et al. (2005) we propose a model-based semiparametric Bayesian

approach to inference in this problem. We recognize f0, f1 and p0 as
unknown quantities and proceed by defining a suitable prior probability
model. Probability models for unknown functions, including distribu-
tions such as f0 and f1 in this problem, are known as non-parametric
Bayesian models. See, for example Müller and Quintana (2004) for a
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recent review of non-parametric Bayesian inference. The term “non-
parametric” is a misnomer, as the random functions are infinite dimen-
sional parameters. However, the name is traditionally used because
implied posterior inference closely resembles inference under classical
non-parametric methods.

In chosing a prior probability model for f0 and f1 we face two com-
peting aims. On one hand we wish to generalize traditional parametric
models, like a normal sampling model. On the other hand we want to
retain as much computational simplicity as possible. This leads us to
use a mixture of normal model, with a non-parametric prior on the mix-
ing measure. Inference under this model is almost as straightforward as
under a simple normal model, yet, subject to some technical constraints,
the mixture of normal model can approximate arbitrary sampling distri-
butions. As probabilty model for the mixing measure we use a Dirichlet
process (DP) prior (Ferguson, 1973; Antoniak, 1974). For reasons of
computational simplicity and ease of interpretation, the DP prior is one
of the most widely used non-parametric Bayes models. The DP model
has two parameters, a base measure and a total mass parameter. We
write G ∼ DP (G?,M) to indicate that G has a DP prior with a base
measure G? and total mass M . The base measure has the interpretation
as mean measure, in fact E(G) = G?. The total mass parameter can
be interpreted as a precision parameter. The larger M , the closer the
random G will be to G?. Another important implication of the total
mass parameter is mentioned below.

In summary, we assume the following model. Let N(z; m, s) denote
a normal distribution for the random variable z, with moments (m, s).
We define a probability model for the random distributions f0 and f1

as:

fj(z) =
∫

N(z; µ, σ) dGj(µ)

Gj ∼ DP (G?
j ,M). (29.3)

One of the critical properties of the DP prior is that a DP generated
random measure is almost surely discrete. Thus the integral in (29.3)
is simply a sum over all point masses in Gj . The total mass parameter
M determines the distribution of the weights attached to these point
masses. Mixture models with respect to a mixting measure with DP
prior, such as (29.3), are known as mixture of DP (MDP) models and
are widely used in non-parametric Bayesian inference. See, for example,
MacEachern and Müller (2000) for a review of such models.
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We complete the model given by the likelihood (29.2) and prior (29.3)
with a hyperprior on the base measures G?

j . We assume G?
0 = N(0, τ2)

with a conjugate inverse Gamma hyperprior on τ2, and G?
1 = 1

2N(−b, τ2)+
1
2N(b, τ2) with a conjugate normal hyperprior on b. Finally, we assume
a Beta prior for p0, p0 ∼ Be(α, β). The hyperparameters α, β, M are
fixed.

Inference in the proposed model is implemented by Markov chain
Monte Carlo (MCMC) simulation. See Do et al. (2005) for a detailed
description of the posterior MCMC algorithm. A direct implication of
the model (29.2) and (29.3) is that the marginal posterior probability of
differential expression, Pr(ri = 1 | data), is the same for all genes with
equal difference score zi. Thus posterior inference can be summarized
as a function Pr(ri = 1 | zi = z, data). Starting with model (29.2), a
straightforward use of Bayes theorem shows

Pr(ri = 0 | zi = z, f0, f1, p0) = p0 f0(z)/[p0 f0(z) + (1− p0) f1(z)︸ ︷︷ ︸
f(z)

].

Let P1 = p0 f0/f . Then the posterior expectation P 1 = E(P1 | data)
is exactly the desired marginal posterior probability of differential ex-
pression, P 1 = Pr(ri = 1 | zi = z, data). Figure 29.2 shows posterior
inference for a simulation experiment. The figure shows the simulation
truth, the reported posterior mean curve P 1(z), and pointwise posterior
credible intervals for P1(z). The curve P 1(z) allows one to readily read
off the marginal posterior probability of differential expression for each
gene. In contrast to reasonable but ad-hoc point estimates, the reported
probabilities are interpreted as marginal probabilities in one coherent
encompassing probability model. This leads to a straightforward defini-
tion, evaluation and control of false discovery rates. See Newton et al.
(2004) or Do et al. (2005) for a discussion.

29.3 A Mixture of Beta Model for MALDI-TOF Data

Matrix assisted laser disorption – time of flight (MALDI-TOF) experi-
ments allow the investigator to simultaneously measure abundance for
a large number of proteins. Details of the experimental setup are de-
scribed, for example, in Baggerly et al. (2003) or Baggerly et al. (2006),
in this volume. Briefly, the biological sample for which we wish to de-
termine protein abundance is fixed in a matrix. A laser beam is used to
break free and ionize individual protein molecules. The experiment is
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Fig. 29.2. P 1(z): posterior mean probability of differential expression as a
function of the observed difference score z (solid black line). The left figure
conditions on the full data, zi, i = 1, . . . , 2n, including the null data. The right
figure does not make use of the null data, conditioning only on zi, i = 1, . . . , n.
The dark grey shaded band shows the central 50% posterior density interval.
Light grey shows a 75% posterior interval The dark and light grey shaded
areas are very narrow and can hardly be distinguished from the posterior
mean curve.

arranged such that ionized proteins are exposed to an electric field that
accelerates molecules along a flight tube. On the other end of the flight
tube molecules hit a detector that records a histogram of number of
molecules that hit over time. Assumig that all ionized molecules carry a
unit charge, the time of flight is deterministically related to the molecule
mass. The histogram of detector events over time can therefore be be
changed to a histogram of detector events over protein masses. Allowing
for multiple charges, the mass scale is replaced by a scale of mass/charge
ratios. The histogram of detector events is known as mass/charge spec-
trum. Figure 29.3 shows typical spectra.

Ideally, each protein that is present in the original probe should corre-
spond to a peak in the spectrum. Because of the random initial velocities
when proteins are ionized by the laser impact we would expect to see
peaks rather than sharp lines even in an idealized experiment. Many
additional artifacts of the experiment add to the idealized description,
leading to an additional baseline that adds to the protein peaks. See the
data shown in Figure 29.3.

Assume we observe spectra for experiments k = 1, . . . ,K. Let yk(mi)
denote the recorded count for sample k at mass/charge grid point mi,
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Fig. 29.3. Spectra for a normal samples (left) and a tumor samples (right), on
grid of size I = 60, 000.

and let fk(mi) denote the assumed underlying cleaned spectra corre-
sponding to detected proteins only. The desired inference about the
unknown protein abundance in the original probes can be formalized
as (i) removing noise and baseline from the observed spectra yki to im-
pute fk; (ii) finding peaks in fk; and (iii) reporting the relative sizes
of these peaks. The relative size of the peaks corresponds to the rela-
tive abundance of the corresponding protein in the probe. If samples are
collected under different biologic conditions we need additional inference
about different versus equal abundance of different proteins.

In Müller et al. (2006) we develop a non-parametric Bayes model to
allow such inference. Based on the above stylized description of the
experiment we consider yk as the empirical histogram of detector events.
We represent it as a mixture of a baseline Bk corresponding to detector
noise, protein fragments, etc., and a cleaned spectrum fk:

pk(m) = p0k Bk(m) + (1− p0k) fk(m).

The spectrum fk is a sum of peaks, with each detected protein con-
tributing a peak centered at its mass/charge value. The experimental
arrangement implies a finite support for fk. Motivated by nonpara-
metric models for random distributions on a finite support developed
in Petrone (1999) and Robert and Rousseau (2002) we use a mixture
of Beta distributions to define the random distribution fk. The loca-
tion for each Beta kernel is interpreted as the mass/charge ratio of the
protein giving rise to this peak. To facilitate later interpretation, we
use a non-standard parametriztion of the Beta distribution. We write
Be(x; ε, α) for a Beta kernel for the random variable x, with mean and
standard deviation ε and α (with appropriate constraints on α).



Mixture Models 9

Let x denote the biologic condition of sample k. We assume a two
group comparison, i.e., x ∈ {0, 1}. Then

fk(m) =
J∑

j=1

wxj Beta(m; εj , αj). (29.4)

In words, the k-th spectrum is a mixture of Beta kernels, correspond-
ing to J distinct proteins with mass/charge values εj . The relative
weight wxj , i.e., relative abundance of protein j, is assumed the same
for all samples under the same biologic condition. For reasons of tech-
nical convenience we chose a similar mixture of Beta prior for the base-
line Bk. Different hyperparameters reflect the fact that the baseline
is much smoother than fk and we expect fewer terms in the mixture.
Bk(m) =

∑Jk

j=1 vkj Beta(m; ηkj , βkj). The sizes of the mixtures are ran-
dom. We use truncated Poisson priors for J and Jk, k = 1, . . . ,K.
Baseline Bk and mean spectrum fk are combined to define the dis-
tribution of mass/charge ratios pk = p0k Bk + (1 − p0k) fk. Follow-
ing the idealized description of the experimental setup, the sampling
model is random sampling from pk. Let yk = (yki, i = 1, . . . , I)
denote the empirical spectrum for the k-th sample over the grid of
mass/charge values. Typically I is large, say 60,000, defining a very fine
grid. Let θ = (J, Jk, wxj , vkj , εj , αj , ηi, βi, x = 0, 1, j = 1, . . . , J, k =
1, . . . ,K, i = 1, . . . , Jk) denote the parameter vector. The likelihood is

log p(yk | θ) =
I∑

i=1

yki log pk(mi). (29.5)

Instead of the random sampling model (29.5) many authors use a regres-
sion likelihood, assuming normal residuals, yki ∼ N(pk(mi), σ2). Little
changes in the following discussion if we were to replace (29.5) by this
regression likelihood.

The model is completed with a prior for the Beta parameters and the
weights. For the weights wxj we use a hierarchical prior with indicators
λj for ties

λj = I(w0j = w1j).

Posterior inference on the λj and the locations εj summarizes the desired
inference on proteins that are differentially expressed across the two
groups of samples.

Implementation of posterior inference requires MCMC over a varying
dimension parameter space, as the dimension of the parameter space
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Fig. 29.4. Posterior mean abundance of detected proteins. All peaks with
posterior probability of differential expression greater 50% are marked as solid
dots, with a line combining w0j = E(w0j | data) and w1j . Mass/charge ratios
on the horizontal axis are rescaled to the unit interval.

depends on the sizes J and Jk of the mixtures. We use reversible jump
MCMC (RJMCMC) as proposed in Green (1995) and, specifically for
mixture models, in Richardson and Green (1997). See Müller et al.
(2005) for a detailed description of the MCMC algorithm.

A minor complication arises in reporting and summarizing posterior
inference about distinct proteins and their mass/charge ratios. The mix-
ture fk only includes exchangeable indices j, leading to the complication
that the Beta kernel corresponding to a specific protein might have dif-
ferent indices at different iterations of the posterior MCMC simulation.
In other words, the protein identity is not part of the probability model.
To report posterior inference on the mean abundance of a given protein
requires additional post-processing to match Beta kernels that corre-
spond to the same protein across iterations. We use a reasonable ad-hoc
rule. Any two peaks j and h with a difference in masses below a certain
threshold are counted as arising from the same protein. Specifically, we
use the condition |εj − εh| < 0.5αj to match peaks. Here j indexes the
peak that was imputed in an earlier MCMC iteration than the peak h.
The problem of reporting inference related to the terms in a mixture
is known as the label switching problem (C. C. Holmes and Stephens,
2005).

Figure 29.4 summarizes estimated masses and abundance of detected
proteins. Assuming that the main inference goal is to identify proteins
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with differential expression across the two biologic conditions, we focus
on inference about the indicator for differential expression, 1− λj . The
figure indicates all protein masses with Pr(λj = 0 | data, . . .) > 50%, i.e.,
with posterior probability greater than 50% for differential expression.
The probability is evaluated conditional on the protein being present in
the probe (therefore the “. . .” in the conditioning set). Also, only pro-
teins are reported in the figure that have posterior probability greater
than 5% of being present, i.e., a peak being identified at the correspond-
ing mass. In a data analysis, the list of reported protein masses would
now be compared against a list of known protein masses to match the
discovered peaks with specific proteins.

29.4 A Semi-Parametric Mixture Model for SAGE Data

Consider data from a SAGE (Serial Analysis of Gene Expression) exper-
iment. See Baggerly et al. (2006) for a description of the experimental
setup, and the nature of the data. We consider inference for data from
one biologic sample. Let yi, i = 1, . . . , k, denote observed tag frequen-
cies for k distinct transcripts. Let n =

∑
yi denote the total number of

recorded transcripts, and let πi denote the unknown true abundance of
the i-th transcript in the probe. For large yi, the empirical frequency
π̂i = yi/n is an appropriate point estimate for πi. The associated uncer-
tainty, formalized as variance of the maximum likelihood estimator or as
posterior standard deviation in a suitable model, is negligible. However,
for scarce tags with small πi, more elaborate estimates are required.
The empirical frequency for scarce tages includes considerable sampling
variability. Also, when the data includes samples across different bio-
logic conditions, the inference goal might not be restricted to estimating
the transcript frequencies. For discrimination and classification addi-
tional inference about differences in transcript frequencies, and related
probability statements are required. In addition to inference on πi for a
specific tag i, one might be interested in the distribution of tag frequen-
cies across different transcripts. This can be achieved by model-based
posterior inference.

Morris et al. (2003) introduce an approach that is based on a hierar-
chical model with a mixture of two Dirichlet distributions as population
distribution prior for the πi. See Morris et al. (2006) in this volume
for a review of this approach. Building on this model, we introduce a
semi-parametric Bayesian mixture model, replacing the two-component
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mixture of Dirichlet distributions by an unknown random measure, with
a nonparametric Bayesian prior model.

For the following model construction it is convenient not to condition
on n. In other words, instead of assuming that the set of observed
counts arise as a multinomial sample with cell frequencies πi, we assume
that, conditional on hyperparameters, the counts yi arise as independent
samples from some distribution. Specifically, we assume that the counts
yi are sampled from a mixture of Poisson model. Let Poi(x; λ) denote
a Poisson distribution for the random variable x with parameter λ. We
assume

yi ∼
∫

Poi(yi; λ) dG(λ),

i = 1, . . . , n, independently conditional on G. We specify a prior distri-
bution for the mixture model by assuming a nonparametric prior on the
mixing measure, chosing a DP prior as in (29.3),

G ∼ DP (G?,M). (29.6)

The mixture model can alternatively be written as a hierarchical model

yi | λi ∼ Poi(λi) with λi ∼ G. (29.7)

The discrete nature of the DP random measure G implies a positive
probability for ties among the λi. We denote with L the number of
distinct values.

A minor complication arises from the fact that yi = 0 is not observed;
it is censored. Let k0 denote the number of tags with non-zero count,
i.e., the number of tags recorded in a SAGE library as shown in Baggerly
et al. (2006). One could augment the model to include inference on k,
k ≥ k0. Alternatively, we follow Stollberg et al. (2000), and fix k by
imputing a point estimate for the uknown number of unobserved tags,
i.e., tags with yi = 0.

Model (29.6) and (29.7) defines a DP mixture of Poisson distributions.
Such models are popular choices for non-parametric Bayesian data anal-
ysis. See, for example, MacEachern and Müller (2000) for a review of
such models, including implementation of posterior inference by MCMC
simulation. Choosing the base measure G? to be conjugate with the
Poisson distribution we define a conjugate DP mixture, greatly facili-
tating the MCMC implementation. Let Ga(x; α, β) denote a Gamma
distribution with mean α/β. We use

G?(λ) = Ga(x; α, β),
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Fig. 29.5. Observed tag counts yi. The highly skewed nature is typial for
SAGE data.

with fixed hyperparameters α and β.
To illustrate the model we implemented posterior inference for a SAGE

library reported in Zhang et al. (1997). The same data was used in Mor-
ris et al. (2003), and is available at
http://www.sagenet.org/SAGEData/NC1.htm. It records counts for
k0 = 17703 distinct transcripts, with a total number of n =

∑
yi =

49610 recorded tags. We use the estimte from Stollberg et al. (2000),
and set k = 25336, with yi = 0 for i = k0 + 1, . . . , k, i.e., we estimate
the number of tags with censored counts yi = 0, as

∑
I(yi = 0) = 8072.

Figure 29.5a shows a histogram of observed counts yi in the data. Figure
29.6 summarizes posterior inference for the transcript abundances. The
figure plots posterior mean estimates E(λi | data) versus observed counts
yi. The nature of the shrinkage follows patterns reported in Morris et al.
(2003). For censored tags, with yi = 0, the posterior mean estimate in-
flates the m.l.e. and reports E(λi | data) ≈ 0.9. For rare tags with
non-zero counts, posterior inference shrinks the maximum likelihood es-
timate. For abundant tags, posterior inference is driven only by the
observed count, and E(λi | data) ≈ yi. Figure 29.7 shows the estimated
distribution of tag abundances λi.

29.5 Summary

We have illustrated the use of mixture models for Bayesian inference with
gene expression and proteomics data. We focused on the use of mixtures
as a flexible class of distributions to parametrize random distributions.
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Fig. 29.7. Estimated mixing measure G. The left panel zooms in on the lower
end, λ < 100. The highly skewed nature of G? = E(G | data) reflects the
same feature in the recorded data yi.

Another important use of mixtures arises in models where the submodels
in the mixture correspond to different biologic conditions. Such models
are extensively reviewed in other chapters in this volume.

We introduced DP mixtures of normals models to model microar-
ray gene expression data, DP mixtures of Poissons to model tag counts
in SAGE data, and location/scale mixtures of Beta kernels to repre-
sent mass/charge spectra in protein mass spectrometry experiments.
The underlying theme in all three applications is the use of model-
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based inference, with a probability model on the random distribution
(or mass/charge spectrum). This is in contrast to traditional, and very
resonable, multi-step methods. The power of the model-based methods
lies in the full probabilistic description of all related uncertainties. Many
important inference problems go beyond point estimates. For example,
consider the decision problem of flagging genes for differential expres-
sion, or the problem of identifying a set of proteins that can serve as
biomarker panel, or sample size choice for a microarray experiment. A
decision theoretic answer to these question relies on a description of all
uncertainties in one coherent probability model.
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