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Summary. The optimal discovery procedure (ODP) maximizes the expected num-

ber of true positives for every fixed expected number of false positives. We show

that the ODP can be interpreted as an approximate Bayes rule under a semi-

parametric model. Improving the approximation leads us to a Bayesian discovery

procedure (BDP), which exploits the multiple shrinkage in clusters implied by the

assumed nonparametric model. We compare the BDP and the ODP estimates

in a simple simulation study and in an assessment of differential gene expression

between two tumor samples. We extend the setting of the ODP by discussing

modifications of the loss function that lead to different single thresholding statis-

tics. Finally, we provide an application of the previous arguments to dependent

(spatial) data.

Key words: MULTIPLE COMPARISON, FALSE DISCOVERY RATE, LOSS FUNCTION,

BAYES OPTIMAL RULE.

1. Introduction.

A number of different approaches have been introduced in the recent literature to

address the multiple comparison problem. Most focus on controlling some error

rate. For example, the control of the familywise error rate (FWER) guarantees



a bound on the probability of a false rejection among all tests. Benjamini and

Hochberg (1995) developed a simple procedure, based on the ordered p-values

that controls the false discovery rate (FDR), defined as the expected proportion

of rejected null hypotheses which are erroneously rejected. A decision-theoretic

approach to the multiple comparison problem requires the explicit statement of

a loss function, which weights the relative importance of the different outcomes

according to the preferences and inferential focus of the investigators. Cohen

and Sackrowitz (2007) prove the inadmissibility of the Benjamini and Hochberg

procedure under any loss expressed as a linear combination of false discoveries

and false acceptances and under several sampling models, including the general

one-parameter exponential family. Müller et al. (2007) undertake a decision

theoretic approach to multiple testing and discuss several loss functions that

lead to the use of FDR-based rules.

The general multiple comparison problem is stated as follows. Assume we

observe data sets x1, . . . ,xm, where xi = {x1i, . . . , xnii}, and for each xi we

consider a test of a null hypothesis H0i. Often the data is reduced to a statistic

zi with zi ∼ f(zi;µi), for some distribution f , indexed by an unknown parameter

µi, i = 1, . . . ,m. Assume we wish to test µi ∈ A vs. µi 6∈ A for i = 1, . . . ,m.

Storey (2007a) proposed the optimal discovery procedure (ODP). The ODP is

based on a single significance thresholding statistic,

Sodp(zi) =

∑
µj 6∈A f(zi;µj)∑
µj∈A f(zi;µj)

. (1)

The null hypothesis H0i is rejected if Sodp(zi) ≥ λ, for some 0 ≤ λ < ∞. We

write d odp
i = I(Sodp(zi) ≥ λ). For a point null, A = {0}, the test reduces to

thresholding Sodp(zi) =
∑

µj 6∈A f(zi;µj) /f(zi; 0) . Storey proves that d odp

maximizes the expected number of true positives (ETP) among all procedures

with equal or smaller expected number of false positives (EFP). The threshold

function Sodp involves the unknown parameters µj , j = 1, . . . ,m. In practice,

Sodp(·) has to be estimated. When every test has the same null distribution
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and there are no nuisance parameters, i.e., A = {0}, the ODP is evaluated as

Ŝodp(z) =

∑m
j=1 f(z; µ̂j)
f(z; 0)

, (2)

where µ̂j is a point estimate for µj (e.g., the maximum likelihood estimate). It is

shown that the performance of Ŝodp is comparable to the theoretically optimal

discovery procedure based on Sodp.

For general A the ODP proceeds with the following thresholding function,

Ŝodp(z) =

∑m
j=1 f(z; µ̂j)∑m

j=1 wif(z; µ̂j)
, (3)

where wj are suitable weights, chosen to estimate the true status of each hy-

pothesis. For example, wj = 1 for all comparisons that are estimated to be null,

and wj = 0 otherwise. Storey et al. (2007b) show that (3) outperforms many

procedures commonly used in testing a large number of genes for differential

expression (e.g., SAM, empirical Bayes “local” FDR).

The ODP statistic can be immediately recognized as an empirical Bayes

factor. However, the nature of the rule and the extent of the approximation are

better appreciated by recognizing d odp as an approximate Bayes rule under a

nonparametric prior model for µi. This result is in accordance with Ferguson’s

(1973) observation that nonparametric Bayesian inference often yields results

that are comparable to corresponding classifical inference. To be more specific,

we define a random effects distribution G for the µi. Instead of a parametric

model for G, we consider G as an unknown random probability measure (RPM).

A prior probability model for an RPM is known as a non-parametric Bayesian

model. In particular, we assume a Dirichlet process (DP) prior, one of the most

popular nonparametric Bayesian models.

We show that the Bayes rule that maximizes the expected number of true

positives subject to a bound on the expected number of false positives is a

threshold on the marginal posterior probability vi = Pr(µi 6∈ A | data). Under

the DP prior, for sufficiently large m, this marginal posterior probability can

be approximated in a way that justifies the use of d odp as an approximate
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Bayes rule. The previous argument also provides a simple alternative proof of

the claimed ODP optimality subject to some approximations. The expectation

in Storey’s optimality statement for d odp is under the (frequentist) repeated

sampling model. The expectation in the Bayes rule is under the posterior distri-

bution for a given outcome z. Maximization of the conditional expectation for

each z, implies maximization of the marginal expectation across repeated sam-

pling. A similar argument can be made about the constraint on the expected

number of false positives. A bound on the conditional expectation, conditional

on each outcome z, implies the same bound on the marginal expectation. Hence,

we conclude that the Bayes rule under the nonparametric prior approximately

satisfies the optimality property of the ODP procedure. Besides, by the same ar-

guments, we show that thresholding the marginal posterior probability amounts

to controlling the positive FDR (Storey, 2002; Storey and Tibshirani, 2003).

DP priors in the context of multiple hypotheses testing have been considered

before by Gopalan and Berry (1993). More recently, Dahl and Newton (2007)

have proposed a DP mixture model (BEMMA) for testing correlated hypotheses

and showed that the induced clustering information leads to an increased testing

power. The distinction between the previous approaches and ours is that here the

DP prior is part of a decision theoretic setup. Besides, both Gopalan and Berry

(1993) and Dahl and Newton (2007) restrict inference to hypotheses concerning

the configuration of ties among the parameters of interest.

Once we have established the utility function and the probability model lead-

ing to the optimal discovery procedure, we can proceed with generalizations in

two directions. First, we will consider variations of the ODP to improve the

approximation. We show that the resulting rules lead to small improvement in

inference. More importantly, once we recognize the ODP as a Bayes rule we can

modify the procedure to adapt to variations in the loss function. We provide

specific examples, including a study of exceedance regions of a spatial process

and the detection of neurodegenerative patterns in MRI scans.

In section 2, we introduce the decision problem and discuss the non-parametric
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(NP) probability model that leads to the Bayesian interpretation of the ODP

and the corresponding BDP statistics. In section 3, we provide details on how

to obtain the BDP statistics when we assume a conjugate DP mixture of normal

model for the data. In section 4, we compare the behavior of the ODP and

the BDP with a simulated and a microarray dataset, and show that the BDP

provides at least some improvement on the optimal procedure. In section 5,

we discuss some extensions of the previous settings for multigroup experiments,

different loss functions and different inferential purposes. In particular, we con-

sider a dependent NP model for the study of spatial phenomena, and apply the

Bayesian multicomparison decision rule to a simplified MRI dataset. Finally, in

section 6, we provide some conclusions and discuss further directions of research.

2. The ODP as Approximate Bayes Rule

2.1. The Decision Problem

For a formal definition of the multiple comparison decision we need some notation

and minimal assumptions on the sampling model. Assume that the data are zi |

µi ∼ f(zi; µi), independently across i, i = 1, . . . ,m. The competing hypotheses

are formalized as

H0i : µi ∈ A vs. H1i : µi 6∈ A,

using, for example, A = (−ε,+ε) or A = {0}. Let G denote the distribution

of µi, obtained by marginalizing over the two competing hypotheses and let

π0 denote the prior probability for the null hypothesis, i.e., π0 = G(A). Let

G(µ | A) ∝ G(µ) I(µ ∈ A) denote G conditional on A. The model can be

written as a mixture prior,

p(µi | G) = π0 G(µi | A) + (1− π0) G(µi | Ac),

where Ac denote the complement set of A. Alternatively, the model can be

defined as a hierarchical model by means of a latent indicator parameter ri ∈
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{0, 1}, which is interpreted as the (unknown) truth of the i-th comparison.

p(µi | ri) =

G(µi | A) if ri = 0

G(µi | Ac) if ri = 1,
and Pr(ri = 0) = π0. (4)

We will use z = (z1, . . . , zm) and θ = (G, ri, µi, i = 1, . . . ,m) to refer generically

to the data and parameters in model (4).

Let di ∈ {0, 1} denote the decision for the i-th hypothesis, with di = 1

indicating a decision against the i-th null hypothesis, and let d = (d1, . . . , dm).

To define an optimal rule for di, we introduce a loss function L(d, θ, z). The

optimal rule d?
i (z) is defined by minimizing L in expectation with respect to the

posterior model p(θ | z). Formally,

d? = arg min
d

∫
L(d, θ, z) p(θ | z) dθ.

Our aim is to characterize the ODP as an approximate Bayes rule. Therefore,

keeping in mind the optimality property of the ODP, we consider a loss function

that combines the true positive count, TP =
∑

di ri, and false positive count,

FP =
∑

di(1− ri),

L(d, θ, z) = −
∑

di ri + λ
∑

di (1− ri). (5)

The loss (5) can be interpreted as the Lagrangian for maximizing TP subject to

a given bound on FP.

Let vi = E(ri | z) denote the marginal posterior probability for the i-th

alternative hypothesis. It is straightforward to show that the optimal rule under

(5) is a threshold on vi,

d?
i = I(vi > t) = I

(
vi

1− vi
> t2

)
. (6)

Alternatively, the threshold on vi can be written as a threshold on the posterior

odds vi/(1 − vi). The statement is true for any probability model (subject

only to the stated quantities having meaningful interpretations). Moreover rules

based on thresholding the marginal posterior probability imply control of the

frequentist positive FDR (Storey, 2002; Storey and Tibshirani, 2003):
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Proposition 1. Suppose m hypothesis tests H0i : µi ∈ A vs H1i : µi ∈ Ac

are performed with the statistics z1, . . . , zm, where zi | µi ∼ f(zi; µi), indepen-

dently across i, i = 1, . . . ,m, and p(µi | G) = π0 G(µi | A) + (1− π0) G(µi | Ac),

for some distribution G and probabilty π0 = prob(H0i) = prob(ri = 0). Let the

rejection region be determined by the Bayes rule under the loss function (5), i.e.

d∗i = I(vi > t), where vi = p(ri = 1|z1, . . . , zm). Let FP =
∑m

i=1 di(1− ri) and

D =
∑m

i=1 di. Then,

pFDR = E

(
FP

D
| D > 0

)
< 1− t.

Proof. See appendix.

Rule (6) is different from the one prescribed by the local FDR, which is

defined as the posterior probability of the null given that we have observed a

certain value zi of the statistics, and given assumed known sampling models

under the null and alternative hypotheses (Efron et al., 2001). In contrast, vi

is defined conditionally on the observed values of z across all tests. Hence, the

local FDR provides a measure of significance local to zi, while vi is a global

measure of significance.

2.2. A Semiparametric Bayesian Model

We complete the sampling model (4) with a prior model for G that will allow us

to identify d? as a rule approximately matching the ODP.

Prior probability models for unknown distributions, G in this case, are tra-

ditionally known as non-parametric (NP) Bayesian models. One of the most

commonly used NP Bayesian priors is the DP model. We write G ∼ DP(G?, α)

to indicate a DP for a random probability measure G. See Ferguson (1973) and

Ferguson (1974) for a definition and important properties of the DP model. The

model requires the specification of two parameters, the base measure G? and the

total mass parameter α. The base measure G? is the prior mean, E(G) = G?.

The total mass parameter determines, among other important properties, the

variation of the random measure around the prior mean. Small values of α imply
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high uncertainty. In the following discussion, we exploit two key properties of

the DP. A random measure G with DP prior is a.s. discrete. This allows us

to write G as a mixture of point masses, G =
∑

whδmh
. Another important

property is the conjugate nature of the DP prior under random sampling. As-

sume µi ∼ G, i = 1, . . . ,m, are an i.i.d. sample from a random measure G

with DP prior, p(G) = DP (G?, α). Then, the posterior probability model is

p(G | µ) = DP (G?
1, α + m), for G?

1 ∝ αG? + mFm. Here, Fm = 1/m
∑

δµi
(·) is

the empirical distribution of the realized µi’s.

We use a DP prior on G to complete model (4)

µi|G ∼ G G ∼ DP(G?, α). (7)

Model (7) implies that the prior for the null hypothesis p0 = G(A) is Beta,

p0 ∼ Be (αG?(A), α[1−G?(A)]).

2.3. Posterior Inference and the Bayes Rule

The Bayes rule (6) requires only the evaluation of the marginal posterior prob-

abilities vi = P (ri = 1 | z). Here z generically denotes the observed data.

We show that, under a DP prior model, d? ≈ d odp. We start by writing the

marginal posterior probability as expectation of conditional posterior probabili-

ties,

vi = E [p(ri = 1 | G, z) | z] = E

[ ∫
Ac f(zi; µ) dG(µ)∫

A∪Ac f(zi; µ) dG(µ)
| z

]
,

and proceed with an approximation of the conditional posterior distribution

p(G | z). The conjugate nature of the DP prior under random sampling implies

E(G | µ, z) = G?
1 ∝ αG? +

∑
δµi .

Recall that Fm ∝
∑

δbµi
is the empirical distribution of the maximum likelihood

estimates µ̂i. For large m, small α, and an informative sampling model f(zi;µ),

E(G | z) ≈ Fm. Further, for large m, the uncertainty of the posterior DP,

p(G | µ) = DP (G?,m+α) is negligible, allowing us to approximate the posterior
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on the random probability measure G with a degenerate distribution at Fm,

p(G | z) ≈ δFm(G), i.e. G ≈ 1
m

∑
δbµi

. Therefore,

vi ≈
∫

Ac f(z; µ) dFm(µ)∫
f(z; µ) dFm(µ)

=

∑bµj∈Ac f(zi; µ̂j)∑m
j=i f(zi; µ̂j)

. (8)

The connection with the ODP rule is apparent by computing the posterior odds,

vi/(1− vi) ≈
∑bµj∈Ac f(zi; µ̂j)∑bµj∈A f(zi; µ̂j)

.

Finally, thresholding vi/(1− vi) is equivalent to thresholding

vi

1− vi
+ 1 ≈

∑m
j=1 f(zi; µ̂j)∑bµj∈A f(zi; µ̂j)

.

This is (3) with wj = I(µ̂j ∈ A).

3. The Bayesian Discovery Procedure (BDP)

Recognizing the ODP as an approximate Bayes rule opens two important di-

rections of generalization. First, we can sharpen the approximation to define a

slightly improved procedure, at no cost beyond moderate computational effort.

We will do this in Sections 3.1 and 3.2. Second, we can improve the ODP by

making it more relevant to the decision problem at hand by modifying features

of the underlying loss function. We will do this in Section 5.

3.1. BDP for Testing Normal Means.

We outline the algorithm for the BDP in the simple case of a mixture of DP

normal model. Many practical methods have been proposed in the literature

to implement posterior Monte Carlo simulation for DP mixture models. See,

for example, Neal (2000) for a review. We discuss how these methods can be

conveniently adapted in the multiple comparison setting to compute the posterior

probabilities vi and the approximate DP based Bayes rule.
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Let zi, i = 1, · · · ,m denote the observed data (or statistics thereof) for test

i. We assume

zi | µi
ind∼ N(µi, σ), i = 1, · · · ,m, (9)

where N(η, τ) denotes a normal distribution with mean η and variance τ2. The

NP Bayes model (7) is specified as

µi | G
iid∼ G

G ∼ DP(G?, α) with G?(·) ∼ π0hA(·) + (1− π0)hAc(·), (10)

where hA(·) and hAc(·) are distributions with support, respectively, on A and

Ac. Equations (9) and (10) define a DP mixture model where G? itself is a

mixture of two terms.

Algorithms for posterior Monte Carlo simulation in DP process mixture mod-

els can easily be modified to adapt to the mixture in G?. We will focus on the case

A = {0} and outline the necessary changes for general A. We set hA(·) = δ0(·),

i.e. a point mass at 0. Also, we choose hAc(·) to be continuous, e.g. N(0, σ2)

and will denote it simply by h(·). The a.s. discrete nature of a DP random

probability measure implies a positive probability for ties in a sample from G.

The ties naturally define a partition of observations into clusters with common

values µj . We introduce latent cluster membership indicators si to describe this

partition by si = sk if µi = µk. We reserve the label si = 1 for the null distri-

bution, i.e. we set si = 1 if and only if µi = 0. Let z−i and s−i denote the set

of observations and the component indicators excluding the i-th one. Also, let

L be the number of clusters defined by ties (an unmatched single observation

counts as a singleton cluster), ms be the size of cluster s, and m−i,s be the size

of cluster s without observation i. Finally, let Γs = {i : si = s} denote the

s-th cluster, and let µ?
s = µi, i ∈ Γs denote the common value of µi for cluster

s. Then, the i-th observation falls in one of the existing clusters or forms a new
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cluster according to the following modified Pólya urn scheme,

P (si = s | s−i, z) ∝


m−i,1+π0α

m−1+α f(zi | µ?
si

= 0) if s = 1

m−i,s

m−1+α

∫
f(zi | µ?

s) h(µ?
s|z−i,s) dµ?

s, if 2 ≤ s ≤ L

(1−π0)α
m−1+α

∫
f(zi | µ?

s) h(µ?
s) dµ?

s, if s = L + 1

Here, h(µ?
s | z−i,s) denotes the posterior distribution of µ?

s based on the prior h(·)

and all observations zh, h ∈ Γs/{i}. Note that the posterior of µ?
1 given all the

observations in cluster 1 is still a point mass δ0(·). There is a positive probability

for m1 = m, i.e., that all the elements fall in the single cluster A = {0}. This

can lead to a practically absorbing state in the MCMC simuulation. However,

from Antoniak (1974), it follows that such a probability tends to zero as m

increases. If the problem should arise in practice, multiple chains might be used

to overcome the obstacle. We described the algorithm for a particular choice

of A and G?. But it can be easily extended to more general A and G?. In

the general case, clusters are formed either by samples from hA(·) or hAc(·).

The algorithm is greatly simplified when A is an interval, hA(µ) ∝ h(µ) IA(µ),

hAc(µ) ∝ h(µ) IAc(µ), for some continuous distribution h(µ) and π0 = G?(A).

Then, equations (9) and (10) describe a customary mixture of DP normal model

with Gaussian base measure G? and the usual Pólya urn scheme for DP mixtures

may be used.

Once we have a posterior Monte Carlo sample of the model parameters, it

is easy to evaluate the decision rule. Assume we have B posterior Monte Carlo

samples of random partitions, s(b) = (s(b)
1 , . . . , s

(b)
m ), b = 1, . . . , B. We compute

an estimate of vi = E(ri | z) as v̂i = 1 −
∑B

b=1 I(s(b)
i = 1)/B, that is the

proportion of iterations where test i has not been assigned to the null cluster.

Similarly, we can compute the NP Bayesian approximation of Sodp as

Sbdp(zi) =

∑m
j=1 f(zi; µ̂j)∑bµj∈A f(zi; µ̂j)

. (11)

The µ̂j are point estimates based on (10). For example, one could use the

posterior means µ̂j = E(µj | z). Short of posterior means, we propose to
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use a partition s(b) to evaluate cluster-specific point estimates µ̂i = µ̂?
si

, using

maximum likelihood estimation within each cluster. The choice of the specific

configuration s(b) is not critical. Finally, we report test i significant if Sbdp(zi) >

t, for some threshold t. The choice of t depends on the form of the loss function.

Substituting µ̂?
si

in (11) the Sbdp can be interpreted as a multiple shrinkage

version of the Sodp statistic.

Thresholding Sbdp is equivalent to thresholding

v̂i ≡
∑

bµ∗j∈A

mj/m f(zi; µ̂?
j )

/∑
j

mj/m f(zi; µ̂?
j ). (12)

By the earlier argument v̂i ≈ vi. The nature of the approximation is further

clarified and formalized by the following result. We prove the result for a finite

truncation of the Dirichlet Process, that is a random probability measure Gk

such that

Gk(A) =
k∑

j=1

pjδµo
j
(·), (13)

with pj = Vj

∏j−1
l=1 (1 − Vl), Vl ∼ Beta(α, 1), l = 1, . . . , k − 1, Vk = 1, and

µo
j ∼ G∗ as in (10). Inference under the two models is comparable, since any

integrable functional of the Dirichlet Process can be approximated by corre-

sponding functionals of Gk for sufficiently large k (see Iswharan and Zarepour,

2002). Also Rodriguez et al. (2008) discuss the approximation of inference un-

der a DP prior by results under Gk. Asymptotically, thresholding v̂i in (12) is

equivalent to thresholding the Bayes rule (6), under the NP Bayes model (9-10)

and loss function (5).

Theorem 2. Assume zi|µi
ind∼ f(zi;µi), i = 1, . . . ,m and a random effects

distribution p(µi | Gk) = Gk as in (10), with Gk defined in (13). Assume f ,

hA(·), and hAc(·) satisfy the conditions for the Laplace approximation for an

open set A (see Schervish, 1995, chapter 7.4.3). Then

lim
m→+∞

p(ri = 1|z1, . . . , zm) =
E

(∑
j:bµ?

j∈A
mj

m f(zi; µ̂?
j )

)
E

(∑
j

mj

m f(zi; µ̂?
j )

) ,
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where the expectation is taken with respect to the posterior distribution over all

the possible partitions of {1, . . . ,m} with at most k clusters and µ̂?
j is the cluster-

specific m.l.e.

Proof. See appendix.

3.2. Multigroup comparisons.

The previous discussion can be easily extended to a generalization of the ODP

statistics for the general k samples comparison problem (Storey, 2007a). We

assume that data for each experimental unit i, i = 1, . . . ,m, are arranged by k

distinct groups, and we wish to test if the k groups share a common sampling

model. Let xi = {xi1, . . . , xin} be a vector of measurements across k experimen-

tal conditions, i = 1, . . . ,m. We denote the subset of data from each condition by

xl
i, l = 1, . . . , k, i = 1, . . . ,m. Alternatively, data in each group may be reduced

to statistics zl
i ∼ f(zl

i;µ
l
i), and we can write z = {z1, . . . , zm}, zi = {z1

i , . . . , zk
i },

with similar notation for µ and µi. For notational simplicity, we proceed with

the case k = 2. But the arguments hold for general k. The competing hypothesis

for the multigroup comparison can be formalized as H0 : (µ1
i , µ

2
i ) ∈ A against

H1 : (µ1
i , µ

2
i ) 6∈ A. Typically A = {µ1

i = µ2
i }. Under the loss (5) and the NP

model

zl
i|µl

i
ind∼ f(zl

i;µ
l
i), l = 1, 2, i = 1, . . . ,m

µi = {µ1
i , µ

2
i }|G

i.i.d∼ G, i = 1, . . . ,m

G ∼ DP (α, G0)

we can proceed as in section 2.3 and approximate the posterior probability for

the i-th comparison by

vi ≈
∫

Ac f(z; µ) dFm(µ)∫
f(z; µ) dFm(µ)

=

∑
i:(bµ1

i ,bµ2
i )∈Ac f(z1

i |µ̂1
i ) f(z2

i |µ̂2
i )∑m

i=1 f(z; µ̂i)
, (14)

where µ̂1
i , µ̂2

i and µ̂i are appropriate estimates of the relevant parameters within

and across conditions. Expression (14) is an estimated ODP statistics for the
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multicomparison problem, as discussed in Storey et al. (2007b). As before, sub-

stituting cluster-specific estimates µ̂?
si

for a selected partition s defines the cor-

responding BDP rule.

4. Comparison of Sodp versus Sbdp.

4.1. A Simulation Study.

We conduct a simulation study to compare Sodp with the NP Bayesian approx-

imation. The setup of the simulation mimicks the simulation study reported

in Storey et al. (2007b, Figure 2). We assume m = 48 tests of H0 : µi = 0

versus H1 : µ 6= 0 based on a single observation zi ∼ N(µi, 1) for each test.

The simulation truth is that half of the observations are drawn from the null,

while the other half are sampled in equal proportions from alternatives with

means µi ∈ {−1, 1, 2, 3}. We use A = {0}, and hAc(·) = N(0, 1). We simulated

1000 datasets. For each simulated data set we ran 2000 iterations of a posterior

MCMC sampler (with 1000 iterations burn in). The results confirm the ober-

vation in Storey et al. (2007b) that the Sodp outperforms the UMP unbiased

procedure in all cases where the alternative means are not arranged in a per-

fectly symmetric fashion around zero. The Sbdp further improves on the Sodp

by borrowing strength across comparisons with the multiple shrinkage induced

by the DP clustering. Figure (1) shows that for any threshold of expected FP,

the expected TP is comparable and slightly better under the Sbdp than under

the Sodp. Expectations are over repeated simulations, i.e., the comparison is

by the criterion that is being optimized by the oracle version (1) of the ODP.

The curves for to the Sbdp are computed with the highest posterior configura-

tion and a random (last) configuration. The differences in Figure 1 are small.

However, for many applications with massive multiple comparisons the number

of comparisons might be a factor 10000 and more larger, leading to correspond-

ingly larger differences in absolute numbers of true positives. Most importantly,

the improvements come at no additional experimental cost. See the example in

Section 4.2.
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We also considered a similar comparison using (11) with posterior means

substituted for µ̂i, and using A = (−ε, ε), for several (small) values of ε, instead

of the point null. The plot (not shown) of expected TP versus FP showed no

substantial differences to Figure 1.

Fig. 1. A comparison in terms of ETP versus of EFP of the Sodp and the Sbdp. BDP (h)

refers to the Sbdp computed for the cluster configuration corresponding to the maximum

posterior value observed in the MCMC iterations; BDP (r) refers to a random (last)

configuration. See 4.1 for details.

4.2. A Microarray Data Example

We compare Ŝodp and Sbdp by analyzing microarray data from breast cancer

tumor tissues. The data have been analyzed, among others, in Hedenfalk et al

(2001), Storey and Tibshirani (2003) and Storey et al. (2007b) and can be ob-

tained from http://research.nhgri.nih.gov/microarray/NEJM Supplement/. The

data consist of 3,226 gene expression measurements on n1 = 7 BRCA1 arrays and

n2 = 8 BRCA2 arrays (a third “sporadic” group was not used for this analysis).

Following Storey and Tibshirani (2003), genes with one or more measurement
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exceeding 20 were eliminated from the data set. Eventually, we were left with

m = 3, 169 genes.

Let xij be the log2 expression measurement for gene i on array j, i = 1, . . . ,m,

j = 1, . . . , n. We test differential expression between BRCA1 and BRCA2 muta-

tion genes using the two samples t statistics ti = (xi1−xi2)/
√

(s2
i1/n1 +s2

i2/n2),

where xi,k and s2
ik are respectively the sample mean and sample variance for

gene i with respect to the arrays in group k, k = 1, 2. We are interested in

testing H0 : ti ∼ N(0, σ). For simplicity, we fix σ = 1.

Our purpose is to assess the relative performance of the estimated Ŝodp

versus the NP Bayes rule approximation (11). For a fair comparison, we evaluate

the Sbdp as a frequentist rule with rejection region {Sbdp ≥ c}. The power of

the test is evaluated in terms of the FDR and the q-value. See Storey (2002)

and Storey et al. (2007b) for more discussion of the q-value and its evaluation.

We briefly summarize the details that are relevant for the present comparison.

The q-value is defined for a sequence of tests that are characterized by a

nested sequence of significance regions. The q-value for the i-th comparison

is the minimum expected proportion of false positives incurred when rejecting

H0i. It is the natural pFDR analogue of the p-value. Evaluation of the q-value

typically requires simulation under the null-hypothesis. A model for residuals

εij = xij − µ̂i,k(j) is obtained, where k(j) denotes which group array j belongs

to, and µ̂ik =
∑

`: k(`)=j xi`/nk, where nk =
∑

I(k(i) = j). The estimated

residuals are then added to the overall gene-specific mean µ̂i0 =
∑n

j=1 xij/n,

so that the result can be regarded as a sample from the null. A Monte Carlo

sample of estimated null statistics Ŝodp (and Sbdp) are then evaluated by a

bootstrap resampling scheme from the transformed arrays. The Monte Carlo

sample is used to compute the EFP and ETP for any given threshold c. The

evaluation of Sbdp is based on 2000 iterations of a posterior MCMC sampler

(1000 burn in). For the bootstrap step, we obtained 1000 samples. The number

of significant genes detected at each q-value is shown for the Ŝodp and the

Sbdp in Figure 2. We report the Sbdp as computed on the basis of the cluster
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configuration of a single iteration of the MCMC sampling scheme, assumed in its

stationary condition. Specifically, we use the partition from a random iteration

and from the iteration that yields the maximum posterior probability. Other

choices are possible. However, our experience does not suggest significantly

different conclusions using alternative choices. In Figure 2 we see that in both

cases the Sbdp achieves larger numbers of significant genes at the same q-value

than the Sodp. The result leads us to recommend the Sbdp as a useful tool in

multicomparison problems where a natural clustering of the tests is expected.

In Table (4.2), we report the percentage of genes that are flagged by both tests

for some choices of q-values. For most q-values of practical interest the Sbdp

procedure identifies all genes that were flagged by the Sodp, plus additional

discoveries. For example, at q = 0.05, the BDP reveals 98 significant genes,

against 87 revealed by the ODP and 47 by the standard FDR procedure devised

by Benjamini and Hochberg (1995). Out of the 11 additional genes, 7 had been

previously reported in the literature as significant in distinguishing BRCA1 and

BRCA2 mutations (see Hedenfalk et al. 2001). The additionally identified genes

come at no extra cost beyond moderate computational effort. No additional

experimental effort is required, and no trade off in error rates is involved.

5. Extensions of the ODP and BDP

5.1. Weighted Loss Functions.

Once the optimality criterion and the probability model that lead to the ODP are

identified, it is easy to modify the procedure to better accomodate preferences

and losses other than (5). Often some discoveries might be considered more

important than others. For example, if the experimenter’s interest is in testing

deviations from a common mean (e.g., A = {µi = 0}), one might be more

interested in large deviations from the common mean. In this case the loss

function should include an explicit reward for detecting true signals as a function

of some (monotone) function of µi. Scott and Berger (2003) describe a decision

theoretic approach to multicomparison experiments, based on the specification
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Fig. 2. A comparison of the Sbdp and the Sodp for identifying differentially expressed

data (see section 4.2). The number of genes found to be significant over a range of es-

timated q-value cut-offs is showns. The BDP (h) curve corresponds to the Sbdp com-

puted by using the cluster configuration leading to the highest posterior in the MCMC

sampler, while the BDP (r) refers to the Sbdp computed by using a random configu-

ration in the MCMC; any choice being equivalent, here we show the result for the last

configuration.
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q-value ODP BDP BDP
⋂

ODP

0.05 87 98 100%

0.06 124 148 100%

0.07 163 176 100%

0.08 202 217 100%

0.09 234 241 99.5%

0.10 272 270 98.14%

0.11 293 298 98.63%

0.12 318 341 98.11%

Fig. 3. The intersection between the decisions with the ODP and the BDP procedure.

of separate loss functions for false positives and false negatives. Similarly, we

consider the following loss function,

L(d, θ, z) = −
∑

di t(µi) + λ
∑

di (1− ri), (15)

where t(µi) is a known function of the mean, e.g. t(µi) = ||µi||, || · || being some

norm of µi. Let t(µi) = E(t(µi)|z). The posterior expected loss is E(L|z) =

−
∑

di [t(µi) + λvi] +
∑

di. The Bayes rule is easily shown to be

dm?
i = I(λvi + t(µi) > t), (16)

for some threshold t. Although the nature of the rule has changed, we can still

proceed as before and define a modified Sodp statistics that approximates the

Bayes rule. Let t(µi) ≈
∑m

j=1 t(µ̂j) f(zi; µ̂j)
/∑m

j=1 f(zi; µ̂j) be an empirical

Bayes estimate of t(µi), justified similarly to the approximation in (8).

As before the point estimates µ̂i could be cluster-specific m.l.e.’s µ̂?
si

, for some

partition s. By an argument similar to before we can justify the following single

thresholding statistic as an approximation of (16):

Sm
bdp(zi) =

λ
∑bµj 6∈A f(zi; µ̂j) +

∑
j t(µ̂j)) f(zi; µ̂j)∑

j f(zi; µ̂j)
. (17)
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We use Sm
bdp(yi) as a single thresholding function for the multiple comparison

test in lieu of the Sodp.

Any loss function that is written as a sum of comparison-specific terms leads

to similar approximations and modifications of the ODP. For example, consider

a loss function that involves a stylized description of a follow-up experiment.

The loss function is motivated by the following scenario. Many microarray

group comparison experiments are carried out as a screening experiment. Genes

that are flagged in the microarray experiment are chosen for a follow-up experi-

ment to verify the possible discovery with an alternative experimental platform.

For example, Abruzzo et al. (2005) describe a setup where RT-PCR (reverse

transcription polymerase chain reaction) experiments are carried out to confirm

discoveries proposed by an initial microarray group comparison. Abruzzo et al.

(2005) report specific values for correlations across the platforms, error variances

etc. On the basis of this setup Müller et al. (2007) consider a loss function that

formalizes the consequences of this follow-up experiment. The loss function in-

cludes a sampling cost for the RT-PCR experiment and a reward that is realized

if the RT-PCR experiment concludes with a significant outcome. The sample

size is determined by a traditional power argument for a two-sample compari-

son, assuming a simple z-test for the difference of two population means. The

probability of a significant outcome is the posterior predictive probability of the

test statistic in the follow-up experiment falling in the rejection region. Let

(µi, si) denote the posterior mean and standard deviation of the difference in

mean expression for gene i between the two experimental groups. Let ρ, ρ?, pρ

denote known parameters of the joint distribution of the microarray gene ex-

pression and the outcome of the RT-PCR experiment for the same gene. Details

of the sampling model (see Müller et al., 2007) are not required for the follow-

ing argument. Finally, let qα define the (1 − α) quantile of a standard normal

distribution. For a given signficance level α and a desired power (1− β) at the

alternative µA
i = ρ (µi − si), we find a minimum sample size for the follow up
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experiment

ni(zi) = 2
[
(qα + qβ)/µA

i

]2
.

Let Φ(z) denote the standard normal c.d.f. The posterior predictive probability

for a significant outcome of the follow-up experiment is approximately

πi(zi) = (1− pρ)α + pρΦ

[
ρ?µi

√
ni/2− qα√

1 + ni/2 ρ∗2s2
i

]
.

We formalize the goal of maximizing the probability of success for the follow-up

experiment while controlling the sampling cost by the loss function

L(d, θ, z) =
∑
di=1

[−c1πi(yi) + ni(yi)] + c2

∑
di.

Here c2 is a fixed cost per gene for setting up a follow-up experiment, c1 is

the (large) reward for a significant outcome in the follow-up experiment, and

c3 ≡ 1 is the sampling cost per gene and experiment. The Bayes rule is dp?
i =

I(c1πi−ni ≥ c2). As before we can use µi ≈
∑m

j=1 µ̂j f(zi; µ̂j)
/∑m

j=1 f(zi; µ̂j)

and s2
i ≈

∑m
j=1 (µi−µ̂j)2 f(yi | µ̂j)

/∑m
j=1 f(yi; µ̂j) and approximate the Bayes

rule by a modified ODP style statistic. Let π̂i and n̂i denote πi and ni evaluated

with the approximations for µi and s2
i . We consider the modified ODP threshold

statistic

Sp
bdp(yi) = c1π̂i(yi)− n̂i

Figure 4 compares the exact Bayes rules (16) and dp?
i = I(c1πi − ni ≥ c2) with

the tests based on the approximate ODP statistic Sm
bdp and Sp

bdp, respectively.

5.2. Spatial Dependence

The nature of the ODP as an approximate Bayes rule was based on the semi-

parametric model (7). However, the Bayes rules (6) or (16) remain meaningful

under any probability model, as long as vi and t(µi) have meaningful interpreta-

tions. In particular, the prior probability model must give positive probability to

the null hypothesis, and the posterior mean of t(µi) must exist. Subject to this
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minimal constraint, any probability model can be used, including probability

models with complicated dependence structure such as spatial models.

For example, in geostatistical applications, we may be interested in isolating

the exceedance regions of a spatial process, i.e. where the process has values

above a given threshold (Zhang et al., 2007). Similarly, in the analysis of fMRI

data, we aim to detect region specific activations of the brain. See Pacifico

et al. (2004) and Flandin and Penny (2007) for two recent Bayesian solutions

to the problem. In particular, Friston and Penny (2003) propose an empirical

Bayes approach to build posterior probability maps of site specific signals. These

approaches do not make use of an explicitely defined optimality criterion to

support the proposed decision rules.

We consider a variation of the ODP suitable for spatial inference problems,

using a specific spatial probability model as an example. We use the spatial

model proposed by Gelfand et al. (2005). Let {Y (s), s ∈ D} be a random field,

where D ⊂ Rd, d ≥ 2. Let s(m) = (s1, ..., sm) be the specific distinct locations in

D where observations are collected. Assume that we have replicate observations

at each location so that the full data set consists of the collection of vectors Yi

= {Yi(s1), ..., Yi(sn)}T , i = 1,...,m. We assume

Yi | θi
ind∼ f(yi | µ + θi), i = 1, . . . ,m (18)

where f is some multivariate distribution, µ is a (not necessarily constant across

s ) regressive term and θi = {θi(s1), . . . , θi(sn)}T is a spatial random effect, such

that

θi | G
iid∼ G i = 1, . . . ,m

G ∼ DP (α, G0),
(19)

for some base measure G0. See Gelfand et al. (2005) for details. The assumption

of the DP prior in the model is unrelated to the DP that we used to justify the

nature of the ODP as approximate Bayes rule. In this setting, the inferential

problem might be quite general, as it may involve subsets of sites and replicates.

For simplicity, we consider a null hypothesis specific to each location s and
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replicate i: H0si: θi ∈ Asi, Asi = {θi(s) > b}. For a fixed replicate i, let

dj = d(sj) be the decision at site sj , j = 1, . . . , n. Analogously, let rj = r(sj)

denote the unknown truth at sj . We could now proceed as before and consider

the loss (5) and the rule, d∗j = I(vj > t), where vj is the posterior probability

of the event A under the chosen probability model. For m sufficiently large and

under model (18)-(19), it is possible to use the asymptotic arguments detailed

in section 2.3 and define a BDP statistics for the spatial testing problem.

The loss function (5) is usually not an adequate representation of the inves-

tigator’s preferences in a spatial setting. Posterior probability maps may show

very irregular patterns that could lead to, for example, flagging very irregular

sets of pixels for exceedance θi(s) > b. We may explicitly include into the loss

function a penalty for such irregularities, i.e.

L(d, θ,y) = −
∑

dj rj + λ
∑

dj (1− rj) + γ PI, (20)

where PI is a penalization for irregularities. For example, PI could be the

number of connected regions. See the example below.

The decision rule corresponding to (20) is

d∗(D) = arg min
{d(s), s∈D}

L(d(s), θ(s), y(s)).

Finding d? requires numerical optimization.

We illustrate the approach with a dataset of 18 individuals who under-

went an MRI scan to detect signals of neurodegenerative patterns typical of

the Alzheimer’s disease (Ashburner et al., 2003). The data have been provided

by the Laboratory of Epidemiology and Neuroimaging, IRCSS, Centro San Gio-

vanni di Dio, Brescia, Italy and have been previously normalized with the freely

available SPM5 sowftare (http://www.fil.ion.ucl.ac.uk/spm/, see Friston et al.

(1995) and Worsley and Friston (1995)). For simplicity, the dataset is restricted

to gray density matter intensity values collected on a regular two-dimensional

grid of 14 × 19 pixels encompassing the hippocampus and are treated as con-

tinuous. The data have been analyzed in Petrone et al. (2008) before, although

with a different inferential aim.
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We assume the random effect model (18)-(19), where f is a multivariate

gaussian, with mean µ + θ and covariance matrix τ2In. The base measure G0

is a mean-zero stationary gaussian process with variance σ2 and correlation

ρ(s, s′) = exp(−φ||s − s′||), for some range parameter φ. Vague inverse gamma

prior distributions on τ2 and σ2, and a vague gamma prior for φ complete the

model. Hence, (18)-(19) defines a DP mixture of spatial processes (Gelfand

et al., 2005). The model is sufficiently flexible to account for most of the spatial

dependence observed in each individual. However, it is known that one of the

marks of the Alzheimer’s disease is local hippocampal atrophy. Low grey matter

intensity observed in normal neuroanatomical structures of the brain should not

be reported as a signal. This consideration may lead to introduce several kinds

of penalties into (20) to penalize for detections in non-interesting regions. Local

atrophy is a condition that typically affects clusters of sites at the same time.

This leads us to consider a penalty PI for the number of isolated signals on D.

Specifically, PI is the number of interconnected regions and isolated points for

which di(s) = 1.

We use a numerical procedures to explore the action space and minimize

(20). We find the optimal decision d? by a random search, initialized with the

optimal rule under γ = 0.

Figure 5.2 shows the resulting optimal rule for one individual in the MRI

dataset. We are interested in detecting regions of low gray matter intensity in

the MRI scans. Hence we consider A = {θ(s) < b}, where b is a fixed constant,

corresponding to the first decile of the dataset. The activation threshold for

the posterior probability is t = 0.8. Figure 5.2 shows the activation map for an

individual with recognizable signs of hypoccampal atrophy for γ = 0 (panel (a))

and for γ = 1
2λ (panel (b)). The additional penalty term provided a principled

and coherent means of removing the singleton clusters that would otherwise be

reported.
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(a) Optimal decision d? under γ = 0 (b) Optimal decision d? with γ = 1
2λ

Fig. 5. The effect of a loss function disfavoring isolated signals on the decisions taken

according to loss (5). See 5.2 for details.

6. Conclusions and Summary

Starting from an interpretation of the ODP as an approximate Bayes rule we

introduced two directions of generalizations. First we improved the rule by

sharpening the approximation. In a simulation example and a data analysis

example we showed improved performance of the resulting BDP rule, even by the

frequentist operating characteristics that are optimized by the oracle version of

the ODP. The improvement is small, but comes at little additional cost. Second,

we considered generalizations of the ODP by replacing the original generic loss

function by loss functions that better reflect the goals of the specific analysis.

For loss functions with similar additive structure as the original loss function the

resulting rule can still be approximated by a single thresholding statistic similar

to the ODP.

The use of a decision theoretic framework provides a convenient assurance

of coherent inference for the proposed approach. However, it also inherits the

limitations of any decision theoretic procedure. The optimality is always with

respect to an assumed probability model and loss function. The stated loss

function is usually a stylized version of the actual inference goals. Often that is
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sufficient to obtain a reasonable rule. But we still caution to critically validate

and if necessary revise the inference in the light of evaluations such as frequentist

operating characteristics. Also, the proposed methods are more computation

intensive than the original ODP procedure. In the simplest case we require some

additional simulation to find a clustering of comparisons to compute cluster-

specific m.l.e.’s.

The main strengths of the proposed approach are the generality and the as-

surance of coherent inference. The approach is general in the sense that the

proposed methods are meaningful for any underlying probability model, and in

principle for arbitrary loss functions. The approach is coherent in the sense that

it derives from minimizing expected loss under a well defined probability model.

¿From a data analysis perspective, an important strength of the proposed ap-

proach is the need and the opportunity to explicitely think about the inference

goals and formalize them in the loss function. A practical strength is the op-

portunity for improved inference at no additional experimental cost, and only

moderate additional computational cost.

Appendix.

Proof of Preposition 1

The proof follows closely the proof of Theorem 1 in Storey and Tibshirani (2003).

First, rewrite

pFDR = E

(
FP

D
| D > 0

)
= E

(∑n
i=1 di(1− ri)∑n

i=1 di
| D > 0

)
. (21)

The expectation is with respect to the distribution of (z1, . . . , zm), conditionally

on the event that some of the comparisons are significant. Hence,

pFDR = EZ1,...,Zm|D>0

[
E

(∑n
i=1 di(1− ri)∑n

i=1 di
| z1, . . . , zm

)]
.

Since di is a function of the sample z1, . . . , zm, the inner expectation is just

E

(∑n
i=1 di(1− ri)∑n

i=1 di
| z1, . . . , zm

)
=

∑n
i=1 di(1− vi)∑n

i=1 di
,
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and since d∗i = I(vi > t),

pFDR < EZ1,...,Zm|D>0

(∑n
i=1 di(1− t)∑n

i=1 di

)
= 1− t

Proof of Theorem 2

Because of the exchangeability of samples from a Pólya Urn, without loss of

generality, we may consider vm = p(rm = 1|z1, . . . , zm). First, note that

vm =
∫

p(rm = 1|Gk, z1, . . . , zm)p(dGk | z1, . . . , zm) =
∫

Gk(Ac)p(dGk | z1, . . . , zm)

=

∫ ∫
Ac p(zm | µm)Gk(dµm)p(dGk | z1, . . . , zm−1)

p(zm | z1, . . . , zm−1)

Both numerator and denominator take the form of

E

(∫
B

p(zm | µm)Gk(dµm) | z1, . . . , zm

)
=

∫
P

∫
B

p(zm | µm) Gk(dµm) p(dGk | z1, . . . , zm),

for a Borel set B. Let so(m) be a vector of cluster indicators, that is so
i = j iff

µi = µo
j , i = 1, . . . ,m, j = 1, . . . , k.

For any fixed m, let {so(m)} denote the set of all partitions of {1, . . . ,m}

into at most k clusters. From the discussions in Ferguson (1983), Lo (1984),

Ishwaran and James (2003), it follows that

E

(∫
B

p(zm | µm) Gk(dµm) | z1, . . . , zm−1

)
=

m

α + m

∑
s(m−1)

p(s(m−1) | z1, . . . , zm−1)×

×
k∑

j=1

α
K + mo

j

m

∫
B

p(zm | µo
j) p(dµo

j | zi : si = j, i = 1, . . . ,m− 1),

(22)

where mo
j = card{so

i : so
i = j, i = 1, . . . ,m − 1} is the number of elements

in cluster j. If mo
j = 0 ,then p(dµo

j | zi : si = j) ≡ G∗(dµo
j). Expression (22)

highlights that any partition of {1, . . . ,m} can be obtained from a corresponding

partition of {1, . . . ,m−1} by adding the m-th observation to any of the previous

cluster or forming a new one.

Now, note that for each j = 1, . . . , k, either mj

m = o(1) or mj

m = O(1). If
mj

m = o(1), (α/k+mj)/m → 0; if mj

m = O(1), we can use Laplace approximation
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arguments (see Schervish, 1995, chapter 7.4.3 or Ghosh et al., 2006, pag. 115)

to obtain∫
B

p(zm | µo
j) p(dµo

j | zi : so
i = j) ≈ p(zm | µ̂o

j) Φ(µ̂o
j ∈ B)[1 + O(mo

j
−2)],

where µ̂o
j is the MLE estimate computed in cluster j, j = 1, . . . , k, obtained

by solving ∂
∂µ

∑
i:si=j f(zi;µ) + ∂

∂µf(zm;µ) = 0 and Φ(·) denotes a standard

gaussian probability distribution.

Next we relabel the non-empty clusters by identifying the set {µo
j ; mo

j > 0}

as the set of unique values {µ?
j , j = 1, . . . , L}.

The proof is completed after noting that, since mj

m = O(1), and because of

the asymptotic consistency of posterior distributions, as m →∞, Φ(µ̂j ∈ B) →

IB(µ̂j).
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