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Summary

We propose prior probability models for variance-covariance matrices in order to address two

important issues. First, the models allow a researcher to represent substantive prior informa-

tion about the strength of correlations among a set of variables. Secondly even in the absence

of such information, the increased flexibility of the models mitigates dependence on strict
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parametric assumptions in standard prior models. For example, the model allows a posteri-

ori different levels of uncertainty about correlations among different subsets of variables. We

achieve this by including a clustering mechanism in the prior probability model. Clustering

is with respect to variables and pairs of variables. Our approach leads to shrinkage towards

a mixture structure implied by the clustering. We discuss appropriate posterior simulation

schemes to implement posterior inference in the proposed models, including the evaluation

of normalising constants that are functions of parameters of interest. The normalising con-

stants result from the restriction that the correlation matrix be positive definite. We discuss

examples based on simulated data, a stock return dataset and a population genetics dataset.

Some key words: Covariance matrix; Mixture prior; Separation strategy.

1. Introduction

Few existing probability models and parameterisations for covariance matrices allow for easy

interpretation and prior elicitation. We propose a collection of models in which correlations

are grouped based on similarities among the correlations or based on groups of variables, and

which may thereby incorporate substantive prior information. For example, for financial time

series it is often known that some returns are more closely related than others. Even in the

absence of substantive prior information, the additional flexibility of the models mitigates

dependence on strict parametric assumptions in standard models. Our main goal is to

model correlation matrices, with the resulting grouping of correlations or variables as an
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insightful by-product. Alternative approaches to modelling correlation structure build on

factor analysis; see for example West (2002) and Aguilar & West (2000). While factor models

effectively reduce the dimensionality of the covariance matrix, it is difficult to interpret

the factors and loadings, which restricts the ability for researchers to suggest informative

prior distributions. These models may also overlook natural groupings or clusters of the

underlying variables. Another alternative approach is explored by Karolyi (1992, 1993), who

uses Bayesian methods to estimate the variance of individual stock returns based on stocks

grouped a priori according to size, financial leverage and trading volume.

The constraint of positive definiteness and the typically high-dimensional nature of the

parameter vector for the covariance matrix influence the choice of prior probability models for

covariance matrices. Lack of conjugacy becomes a problem with departure from the inverse-

Wishart parameterisation (Chib & Greenberg, 1998). Other important considerations are

the need to incorporate substantive prior information into the probability model and the

desire that posterior simulation should be efficient and straightforward.

We assume throughout a multivariate normal likelihood yi ∼ N(0, Σ), for J-dimensional

data yi, i = 1, . . . , n. Extensions to normal regression models and hierarchical models with

multivariate normal random effects distributions are straightforward (Daniels & Kass, 1999).

The most commonly used prior model is the conjugate inverse-Wishart (Bernardo &

Smith, 1994). However, in this model the degree of freedom parameter ν is the only ‘tuning

parameter’ available to express uncertainty.

Several noninformative default priors have been proposed for covariance matrices. Jef-
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freys’ prior is pJ(Σ) = 1/|Σ|(J+1)/2. Alternatively, Yang & Berger (1994) propose a reference

prior, pR(Σ) ∝ 1/{|Σ|
∏

i<j(di − dj)}, where di are the eigenvalues of Σ. As with other

similarly parameterised models, the lack of intuition of the relationship between eigenvalues

and correlations makes it difficult to interpret this model. Daniels (1999) proposes a uniform

shrinkage prior, based on considering the posterior mean as a linear combination of the prior

mean and the sample average and assuming a uniform prior on the coefficient for the sample

average; see Christiansen & Morris (1997), Everson & Morris (2000) and Daniels & Kass

(2001) for more discussion of shrinkage priors. The log matrix prior introduced by Leonard

& Hsu (1992) uses a logarithmic transformation of the eigenvalue/eigenvector decomposition

of Σ and allows for hierarchical shrinkage to be done with the eigenvalues. The dimension

of the problem is reduced, but it is difficult to interpret the relationship of the log of the

eigenvalues to the correlations and standard deviations.

Barnard et al. (2000) propose a separation strategy for modelling Σ = SRS by assuming

independent priors for the standard deviations S and the correlation matrix R. They pro-

pose two alternative prior models for R. One is the marginally uniform prior, in which the

marginal prior for each rij in R is a modified beta distribution over [−1, 1] and, with an ap-

propriate choice of the beta parameters, this becomes a uniform marginal prior distribution.

The other model for R is called the jointly uniform prior. Here the matrix R is assumed to

be a priori uniformly distributed over all possible correlation matrices.

Daniels & Kass (1999) discuss three alternative hierarchical priors. The first is a hi-

erarchical extension of the inverse-Wishart prior, which assumes priors on the degree of
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freedom parameter and on the unknown elements of a diagonal scale matrix. Alternatively

they consider a separation strategy as in Barnard et al. (2000) and assume a normal prior

for a transformation of the correlation coefficients. The constraint of positive definiteness

amounts to appropriate truncations of the normal prior. A third model uses an eigen-

value/eigenvector parameterisation, with the orthogonal eigenvector matrix parameterised

in terms of the Givens angles.

Wong et al. (2003) propose a prior probability model on the precision matrix, P = Σ−1,

that is similar to our approach. Their application is geared towards graphical models and

partial correlations, focusing on the sparseness of the precision matrix.

In this paper we introduce additional hierarchical structure by allowing for correlations

to group in natural ways. We consider three models. Throughout we assume a separation

strategy; modelling standard deviations S and the correlation matrix R separately. We focus

on modelling R, as including S in the proposed posterior simulation schemes is straightfor-

ward. Our ‘common correlation’ model assumes a common normal prior for all correlations,

with the additional restriction that the correlation matrix is positive definite. This follows

the frequentist work of Lin & Perlman (1985) who use a version of the James-Stein estima-

tor to model the off-diagonal elements of the correlation matrix; see Daniels & Kass (2001)

for additional discussion of covariance shrinkage models. The second model, the ‘grouped

correlations’ model, generalises the common correlation model by allowing correlations to

cluster into different groups, where each group has a different mean and variance. The third

model, the ‘grouped variables’ model, allows the observed variables yi to cluster into different
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groups. Correlations between variables in the same group have a common mean and variance

and the correlations between variables in different groups have a mean and variance that

depends on the group assignment for each variable.

Posterior inference will rely on Markov chain Monte Carlo methods (Tierney, 1994). How-

ever, posterior simulation for these models is computationally challenging, mainly because

we need to sample from truncated distributions that result from the positive definiteness

constraint. The truncated distributions involve analytically intractable normalising con-

stants that are a function of the parameters; see Chen et al. (2000, Ch.6), for a general

discussion of related problems. We investigate the following three strategies for evaluating

these normalising constants: sidestepping the problem by assuming that ratios of these nor-

malising constants are approximately constant; using importance sampling strategies; and

introducing an additional set of latent variables, called ‘shadow’ priors, in the hierarchical

structure.

Section 2 introduces the three proposed models. Implementation and posterior simulation

are discussed in §3. Section 4 reviews possible areas of application for each model, with a

discussion of feasible extensions. In §5 we give examples and we conclude in §6.

2. Models

2.1 A motivating example

Throughout, we assume a multivariate normal likelihood function and follow the separation

strategy of Barnard et al. (2000), writing Σ = SRS, as discussed in §1. Without loss of
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generality we assume that S = I. We write RJ for the space of all correlation matrices of

dimension J .

Example 1. In an effort to simplify the task of diversification, the finance community

is interested in classifying companies into industries based on the type of products and

services provided by a company. Typically this classification is done by individuals who

have industrial expertise. While many of these classifications may be straightforward, a

number of companies engage in strategies where they expand and/or change the products

and services that they offer, creating hybrid companies that may not fit into a specific

industrial classification. As an example, before its demise, Enron transformed their basic

business from being an energy company to being a finance company. Since it is debatable

whether an industry expert may be able to classify Enron correctly, it would be of interest

to determine whether Enron’s stock behaviour is correlated with energy companies or with

finance companies. To illustrate, consider the monthly stock returns for nine companies

which are either energy or finance companies from April, 1996 to May, 2002. The energy

stocks include Reliant, Chevron, British Petroleum and Exxon, and the financial stocks

include Citi-Bank, Lehman Brothers, Merrill Lynch and Bank of America. The stock in the

middle is Enron; see Table 1 for their empirical correlations.

Insert Table 1 Here.

The grouped variable model introduced in §2.4 and which classifies stocks into groups based

on the correlations within and between each group offers a natural method for determining
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whether or not Enron successfully made the transition from being an energy company to a

financial company before they encountered recent troubles; see §5.

2.2 Common correlation model

In the common correlation model we assume a priori that all correlations rij are sampled

from a common normal distribution subject to R ∈ RJ :

f (R|µ, σ2) = C(µ, σ2)
∏

i<j

exp
{

−(rij − µ)2/(2σ2)
}

I{R ∈ RJ }, (1)

where

C−1(µ, σ2) =

∫

R∈RJ

∏

i<j

exp
{

−(rij − µ)2/(2σ2)
}

drij, (2)

and where I{·} represents an indicator function. We assume hyperpriors µ ∼ N(0, τ 2), and

σ2 ∼ IG(α, β), where τ 2, α, the shape parameter, and β, the scale parameter, are treated

as known. The indicator function in (1) ensures that the correlation matrix is positive

definite and introduces dependence among the rij’s. The implication of the constraint on

the conditional prior is not the same for each coefficient. The full conditional posterior

distribution f(rij|−), which will play a prominent role in the posterior simulation discussed

later, is

f(rij|−) ∝ |R|−
n
2 exp

{

−tr(R−1B)/2
}

exp
{

−(rij − µ)2/(2σ2)
}

I{R ∈ RJ }, (3)

where B is the empirical variance-covariance matrix. The full conditional densities for µ

and σ2 are similar to the conjugate densities with an additional factor due to the positive
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definiteness constraint on R:

f(µ|−) ∝ C(µ, σ2)
∏

i<j

exp
{

−(rij − µ)2/(2σ2)
}

exp
{

−µ2/(2τ 2)
}

, (4)

f(σ|−) ∝ C(µ, σ2)
∏

i<j

exp
{

−(rij − µ)2/(2σ2)
} (

1/σ2
)α−1

exp (−β/σ2). (5)

By symmetry the prior is centred at R = I and thus implements shrinkage towards a diagonal

correlation matrix. Alternative shrinkage to positive and negative correlations is possible if

we choose different prior means for µ.

2.3 Grouped correlations model

In many applications the common correlation model is too restrictive. For example, one

might have substantive prior information that correlations cluster into groups of positive

correlations and negative correlations.

To allow a priori for groups of correlations we generalise the common correlation model

to a mixture prior:

f (R|µ, σ2, ϑ) = C(µ, σ2, ϑ)
∏

i<j

[

K
∑

k=1

I{ϑij = k} exp
{

−(rij − µk)
2/(2σ2

k)
}

]

I{R ∈ RJ },

(6)

with ϑij ∼ multinomial(p), and C(µ, σ2, ϑ) analogous to (2). The indicator I{ϑij = k}

selects one of the K clusters. To avoid trivial identifiability problems associated with ar-

bitrary permutation of indices, post-processing may be necessary; see for example Celeux

et al. (2000) for a discussion of issues related to parameterising mixture models. The full

conditional distribution (3) remains almost unchanged:

f(rij|−) ∝ |R|−
n
2 exp

{

−tr(R−1B)/2
}

exp
{

−(rij − µϑij
)2/(2σ2

ϑij
)
}

I{R ∈ RJ }. (7)
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As with the common correlation model, the full conditional densities for the µ’s and σ2’s

are not conjugate and are similar to (4) and (5). The full conditionals for the ϑij’s are

multinomial distributions which will be dealt with in §3.

Besides accommodating substantive prior information about clustering of correlations,

the mixture prior (6) is also motivated by concerns about the strict normality assumption

in (1). In (1), outliers with high correlations could unduly influence final inference. Also, bi-

modality arising from uncertainty about the direction of a correlation cannot be represented

by the single normal prior in (1). For sufficiently large K the mixture model in the grouped

correlation prior allows the model to approximate any random effects distribution, subject

only to some technical constraints (Dalal & Hall, 1983).

Model (6) implements shrinkage of R towards a structure determined by clustering pairs

(i, j) of variables. In many problems this is more appropriate than shrinkage towards a

diagonal matrix. Additionally, the introduction of the mixture indicators ϑij in the model

allows a researcher to represent substantive prior information by choosing unequal prior

probabilities pr(ϑij = k). The posterior distribution under (6) includes inference about

grouping the rij into high and low correlations.

Model (6) includes as a special case model selection for different dependence structures:

by including as one term in the mixture a point mass δ0 at zero, the model allows inference

about the presence of marginal dependence of any two variables. Similar mixture models are

commonly used for variable selection in regression models (Clyde & George, 2000):

f (R|µ, σ2, ϑ) = C(µ, σ2, ϑ)
∏

i<j

[

K−1
∑

k=1

I{ϑij = k} exp
{

−(rij − µk)
2/(2σ2

k)
}
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+I{ϑij = K}δ0(rij)] I{R ∈ RJ }.

Alternatively, a point mass at zero could be replaced by a small-variance normal distribution

as in George & McCulloch (1993).

2.4 Grouped variables model

In many applications it is more natural to group the variables, rather than the correlations.

For example, as discussed in the motivating example, one might expect a common correlation

of returns between bank stocks and a different, common but smaller, correlation between

the returns of bank stocks and energy company stocks.

If we group the variables instead of the correlations, the prior (6) changes to

f (R|µ, σ2, ϑ) = C(µ, σ2, ϑ)
∏

i<j

[

∑

k,h

I{ϑi = k}I{ϑj = h}

exp
{

−(rij − µkh)
2/(2σ2

kh)
}]

I{R ∈ RJ }, (8)

where again C(µ, σ2, ϑ) is analogous to (2) and ϑi ∼ multinomial(p). The full conditional

posterior distribution for rij is as in (7), with µk replaced by µkh:

f(rij|ϑi = k, ϑj = h, . . .) ∝

|R|−
n
2 exp

{

−tr(R−1B)/2
}

exp
{

−(rij − µkh)
2/(2σ2

kh)
}

I{R ∈ RJ }.

Like (6), model (8) implements shrinkage of R towards a cluster structure, which now is

determined by clustering variables; that is clustering is defined on indices i only. For each

correlation rij the pair of indicators (ϑi, ϑj) chooses the term in the prior mixture model. As
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with model (6), we can explore different dependence structures as a special case of model (8)

by including a point mass at zero as a term in the model. This type of model could result

in a block diagonal correlation matrix, potentially revealing independence between different

groups of variables.

3. Implementation and posterior simulation

3.1 Sampling the full conditional of rij

Without loss of generality we consider only the full conditional (3) for rij in the common

correlation model. The awkward manner in which rij is embedded in the likelihood compli-

cates posterior simulation, leading us to use a Metropolis-Hastings algorithm to update one

coefficient rij at a time (Barnard et al., 2000); see for example Chib & Greenberg (1995)

for a review of the Metropolis-Hastings algorithm. The positive definiteness of R constrains

f(rij|−) to an interval (lbij, ubij). Once this interval is found, there are several different

proposal densities that could be used, such as the uniform density on that interval, or more

generally a Beta density that has been modified to fit the interval, with a mean equal to the

current realisation of rij and a variance that is a fraction of the interval length.

3.2 Sampling the full conditionals of µ and σ2

We focus our discussion on sampling from the full conditional density for µ based on the

common correlation model, see (4). Extensions of these strategies to σ2 for the common

correlation model and to µ and σ2 for the grouped models can be derived in a natural way.
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Since µ is hopelessly entangled in the normalising constant C, we again use a Metropolis-

Hastings step to update µ. The proposal density is the normal distribution that results

if I{R ∈ RJ } is removed from (1). If µ∗ denotes the generated proposal, the appropriate

acceptance probability is

α = min
{

1, C(µ∗, σ2)/C(µ, σ2)
}

, (9)

where C is given by (2). We propose several alternative strategies for evaluating α. The

simplest approach is to assume α = 1. This is the strategy that Daniels & Kass (1999) use

when analysing their model which uses a Fisher z transformation of the correlations. While

this may be reasonable when µ is close to µ∗ or σ2 is small, these conditions may not hold

in practice.

Since C is not data-dependent, one may evaluate the value of C(µ, σ2) at the outset, for

a range of values for µ and σ2 and then use an interpolation strategy to evaluate α. While

this approach has the advantage of only being dependent on the dimension of the problem,

we chose to focus on strategies which estimate C as needed.

The normalising constant C is proportional to the integral of a product of univariate

normal densities restricted to a constrained space and can be estimated using an importance

sampling scheme; see Chen et al. (2000, Ch.5), for a general discussion of using importance

sampling to estimate the ratio of multivariate integrals, as in (9). One strategy is to sample

from unconstrained normal densities, rm
i,j ∼ N(µ, σ2), i < j, m = 1, . . . , M, define Rm = [rm

ij ]

and use

Ĉ(µ, σ2) = 1/M
M

∑

m=1

I{ Rm ∈ RJ }.
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Another strategy is to modify the original model by inserting an additional layer of priors.

We introduce latent variables δij into the model hierarchy between rij and the prior moments

(µ, σ2) by assuming that

δij ∼ N(µ, σ2), (10)

and we replace the prior (1) by

f (R|δ) = C(δ, ν2)
∏

i<j

exp
{

− (rij − δij)
2 /(2ν2)

}

I{R ∈ RJ },

where C−1 is similar to (2) with µ replaced by δij and σ2 replaced by ν2. We refer to (10)

as a ‘shadow prior.’ The resulting full conditional density for rij changes only slightly, with

(δij, ν
2) replacing (µ, σ2), but the full conditional densities for µ and σ2 are now conjugate.

The nature of the full conditional density for δij is similar to the full conditional (3) in the

original model, requiring a Metropolis-Hastings step to update the δij. However, there are

important advantages to using the additional parameters and model structure. First, as the

researcher has complete control over the value of ν2, it can be set to an arbitrary value. As ν2

approaches zero, the ratio in (9) approaches one. In practice, it is often reasonable to set ν2 to

a small number and assume that C(δ∗, ν2)/C(δ, ν2) = 1. Intuitively, if we set ν2 small enough,

the full conditional density of R essentially lies inside the constrained space RJ , which

allows the unconstrained normalising constant to be a reasonably good approximation for

the constrained normalising constant C(δ, ν2). A second important advantage of introducing

the shadow prior is the simplification of the computational burden associated with sampling

the indicator variables in the two grouped models; see §3.3. Although the shadow prior offers

a general way of dealing with constraints, the full extent of its effectiveness and limitations
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are not explored in this paper.

One concern with setting ν2 to a small number is that it may affect the mixing properties

of the Markov chain Monte Carlo algorithm with respect to µ and σ2. In practice, we

have found that setting ν2 to a small value does not have significant impact on the mixing

properties of these variables in terms of the autocorrelation and the marginal posterior

density of the parameters. For example, a small simulation study, based on a common

correlation model and not described in detail here, showed that for small values of ν2 it is

reasonable to assume that C(δ∗, ν2)/C(δ, ν2) = 1.

With regards to the performance of the Markov chain Monte Carlo analysis for different

values of ν2, we found that the mixing properties, as summarised by the autocorrelation of

µ and σ2, and that the posterior inference, as summarised by the marginal posterior density

estimates of µ and σ2, were almost identical across the range of ν2 considered. In practice

this type of analysis could be used as a guide for calibrating ν2 such that the ratio of the

normalising constants is approximately equal to one, and performance of the Markov chain

Monte Carlo algorithm is not significantly affected.

Perhaps the most important benefit from using the shadow prior is a critical simplification

in the full conditional for the indicators ϑi and ϑij in the grouped variable and grouped

correlation models, respectively. We discuss details in the next section.
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3.3 Sampling the full conditional of ϑ

Without the shadow priors, the full conditional densities for ϑ for the grouped correlations

model and the grouped variables model are as follows:

f(ϑij = k|−) = C
(

µ, σ2, ϑij = k, ϑ−ij

)

exp
{

−(rij − µk)
2/(2σ2

k)
}

, (11)

f(ϑi = k|−) = C
(

µ, σ2, ϑi = k, ϑ−i

)

∏

j 6=i

exp
{

−(rij − µk,ϑj
)2/(2σ2

k,ϑj
)
}

. (12)

Evaluating these full conditional densities requires us to calculate the normalising con-

stant C, which can be done using importance sampling strategies, as discussed previously. As

the dimensionality of the correlation matrix increases, the computational task of evaluating

(11) and (12) can make it difficult if not impossible to analyse these models in practice.

By introducing the shadow prior we have the good fortune that evaluation of (11) and

(12) simplifies significantly. With the shadow prior included in each model, the multivariate

integral C no longer involves the variables ϑ, and as a result the full conditional densities

(11) and (12) become

f(ϑij = k|−) ∝ exp
{

− (δij − µk)
2 /(2σ2

k)
}

,

f(ϑi = k|−) ∝
∏

j 6=i

exp
{

−
(

δij − µk,ϑj

)2
/(2σ2

k,ϑj
)
}

.

The full conditional densities for ϑ, using the shadow prior, are therefore easily evaluated,

even for high-dimensional problems.
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4. Extensions and applications

4.1 Random effects distributions in hierarchical models

The discussion and the proposed implementation of posterior simulation remain valid for

more complex probability models in which the multivariate normal distribution defines only

one component or level of the probability model, as in hierarchical models with multivariate

normal random effects, θi ∼ N(µ, Σ) (Daniels & Kass, 1999). Here θi is a random effects

vector specific to the ith experimental unit in the hierarchical model, for an observable yi,

and the proposed prior models would be used to define the hyperprior for the covariance

matrix Σ of the random effects.

Example 2. Müller & Rosner (1997) describe a haematological study. The data records

white blood cell counts over time for each of n chemotherapy patients. Denote by yit the

measured response for patient i on day t. The profiles of white blood cell counts over time

can be reasonably well approximated by a piecewise linear-linear-logistic regression model,

involving a patient-specific random effects vector θi and represented by

yit = gθi
(t) + εit.

The model is completed with a random effects model,

θi ∼ N(m, Σ), (13)

and a hyperprior h(m, Σ). Posterior predictive inference for future patients depends on the

observed historical data only indirectly through learning about the random effects distri-
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bution (13). Thus a flexible hyperprior for Σ is essential. The grouped correlations model

provides a possible hyperprior on Σ, as an alternative to Müller & Rosner’s (1997) use of a

flexible nonparametric model in place of (13).

4.2 ARCH models and time-varying correlations

An autoregressive conditional heteroscedasticity (ARCH) model (Engle, 1982) is a discrete

stochastic process for which the variance at time t is related to previous squared values of

the process in an autoregressive scheme:

εt ∼ N(0, ht), ht = α0 +

p
∑

j=1

αjε
2
t−j. (14)

The GARCH(p, q) model (Bollerslev, 1986) includes lagged values of the variance itself in

the variance equation, so that

ht = α0 +

p
∑

i=1

αiε
2
t−i +

q
∑

j=1

γjht−j ;

see for example Bollerslev et al. (1992) for a survey of related models.

A multivariate version of the GARCH(p, q) model was first studied by Bollerslev et al.

(1988). Let Ht denote the covariance matrix in a multivariate version of (14), such that

εt ∼ N(0, Ht). The high-dimensional nature of Ht complicates modelling, and in practice

the dimensionality is greatly reduced by imposing additional structural assumptions. For ex-

ample, Bollerslev (1990) uses a time-varying conditional covariance matrix, Ht, but assumes

time-invariant conditional correlations. Our framework can model multivariate time-series

data by assuming a univariate (G)ARCH model for the marginal variances hit = (Ht)ii and
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completing the model with a structured prior for the correlation matrix, using one of the

models proposed in §2. Let St denote a diagonal matrix with the standard deviations on the

diagonal, and assume Ht = StRSt with equations (1), (6) or (8) as prior models for a time

invariant correlation matrix R.

Not only can this framework model groupings of correlation among multivariate time-

series data, but it can also jointly model time-varying variances and time-varying correlation

structures. By shrinking correlations towards a set of common means, standard time-varying

probabilistic models can be used to model the dynamic nature of these means, thereby

offering a parsimonious way of modelling the time-varying correlation structure.

4.3 Probit models

The multivariate probit model implements regression of a set of binary response variables

y = (y1, . . . , yp) on covariates x = (x1, . . . , xp). We introduce a p-dimensional normal latent

variable vector y∗ and assume that

yi = I{y∗
i > 0} and y∗ ∼ N(β ′ x, Σ). (15)

Albert & Chib (1995) discuss the corresponding univariate probit model. In the multivariate

model (15), the covariance matrix Σ defines the covariate effects. For identifiability Σ needs

to be suitably constrained, for example, as a correlation matrix. Models (1), (6) and (8)

provide flexible prior models. Alternative Bayesian models for the identified parameters of a

multivariate probit are discussed by Chib & Greenberg (1998) and McCulloch et al. (2000).

Müller et al. (1999) discuss a parameterisation which allows conjugate Gibbs sampling.
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Example 3. Liechty et al. (2001) use the multivariate probit model to estimate an empiri-

cal demand function for an information service. Potential customers were shown a collection

of scenarios whereby they could purchase enhancements/services to a basic free listing. Each

enhancement had a monthly fee and some had a one time set-up fee. The levels of the fees

along with several group discounting schemes were varied over different scenarios. Potential

customers indicated whether or not they would choose each of the possible enhancements,

resulting in a set of vectors of binary responses. Prices and discounting schemes were used

as covariates, and the estimated correlation matrix revealed that the products had relation-

ships net of price and group discount effects. One interpretion of this was that products

with positive correlations were complements and products with negative correlations were

substitutes. A two-group, grouped correlations model, would be a natural candidate for

identifying complements and substitutes for this type of dataset.

The multivariate probit model is also often used to model the content of analysing a

household’s shopping basket over time; see Manchanda et al. (1999). The resulting cor-

relation matrix can become very large, but it would be natural to consider a correlation

structure which groups correlations between products based on product categories using a

grouped variables model. In this context, one can look for zeros in the correlation matrix,

in much the same way as Wong et al. (2003) look for zeros in the precision matrix, so as to

identify block diagonal matrices that define how consumers partition products into different

types of markets.
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5. Examples

5.1 Simulated data

We generated an 8×8 correlation/covariance matrix with two different groups of correlations,

using (6) with µ1 = −0.54, σ2
1 = 0.05, µ2 = 0.37 and σ2

2 = 0.08. This model has (8×7)/2 = 28

correlations; 14 correlations are in each group, and can be thought of as being in a negative,

group 1, or positive, group 2, group. Based on this matrix we generated 500 observations.

The true group of each correlation and the posterior probabilities are shown in Table 2.

The posterior estimates recover the true structure of the correlation model in the simulation

model.

Insert Table 2 Here.

Additional studies with group means closer together and various values for group vari-

ances yielded similar results. When the residual variances σ2 are large, the posterior prob-

abilities are more spread out across groups, as would be expected for any mixture with

overlapping distributions. This suggests that inference on K should be interpreted with

caution, unless the clusters are well separated. We found similar results when simulating

from the grouped variables model. To investigate the performance of the approach in the

absence of true cluster structure in the data, we considered the special case with K = 1 in

the simulation model. Posterior inference with K > 1 finds means close enough for us to

conclude that there is only one group.
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5.2 Structure in the stock market

As discussed in our motivating example, Enron was attempting to change from being an

energy company to a finance company. As it may be difficult to classify Enron based on

the range of products and services that they offer, it is possible to use the grouped variable

model to determine whether to group Enron with energy stocks or finance stocks, based on

the correlations between each group of stocks. Using the stocks introduced in §2.1 we consider

grouped variable models (8) with K = 1, which corresponds to the common correlation model

(1), K = 2 and K = 3, and use a reversible jump Markov chain Monte Carlo algorithm to

infer the value of K. We also include a uniform prior as in Barnard et al. (2000) for

comparison. With a uniform prior on the model space, the reversible jump Markov chain

Monte Carlo reduces to comparing the likelihoods of the current model and the proposed

model at each step. This can be justified as follows. Let θk denote the parameter vector under

K = k, including k = 0 for the model with the uniform prior. Let K ∈ {1, 2, 3, 0} denote the

index of the currently chosen model. We build a superparameter vector θ = (θ0, ..., θ3), and

define a Markov chain Monte Carlo scheme that updates θk only when K = k. Proposing

a move from K to K̃ leads to a Metropolis-Hastings acceptance probability that includes

the ratio of the likelihood evaluated under the two competing models K and K̃, using

the currently imputed parameter vectors θK and θK̃ . Because of concerns with convergence

properties we consider the results as approximate posterior inference only and advise against

over interpretation. We find approximate posterior probabilities of 0.06, for K = 1, 0.5, for

K = 2, 0.25 for K = 3, and 0.19 for the uniform prior. For the model with K = 2, the
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posterior parameter estimates of (µ12, µ1, µ2) are (0.15, 0.41, 0.61) and for (σ2
12, σ

2
1 , σ

2
2) are

(0.02, 0.03, 0.02). We see a distinct separation between the three group means.

Insert Table 3 Here.

Table 3 shows that Enron is clearly grouped with the energy companies, and was un-

successful, in terms of stock performance, in making the transition from being an energy

company to a finance company. The posterior estimate of the correlation matrix for these

variables is also shown in Table 3.

It is interesting to note that classical factor models based on either the maximum like-

lihood method or the principal components method indicated five factors for this data.

Loadings for both methods are very similar, but they offer no concise ‘grouping’ of variables

as is found by the grouped variables model.

5.3 Population genetics

Murren et al. (2002) consider a dataset recording measurement of J = 11 traits over a

population of n = 40 brassica plants, i.e. broccoli. One question of interest is how the

different traits can be clustered into groups on the basis of correlation structure. Variables

are a priori expected to cluster into groups of traits related to some common underlying

themes. For example, possible groups might be variables related to ‘life history,’ ‘plant size,’

and so on.

We modelled the correlation matrix using a two-group, grouped variables model. The

posterior probability that each variable is assigned to Group 1 is summarised in Table 4.
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The three variables associated with the size of the leaves are classified into Group 2; the

remaining variables, placed in Group 1, have to do with the size of the other parts of the

plant and with the number, but not the size, of leaves. The average correlation for the leaf

size group, Group 2, is 0.91, while the average correlation for the plant size group, Group

1, is 0.25. Interestingly, the average correlation between the two groups is negative, −0.31,

which seems to indicate that the plant either emphasises leave growth or plant growth, but

not both.

Insert Table 4 Here.

6. Discussion

Our models provide a framework for representing and learning about dependence struc-

ture. An alternative approach is traditional factor analysis. Factor analysis explains depen-

dence among a set of variables as arising from a few latent factors and the relative sizes

of the factor loadings determine the strengths of the correlations. In contrast, the grouped

variables and grouped correlations models proceed by assuming a partition of the set of

correlations and variables, respectively. The extent of the relationship between these two

modelling approaches is an interesting topic for future research.

The discussion was focused on inference on covariance and correlation matrices. However,

since inference is based on posterior simulation, inference on any other function of the model

parameters is possible. For example, in graphical models, inference about the precision

matrix P = R−1 is of interest. Small off-diagonal entries in the precision matrix correspond
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to small conditional correlation of the respective variables. This allows inference about the

presence and absence of connecting edges in a graphical representation of a multivariate

distribution.

We have introduced the models in the context of independent multivariate normal sam-

pling, but the models lead to interesting generalisations of standard models in any modelling

context which involves (hyper)prior probability models on variance-covariance or precision

matrices. Examples are repeated measurement models, hierarchical models, multivariate

probit models, graphical models and multivariate stochastic volatility models.

ACKNOWLEDGMENT

The authors are grateful to Robert McCulloch and Chris Carter for insightful discussion and

comments.

REFERENCES

Aguilar, O. & West, M. (2000). Bayesian dynamic factor models and portfolio allocation.

J. Bus. Econ. Statist. 18, 338–57.

Albert, J. & Chib, S. (1995). Bayesian residual analysis for binary response regression

models. Biometrika 82, 747–59.

Barnard, J., McCulloch, R. & Meng, X. (2000). Modeling covariance matrices in terms of

standard deviations and correlations, with applications to shrinkage. Statist. Sinica

10, 1281–311.

25



Bernardo, J. M. & Smith, A. F. M. (1994). Bayesian Theory. New York: John Wiley &

Sons, Inc.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroscedasticity. J. Economet.

31, 307–27.

Bollerslev, T. (1990). Modelling the coherence in short-run nominal exchange rates: A

multivariate generalized ARCH approach. Rev. Econ. Statist. 72, 498–505.

Bollerslev, T., Chou, R. & Kroner, K. F. (1992). ARCH modeling in finance. J. Economet.

52, 5–59.

Bollerslev, T., Engle, R. F. & Wooldridge, M. (1988). A capital asset pricing model with

time varying covariances. Polit. Econ. 96, 116–31.

Celeux, G., Hurn, M. & Robert, C. P. (2000). Computational and inferential difficulties

with mixture posterior distributions. J. Am. Statist. Assoc. 95, 957–70.

Chen, M., Ibrahim, J. G. & Shao, Q. (2000). Monte Carlo methods in Bayesian computa-

tion. New York: Springer.

Chib, S. & Greenberg, E. (1995). Understanding the Metropolis-Hastings algorithm. Am.

Statistician 49, 327–35.

Chib, S. & Greenberg, E. (1998). Analysis of multivariate probit models. Biometrika 85,

347–61.

26



Christiansen, C. & Morris, C. (1997). Hierarchical Poisson regression modeling. J. Am.

Statist. Assoc. 92, 618–32.

Clyde, M. & George, E. I. (2000). Flexible empirical Bayes estimation for wavelets. J. R.

Statist. Soc. B 62, 681–98.

Dalal, S. & Hall, W. (1983). Approximating priors by mixtures of natural conjugate priors.

J. R. Statist. Soc. B 45, 278–86.

Daniels, M. J. (1999). A prior for the variance in hierarchical models. Can. J. Statist. 27,

567–78.

Daniels, M. J. & Kass, R. E. (1999). Nonconjugate Bayesian estimation of covariance

matrices and its use in hierarchical models. J. Am. Statist. Assoc. 94, 1254–63.

Daniels, M. J. & Kass, R. E. (2001). Shrinkage estimators for covariance matrices. Bio-

metrics 57, 1174–84.

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the

variance of United Kingdom inflation. Econometrica 50, 987–1008.

Everson, P. J. & Morris, C. N. (2000). Inference for multivariate normal hierarchical models.

J. R. Statist. Soc. B 62, 399–412.

George, E. I. & McCulloch, R. E. (1993). Variable selection via Gibbs sampling. J. Am.

Statist. Assoc. 88, 881–9.

27



Karolyi, G. A. (1993). A Bayesian approach to modeling stock return volatility for option

valuation. J. Finan. Quantitat. Anal. 28, 579–94.

Karolyi, G. A. (1992). Predicting risk: some new generalizations. Manag. Sci. 38, 57–74.

Leonard, T. & Hsu, J. S. (1992). Bayesian inference for a covariance matrix. Ann. Statist.

20, 1669–96.

Liechty, J. C., Ramaswamy, V. & Cohen, S. H. (2001). Choice menus for mass customiza-

tion: An experimental approach for analyzing customer demand with an application

to a web-based information service. J. Market. Res. 38, 183–96.

Lin, S. P. & Perlman, M. D. (1985). An improved procedure for the estimation of a

correlation matrix. In Statistical Theory and Data Analysis, Ed. K. Matusita, pp.

369–79. North Holland: Elsvier.

Manchanda, P., Ansari, A. & Gupta, S. (1999). The ‘shopping basket’: A model for multi-

category purchase incidence decisions. Market. Sci. 18, 95–114.

McCulloch, R. E., Polson, N. G. & Rossi, P. (2000). A Bayesian analysis of the multinomial

probit model with fully identified parameters. J. Economet. 99, 173–93.

Müller, P., Parmigiani, G., Schildkraut, J. & Tardella, L. (1999). A Bayesian hierarchical

approach for combining case-control and prospective studies. Biometrics 55, 258–66.

Müller, P. & Rosner, G. (1997). A Bayesian population model with hierarchical mixture

priors applied to blood count data. J. Am. Statist. Assoc. 92, 1279–92.

28



Murren, C. J., Pendelton, N. & Pigliucci, M. (2002). Evolution of phenotypic integration

in Brassica (Brassicaceae). Am. J. Botany 89, 655–63.

Tierney, L. (1994). Markov chains for exploring posterior distributions (with Discussion).

Ann. Statist. 22, 1701–62.

West, M. (2003). Bayesian factor regression models in the “large p, small n” paradigm. In

Bayesian Statistics 7, Eds. J.O. Bernardo et al., pp. 723-32, Oxford.

Wong, F., Carter, C. K. & Kohn, R. (2003). Efficient estimation of covariance selection

models. Biometrika 90, to appear.

Yang, R. & Berger, J. O. (1994). Estimation of a covariance matrix using the reference

prior. Ann. Statist. 22, 1195–211.

29



Table 1: Empirical correlation matrix for monthly stock returns for nine equity securities
from April, 1996 to May, 2002. Reliant, Chevron, British Petroleum and Exxon are energy
companies and Citi-Bank, Lehman Brothers, Merrill Lynch and Bank of America are financial
services companies. Enron could potentially be in either group based on different criteria.

Variable 1 2 3 4 5 6 7 8 9
Reliant 1 1 0.30 0.14 0.31 0.47 0.10 0.15 0.13 0.09
Chev. 2 0.30 1 0.75 0.60 0.54 0.34 0.22 0.13 0.41
BP 3 0.14 0.75 1 0.59 0.44 0.22 0.23 0.11 0.25
Exxon 4 0.31 0.60 0.59 1 0.32 0.38 0.15 0.21 0.26
Enron 5 0.47 0.54 0.44 0.32 1 0.08 0.11 −0.02 0.10
C-B. 6 0.10 0.34 0.22 0.38 0.08 1 0.69 0.71 0.68
L.Bros. 7 0.15 0.22 0.23 0.15 0.11 0.69 1 0.77 0.59
ML 8 0.13 0.13 0.11 0.21 −0.02 0.71 0.77 1 0.50
BofA 9 0.09 0.41 0.25 0.26 0.10 0.62 0.59 0.50 1
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Table 2: Simulation study with 8× 8 correlation matrix consisting of two groups of correla-
tions and 500 observations. The (8× 7)/2 = 28 correlations are evenly divided between two
groups that have parameters µ1 = −0.54, σ2

1 = 0.05, µ2 = 0.37, and σ2
2 = 0.08. The upper

triangle shows the group ϑ0 in which each of the correlations lies, and the lower triangle
shows the posterior probability ϑ̂ that the correlations are from Group 1.

ϑ0

1 2 3 4 5 6 7 8
1 0 1 1 1 2 2 2 2
2 0.99 0 2 1 2 1 2 1
3 0.99 0.00 0 2 2 2 1 2
4 0.01 0.99 0.00 0 1 2 1 2

ϑ̂ 5 0.01 0.00 0.01 0.99 0 1 1 1
6 0.01 0.98 0.00 0.00 0.98 0 1 2
7 0.00 0.00 0.99 0.98 0.02 0.97 0 1
8 0.01 0.99 0.00 0.00 0.99 0.00 0.99 0
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Table 3: Posterior estimates of pr(ϑi|y), the probability that variable i is in a particular
group, and of R, the correlation matrix, in grouped variables model with two groups for
monthly stock returns for nine equity securities from April, 1996 to May, 2002. Reliant,
Chevron, British Petroleum and Exxon are the energy companies, and Citi-Bank, Lehman
Brothers, Merrill Lynch and Bank of America are the financial services companies. According
to this model, Enron is classified as an energy stock.

Variable pr(1|y) pr(2|y) 1 2 3 4 5 6 7 8 9

Reliant 1 0.99 0.01 1 0.32 0.18 0.33 0.43 0.13 0.16 0.16 0.11
Chev. 2 1 0 0.32 1 0.66 0.5 0.49 0.26 0.17 0.1 0.32
BP 3 1 0 0.18 0.66 1 0.51 0.4 0.13 0.2 0.08 0.16
Exxon 4 1 0 0.33 0.5 0.51 1 0.29 0.3 0.09 0.17 0.16
Enron 5 0.99 0.01 0.43 0.49 0.4 0.29 1 0.11 0.15 0.04 0.11
C-B 6 0.01 0.99 0.13 0.26 0.13 0.3 0.11 1 0.63 0.66 0.62
L.Bros. 7 0 1 0.16 0.17 0.2 0.09 0.15 0.63 1 0.72 0.56
ML 8 0 1 0.16 0.1 0.08 0.17 0.04 0.66 0.72 1 0.46
BofA 9 0.02 0.98 0.11 0.32 0.16 0.16 0.11 0.62 0.56 0.46 1
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Table 4: Posterior estimates of pr(ϑi|y), the probability that variable i is a particular group,
in grouped variables model with two groups of 11 variables on 40 broccoli plants.

Variable pr(1|y) pr(2|y)

days to leaf 1 0
days to flower 1 0
days to harvest 1 0
leaf length 0 1
fruit number 1 0
leaf width 0 1
petiole length 0 1
leaf number 1 0
height 1 0
leaf biomass 1 0
stem biomass 1 0
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