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We discuss a case study that highlights the features and limitations of a principled Bayesian decision theoretic approach

to massive multiple comparisons. We consider inference for a mouse phage display experiment with three stages. The

data are tripeptide counts by tissue and stage. The primary aim of the experiment is to identify ligands that bind with

high affinity to a given tissue. The inference goal is to select a large list of peptide and tissue pairs those with significant

increase over stages. The desired inference summary involves a massive multiplicity problem. We consider two alter-

native approaches to address this multiplicity issue. First we propose an approach based on the control of the posterior

expected false discovery rate. We notice that the implied solution ignores the relative size of the increase. This motivates

a second approach based on a utility function that includes explicit weights for the size of the increase.

1 Introduction

We discuss a Bayesian decision theoretic approach to control multiplicities in a massive multiple comparison. The

discussion is in the context of a particular case study that highlights the features and limitations of such approaches.

We analyze data from a mouse phage display experiment. Details of the experiment and the data are discussed later.

The experiment is carried out to identify proteins that preferentially bind to specific tissues. Such knowledge could

in future be used to develop targeted therapies that deliver a drug to specific tissues and limit side effects (Kolonin et

al., 2006; Arap et al., 2006). The data yij are counts for a large number of tripeptide/tissue pairs, i = 1, . . . , n, across

stages j = 1, 2, 3. The tripeptides characterize different proteins. For each tripeptide/tissue pair the experiment reports

counts over three consecutive stages. The nature of the experiment is such that for proteins that preferentially bind

to some type of tissue the counts should be monotone increasing, because the experiment systematically augments

counts for preferentially binding protein/tissue pairs. The inference goal is to identify those tripeptide/tissue pairs for
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which the mean counts, under some suitable probability model, are monotone increasing across the three stages of the

experiment.

Let αi ∈ {0, 1}, i = 1, . . . , n, denote an indicator for truly increasing mean counts (αi = 1) or not (αi = 0) for

the i-th tripeptide/tissue pair. The problem becomes one of deciding about a large number, in our case n = 257, of

comparisons αi = 0 versus αi = 1. Let di ∈ {0, 1} denote an indicator for reporting the i-th pair as preferentially

binding. Letting y generically denote the observed data, the decisions are functions di(y). The number of falsely

reported pairs relative to the number of reported pairs is known as the false discovery proportion,

FDP =

∑n
i=1(1− αi)di

D + ε
.

Here D =
∑

di is the number of reported decisions, and ε > 0 is added to avoid zero division. In our implementation

we use ε = 0.1. Alternatively one could use ε = 0 and define FDP = 0 when D = 0. At this moment, FDP is neither

frequentist nor Bayesian. It is a summary of both, the data, implicitly through di(y), and the unknown parameters αi.

Under a Bayesian perspective one would now condition on y and marginalize with respect to the unknown parameters

to define the posterior expected false discovery rate. We run into some good luck when taking the posterior expectation

of FDP. The only unknown quantities appear in the numerator, leaving only a trivial expectation of a sum of binary

random variables. Let ai = E(αi | y) = p(αi = 1 | y) denote the posterior probability for the i-th comparison. Then

FDR = E(FDP | y) =
∑n

i=1(1− ai)di
D + ε

.

The posterior probabilities ai automatically adjust for multiplicities, in the sense that posterior probabilities are in-

creased (or decreased) when the many (or few) other comparisons seem to be significant. See, for example, Scott and

Berger (2006) and Scott and Berger (2010) for a discussion of how ai reflects a multiplicity adjustment. In short, if

the probability model includes a hierarchical prior with a parameter that can be interpreted as overall probability of a

positive comparison, αi = 1, i.e., as the overall level of noise in the multiple comparison, then posterior inference can

learn and adjust for multiplicities by adjusting inference for that parameter. However, Berry and Berry (2004) argue

that adjustment of the probabilities alone is only solving half of the problem. The posterior probabilities alone do not

yet tell the investigator which comparisons should be reported, in the case of our case study, these are the decisions

di, i = 1, . . . , n. It is reasonable to use rules that select all comparisons with posterior probability beyond a certain

threshold, i.e.,

d?i = I(ai > t), (1)

(Newton; 2004). The threshold can be chosen to control FDR at some desired level. This defines a straightforward

Bayesian counterpart to frequentist control of FDR as it is achieved in rules proposed by Benjamini and Hochberg

(1995) and others. The Bayesian equivalent to FDR control is the control of posterior expected FDR. See Bogdan

et al. (2008) for a recent comparative discussion of Bayesian approaches versus the Benjamini and Hochberg rule.

Alternatives to FDR control have been proposed, for example, in Storey (2007) who introduces the optimal discov-

ery procedure (ODP) that maximizes the number of true positives among all possible tests with the same or smaller
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number of false positive results. An interpretation of the ODP as an approximate Bayes rule is discussed in Guindani

et al. (2009), Cao et al. (2009) and Shahbaba and Johnson (2011).

In this article we focus on FDR control and apply the rule d?i in a particular case study. The application is chosen

to highlight the features and limitations of these rules. In León-Novelo et al. (2012) we report inference for a similar

biopanning experiment with much larger human data. The larger sample size makes it possible to consider non-

parametric Bayesian extensions.

In section 2 we introduce the case study and the data format. In section 3 we discuss the decision rule. This can be

done without reference to the particular probability model. Only after the discussion of the decision rule, in section 4,

will we briefly introduce a probability model. In section 5 we validate the proposed inference by carrying out a small

simulation study. Section 6 reports inference for the original data. Finally, section 7 concludes with a final discussion.

2 Data

A phage library is a collection of millions of phages, each displaying different peptide sequences. Bacteriophages,

for short phages, are viruses. They provide a convenient mechanism to study the preferential binding of peptides to

tissues, essentially because it is possible to experimentally manipulate the phages to display various peptides on the

surface of the viral particle. In a bio-panning experiment (Ehrlich et al.; 2000) the phage display library is exposed to

a target, in our case, injected in a (single) mouse. Later, tissue biopsies are obtained to recover phage from different

tissues. Phages with proteins that do not bind to the target tissue are washed away, leaving only those with proteins that

are binding specifically to the target. A critical limitation of the described experiment is the lack of any amplification.

Some peptides might only be reported with a very small count, making it very difficult to detect any preferential

binding. To mitigate this limitation Kolonin et al. (2006) proposed to perform multistage phage display experiments,

that is, to perform successive stages of panning (usually three or four) to enrich peptides that bind to the targets. Figure

1 illustrates the design. This procedure allows for the counts of peptides with low initial count to increase in every

stage and, therefore, it increases the chance of detecting their binding behavior.

We analyze data from such a bio-panning experiment carried out at M. D. Anderson Cancer Center. The data

come from three consecutive mice. At each stage a phage display peptide library was injected into a new animal, and

15 minutes later biopsies were collected from each of the target tissues and the peptide counts were recorded. For

the second and third stage the injected phage display peptide library was the already enriched phage display library

from the previous stage. The data reports counts for 4200 tripeptides and 6 tissues over 3 consecutive stages. For

the analysis we excluded tripeptide-tissue pairs for which the sum of their counts over the three stages was below 5,

leaving n = 257 distinct pairs. Figure 3 shows the data for these tripeptides/tissue pairs. The desired inference is

to identify tripeptide-tissue pairs with an increasing pattern across the three stages, i.e., to mark lines in the figure

that show a clear increasing trend from first to third stage. Some lines can be clearly classified as increasing, without

reference to any probability model. But for many lines the classification is not obvious. And importantly, some of

the seemingly obviously increasing counts might be simply due to chance. Even if none of the peptides were truly

preferentially binding to any tissue, among the large number of observed counts some would show an increase, just by
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random variation. The purpose of the proposed model-based approach is to define where to draw the line to define a

significant increase, and to adjust for the multiplicities.

Figure 1 Multi-stage phage display experiment with 3 stages. At each stage a phage display library is injected in a

new animal, using for stages 2 and 3 the already enriched phage display library from the previous experiment.

3 The Decision Problem

The proposed approach to select peptide/tissue pairs for reporting is independent of the underlying probability model.

It is based on a formalization of the inference problem as a decision problem with a specific utility function. The par-

ticular probability model only changes the distribution with respect to which we compute posterior expected utilities.

The only assumptions that we need in the upcoming discussion are that the model includes parameters αi ∈ {0, 1}
that can be interpreted as indicators for increasing mean counts of peptide/tissue pair i across the three stages. Recall

that ai = p(αi = 1 | y) denotes the posterior probabilities. We also assume that the model includes parameters

µi ∈ < that can be interpreted as the extent of the increase, with αi = I(µi > 0). We use mi = E(µi | y) for the

marginal posterior means.

We already introduced d? in (1) as a reasonable decision rule to select peptide/tissue pairs for reporting as prefer-

entially binding. Rule d? can be justified as control of the false discovery rate (FDR) (Newton, 2004) or, alternatively,

as an optimal Bayes rule. To define an optimal rule we need to augment the probability model to a decision problem

by introducing a utility function. Let θ and y generically denote all unknown parameters and all observable data. A

utility function u(d, θ, y) formalizes relative preferences for decision d under hypothetical outcomes y and under an

assumed truth θ. For example, in our application a utility function could be

u(d, θ, y) =
∑
i

diαi + k
∑
i

(1− di)(1− αi) (2)
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i.e., a linear combination of the number of true positive selections di and true negatives. For a given probability model,

data and utility function, the optimal Bayes rule is defined as the rule that maximizes u in expectation over all not

observed variable, and conditional on all observed variables,

dopt = argmax
d

E(u(d, θ, y) | y). (3)

It can be shown that the rule d? in (1) arises as Bayes rule under several utility functions that trade off false positive and

false negative counts, including the utility in (2) and others. See, for example, Müller et al. (2007), for a discussion.

Alternatively, d? can be derived as FDR control. Recall the posterior expected FDR,

FDR = E(FDR | y) = 1

D + ε

n∑
i=1

di(1− ai). (4)

Similarly, the posterior expected false negative rate (FNR) can be computed as FNR = E(FNR | y) =
∑

(1 −
di)ai/(n − D + ε). It is easily seen that the pairs selected by d? report the largest list for a given value of posterior

expected FDR.

Characterizing d? as the Bayes rule (3) under (2) highlights a critical limitation of the rule. The utility function

(2) weights every true positive, or equivalently, every false negative, equally. Recall that we assume that the model

includes a parameter µi that can be interpreted as the strength of a true comparison, i.e., in our application, as the

level of preferential binding of the i-th peptide/tissue pair. A true positive with small µi that is unlikely to lead to any

meaningful follow-up experiments is of far less interest to the investigator than a true positive with massively large µi.

Equivalently, a false negative, i.e., missing to report a truly preferentially binding tripeptide/tissue pair, is less critical

when the non-zero µi is small than when we miss to report a potentially interesting tripeptide/tissue pair with large

µi. These considerations lead us to consider a utility function that weights each pair proportional to µiαi. We use the

utility function

U(d, θ) =

n∑
i=1

diαiµi − k

n∑
i=1

(1− di)αiµi − cD. (5)

True positives and false negatives are weighted with a positive level of monotonicity. The last term puts a cost c on

each reported positive. Without that cost the trivial solution would be di = 1, for i = 1, . . . , n. Alternatively, the last

term can be interpreted as adding a cost for false positives. To see this, write cD as cD = c
∑

diαi + c
∑

di(1−αi),

and include the first term into the first component of (5). This clarifies the role of the term −cD. Without a cost for

false positives one would set di = 1 for all comparisons.

Let mi = E(µiαi | y). Straightforward algebra shows that the optimal rule is

diB = I(mi ≥ c/(k + 1)). (6)

4 Model

We use yi = (yi1, yi2, yi3) to denote the observed counts for tripeptide/tissue pair i across the three stages, for pairs

i = 1, . . . , n. Ji et al. (2007) used a model with a Poisson sampling model for yij , together with a mixture of normal
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prior for the parameters. They assumed that the Poisson rates were increasing linear across stages j. For example,

consider the pairs with oscillating increase and decrease across the three stages in Figure 2. Although the data for these

pairs shows a marked difference in slopes from stages 1 to 2 versus from stages 2 to 3, the parametric model forces

one common slope. The selection of the reported tripeptide/tissue pairs in Ji et al. (2007) was based on the posterior

posterior probability of that slope being positive. This is a concern when the imputed overall slope is positive like, for

example, in the pair marked by A in Figure 3. Outliers like pair A in Figure 3 can inappropriately drive the inference.

We use instead a model with different Poisson rates for all three stages. In anticipation of the inference goal we

parameterize the mean counts as (γi, γiβi, γiµi), allowing us to describe increasing mean counts by the simple event

1 < βi < µi. We write Poi(x | m) to indicate a Poisson distributed random variable x with mean m.

p(yi1, yi2, yi3 | γi, βi, µi) = Poi(yi1 | γi) Poi(yi2 | γiβi) Poi(yi3 | γiµi) (7)

for i = 1, . . . n. The parameter γi can be thought of as the expected mean count of the pair i across the three stages if

we were not enriching the tripeptide library at every stage.

We assume gamma random effects distributions for (γi, βi, µi). Let Ga(a, b) indicate a gamma distribution with

parameters a and b with mean a/b. We assume

γi ∼ Ga(sγ , sγ · tγ), βi ∼ Ga(sβ , sβtβ), µi ∼ Ga(sµ, sµtµ), (8)

independently across γi, βi, µi, and across i = 1, . . . , n. The model is completed with a prior on the hyperparameters

tγ ∼ Ga(tγ |atγ , btγ ), tβ ∼ Ga(tβ |atβ , btβ ), tµ ∼ Ga(tµ|atµ , btµ). (9)

Equations (7) through (9) define a sampling model and prior for a multistage phage display experiment. The

particular experiment that we analyze in this paper uses three animals for a single replicate of a multistage experiment

with three stages, corresponding to mean counts γi, βiγi and µiγi. If desired the model can easily be modified for

more stages or for repeat experiments. If multiple, say K, repeat experiments of the three-stage phage display were

available, we extend the model by introducing an additional layer in the hierarchy. Let yijk denote the count for

tripeptide/tissue pair i in stage j of the k-th repeat experiment. We replace (7) by

p(yi1k, yi2k, yi3k | γik, βi, µi) = Poi(yi1k | γik) Poi(yi2k | γikβi) Poi(yi3k | γikµi) (10)

with γik ∼ Ga(sγ , sγ · tγ) and unchanged priors on (βi, µi).

The conjugate nature of the Poisson sampling model and the gamma random effects distribution and hyperprior

simplify posterior inference. All parameters and random effects, including γi (or γik in model (10)), βi, µi, tγ , tβ and

tµ have closed form conditional posterior distributions conditional on currently imputed values for all other parameters

and latent variables. We implement straightforward Gibbs sampling Markov chain Monte Carlo simulation. Let θ

denote the unknown parameters in the sampling model for the observed counts y, and let θk denote the imputed

parameters after k iterations of a Markov chain Monte Carlo posterior simulation. Recall that αi was defined as

indicator for increasing mean counts, i.e., αi = I(µi > βi > 1) under model (7). With a Monte Carlo posterior
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sample (θ1i , . . . , θ
M
i ) of size M we estimate mi as

mi ≈
1

M

M∑
k=1

αk
i µ

k
i (11)

and then make the decision di
B . Posterior probabilities ai are similarly computed as ergodic averages 1

M

∑
αk
i .

5 A Simulation Study

We carried out a simulation study to validate the proposed approach. We generated n = 250 observations of the model

described in (7) through (9) with the following parameters

γk ∼ Ga(γ | sfγ , sfγtfγ), βk ∼ Ga(β | sfβ , s
f
βt

f
β) and µk ∼ Ga(µ | sfµ, sfµtfµ), (12)

independently. We set the hyper-parameters such that the expected value of γi and its variance are small and, besides,

βi and µi have both mean 8 and variances 30 and 120 respectively. The motivation for this choice is that γi is

interpreted as the mean of the counts through the three stages of the pair i if there were no enrichment. Since, initially,

the library contains a small amount of the particular tripeptide related with the pair i among the large number of

different tripeptides, we expect γi to be small. The parameters βi and µi represent the fold increase in mean counts

from the first stage to the second and third stages, respectively, due to the library enrichment. We allow these last

parameters to have large variances. The Gamma parameters were set to sfγ = 3.6, tfγ = 5/6, sfβ = 13/6, tfβ =

1/8, sfµ = 0.53 and tfµ = 0.125. For 94 out of the n = 250 simulated tripeptide/tissue pairs the simulation truth

included an increase µi > βi > 1, i.e., αi = 1.

The hyper-parameters of the model described in (7) through (9) were chosen taking into account the same consid-

erations and set to sγ = 0.05, atγ = 3, btγ = 1/2, sβ = sµ = 5/3, atβ = atµ = 6, btβ = btµ = 25. Saving every

10th iteration after a 10,000 iteration burn-in, a Monte Carlo posterior sample of size M = 10, 000 was saved.

Using the criterion (1), we selected the pairs such that, under the assumptions of our model, the expected false

discovery rate was FDR = 0.20. The implied expected false negative rate was FNR = 0.17. Under this rule, we

reported 57 pairs for increasing means across the three stages. Of these pairs, 52 truly did in the simulation truth, i.e.,

52 were true positives. The observed FDR and FNR were 0.09 and 0.22, respectively.

Alternative to FDR control we considered selection with respect to the utility function (5), with c/(k + 1) = 7.1.

We declare 57 pairs for increasing means. Of these, 53 actually exhibit this pattern in the simulation truth, i.e., 53

of the D = 57 reported pairs were true positives. The posterior expected FDR and FNR are FDR = 0.21 and

FNR = 0.17 respectively. Using the known simulation truth αi we evaluate the observed FDR and FNR as 0.07 and

0.21, respectively. The number of pairs reported by both methods was 53.

To further explore inference under the model we considered a variation of the simulation study with more informa-

tive data. We assume K = 3 repetitions of the same experiment are available. We simulated data for the additional

repeat experiments by generating γik ∼ Ga(sfγ , s
f
γt

f
γ), βi, i.i.d., and µi as in (12) and yijk according to the sampling

model in (10). For 99 out of n=250 simulated tripeptide pairs αi = 1. As before a Monte Carlo posterior sample of

size M = 10, 000 was saved. We implement inference under the extended model (10) with the same hyperparameter
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values as before. Aiming for a posterior expected FDR equal to 0.10, 90 pairs were declared as having increasing

means according to the rule (1). Under this rule, of these 90 pairs, 82 truly did in the simulation truth, i.e., 82 were

true positives. The observed FDR and FNR were 0.10 and 0.07, respectively. As expected the additional data of the

repeat experiment allows to report more pairs at lower FDR.

Alternatively we considered selection with respect to the utility function (5), with c/(k + 1) = 3.9. This value is

chosen for comparison, in order to declare 90 pairs for increasing means. Of these, 84 actually exhibit this pattern in

the simulation truth, i.e., 84 of the D = 90 reported pairs were true positives. The posterior expected FDR and FNR

are FDR = 0.11 and FNR = 0.07 respectively. Using the known simulation truth αi we evaluate the observed FDR

and FNR as 0.09 and 0.07, respectively. The number of pairs reported by both methods was 86.

In summary, the simulation indicates that for a data set of a sample size comparable to the earlier described phage

display data the proposed inference approach is appropriate to detect pairs with increasing mean counts. If there were

truly increasing trends for some peptide/tissue pairs, the proposed inference would likely include many in the report.

For increases of the size assumed in this simulation most interesting pairs are reported under a modestly stringent

control on FDR.

6 Results

6.1 Selecting Tripeptide/Tissue Pairs

In this section we present analysis and results by applying the proposed method to the phage display data described

in section 2. The parameter values in our proposed priors are elicited by consulting with the investigators. We fix

the hyper-parameters as in the simulation study. In particular, the hyperprior choices imply the following marginal

means and variances. The parameter γi is interpreted as the expected count if there were no enrichment of the library

of tripeptides at every stage. We assume that most of the phage counts are small in the initial state. Therefore, we set

the expected value for the first stage counts γi to 0.25 and its variance to 2.56. We do not assume any knowledge of

the mean increment between the first and the second stage (i.e., βi) and between the first and the third stage (i.e., µi).

We center these values around a mean of 5 and allow for a large variance equal to 25. This corresponds to the same

hyper-parameters as in the simulation study of Section 5.

We obtained a Monte Carlo posterior sample of size M = 10, 000, saving the values of the imputed parameters ev-

ery ten iterations after an initial burn-in of 10, 000 iterations. Similar to the simulation study, we evaluate convergence

diagnostics to ensure practical convergence of the MCMC simulation. We found that the Markov chains mixed very

well and found no evidence for lack of convergence.

Figure 2 reports the 25 pairs with highest values of mi, i.e the pairs chosen according to the optimal rule (6) with a

threshold value of c/(k+1) = 0.9. We notice that some of the selected pairs have relatively small posterior probability

of increasing means, ai, for example, ai = 0.3 for muscle/AGG. This is also reflected in the high FDR = 65% and

FNR = 14%.

Figure 3 highlights the 25 selected pairs. The utility function selects pairs with large increments across all three

stages. Additionally, the criterion selects some pairs with not strictly increasing counts, but with a substantial incre-
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Figure 2 Twenty five tripeptide/tissue pairs with highest estimated mi in (11). Each column represents a tripep-

tide/tissue pair. The tripeptides in different tissues are separated by dashed vertical lines. The lower section of the

plot shows the counts for the three stages: circle, triangle and cross. The middle section shows mi (triangles) with

corresponding vertical axis scaled between 0.9 and 1.4. . The upper part plots the posterior probability of increasing

means across the three stages, ai (bullets) with corresponding vertical axis scaled 0.3 to 1. The 3-letter codes refer to

distinct tripeptides, the two letter codes refer to different tissue types: bowel (BO), brain (BR), kidney (KI), muscle

(MU), pancreas (PA) and uterus (UT).

ment between some of the stages. This is in agreement with the underlying utility function (5). The selection also

reports some pairs that have small counts over the three stages, but include a large increment in some stage in com-

parison to the previous count. On the other hand, there are some other pairs that are not selected despite relatively

large and nondecreasing counts over all three stages. The model might be detecting that this event can happen because

of a high base-line count, and does not necessarily imply a strong binding behavior of the tripeptide to the respective

tissue.
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Figure 3 Observed sequence of tripeptide/tissue pair counts across the three stages. Each line connects the three

observed counts for one tripeptide/tissue pair. The 25 selected pairs under rule (6) are marked in black (solid line).

The non-selected pairs are shaded (dotted line). The threshold for (6) is 0.9. Counts are jittered for better display.

6.2 Multiplicity Adjustment

There is an apparent discrepancy between the posterior probabilities ai reported in Figure 2 and the seemingly obvi-

ously increasing counts for the same pairs in Figure 3 (marked as thick lines). In Figure 2, the bullets in the upper part

of the figure report the posterior probabilities ai = p(αi = 1 | y) for the selected pairs, with values ranging between

0.3 and 0.4. Comparing with the observed counts in Figure 3 these posterior probabilities seem low. The counts for the

selected pairs seem obviously increasing. Figure 4a explains the apparent discrepancy between the two plots. In short,

the low posterior probabilities are reasonable because of multiplicity control and high noise. For a quick plausibility

argument, focus on the pairs with decreasing counts in Figure 3. If we were to highlight the most strikingly decreasing
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trajectories, the selection might look almost as convincing as the currently highlighted increasing counts. However,

there is no good biologic reason for decreasing counts. The decreasing trajectories are only due to noise. Honest

inference for the increasing trajectories has to adjust for this selection effect and the reported probabilities appear a

reasonable summary of the data. Figure 4 shows more details. The plot shows for the top five chosen tripeptide/tissue

pairs the observed counts (piecewise linear curves), posterior means (bullets) and 95% credible intervals (vertical line

segments) for the Poisson means γi, γiβi, γiµi. Note the large posterior uncertainties, due to the small observed counts

(ranging from 0 to 4 only). More importantly, note how the posterior means shrink the counts towards an overall mean.

This is the posterior adjustment for multiplicities. The displayed pairs are the five pairs with some of the most extreme

observed increments across the three stages. The posterior shrinkage reflects an adjustment for the selection bias.

We investigated possible sensitivity with respect to the chosen prior model, fearing that the gamma random effects

distributions (8) might lead to excessive shrinkage. We considered a model with a non-parametric Dirichlet process

prior instead of (8) (results not shown). Posterior probabilities increase slightly, to around 0.45 for the chosen pairs.

But substantial shrinkage remains.

Figures 4bcd further elucidate the posterior adjustment for multiplicities. Recall that E(βi | tβ) = 1/tβ is the

mean increment in stage 2, and similarly 1/tµ is the mean increment in stage 3, and 1/tγ is the mean baseline count.

The figures compare the prior (dashed curves) and marginal posterior distributions (histograms) for the mean baseline

count 1/tγ and mean increments 1/tβ , 1/tµ. The prior was chosen to allow substantial increases. But a posteriori the

size of the increases is substantially smaller, with the posterior mean E(1/tβ | y) (increase in stage 2) even slightly

higher than E(1/tµ | y) (increase in stage 3).

Finally, Figure 5 shows posterior estimated E(βi, µi | y) for all tripeptide/tissue pairs. We notice clusters of points

in this figure. These are pairs with exactly matching triples of counts (yi1, yi2, yi3). For example there are nine pairs

with counts (0, 1, 3), and all these pairs are selected.

In summary, the experiment is simply not as informative as it might seem at first glance. It is still useful as a

screening experiment to identify possibly interesting tripeptide/tissue pairs that might warrant further investigation.

There is a good suggestion of a possible effect for the reported pairs.

7 Discussion

We have shown posterior inference in an application that requires decisions in the face of massive multiplicities.

Posterior inference improves in important ways over naive exploratory data analysis of the data. First, posterior

inference helps the investigator to decide where to draw the line in selecting pairs with increasing counts. Second,

considering the selection as a formal decision problem we recognized that the selection on the basis of FDR only might

be inappropriate and were lead to replace statistical significance by a criterion that is closer to biologic significance.

Third, posterior probabilities adjust for the massive multiplicity problem by reporting honest posterior probabilities

of true positives, i.e., posterior probabilities of the reported pairs being in fact preferentially binding. The adjusted

posterior probabilities are far lower than what one might estimate from a first inspection of the data.
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Figure 4 Panel (a) compares posterior means (bullets) and 95% credible intervals (vertical line segments) for the

mean counts (γi, γiβi, γiµi) with the observed counts (yi1, yi2, yi3) (piecewise linear curves) for the top five tripep-

tide/tissue pairs. Panels (b) through (d) compare the prior (dashed lines) and posterior distributions (histograms) for

the mean baseline count 1/tγ (b) and the increments 1/tβ (c) and 1/tµ (d). See the text for a comparison of prior and

posterior distributions on tβ and tµ.
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Figure 5 Scatterplot of the posterior means E(βi, µi | y). The 25 selected pairs are represented by “∗”. For reference

the figure includes a vertical line through 1 and the 45-degree line (dashed lines). The pairs with increasing posterior

mean counts fall in the upper right region defined by these lines.

Among the limitations of the proposed approach is the simple structure of the underlying probability model. For

a larger data set one could consider semi-parametric extensions to replace the parametric random effects model with

a random probability measure G with a nonparametric Bayesian prior on G. Also, the current model entirely ig-

nores dependence structure that might be induced by tissue-specific or protein-specific binding behavior. Increments

for tripeptide/tissue pairs that involve the same tissue or protein might be more reasonably represented as a priori

correlated.
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tics 8 (ed.), José Miguel Bernardo and James O. Berger and A. Phillip Dawid and Adrian F. M. Smith, Oxford

University Press, Oxford, pp. 349–370.

Newton, M. A. (2004). Detecting differential gene expression with a semiparametric hierarchical mixture method,

Biostatistics (Oxford) 5(2): 155–176.

Scott, J. G. and Berger, J. O. (2006). An exploration of aspects of Bayesian multiple testing, Journal of Statistical

Planning and Inference 136(7): 2144 – 2162.

Scott, J. G. and Berger, J. O. (2010). Bayes and empirical-Bayes multiplicity adjustment in the variable-selection

problem, Annals of Statistics 38(5): 2587–2619.

14



Shahbaba, B. and Johnson, W. (2011). A nonparametric approach for relevance determination, Technical report,

University of California Irvine.

Storey, J. (2007). The optimal discovery procedure: a new approach to simultaneous significance testing, Journal of

the Royal Statistical Society: Series B (Statistical Methodology) 69(3): 347–368.

15


