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quintana@mat.puc.cl

Peter Müller and Lorenzo Trippa

Department of Biostatistics, M. D. Anderson Cancer Center

{pmueller,ltrippa}@mdanderson.org

November 17, 2008

1



Abstract

We study the class of species sampling models (SSM). In particular, we investi-

gate the relation between the exchangeable partition probability function (EPPF)

and the predictive probability function (PPF). An EPPF defines a PPF, but the

converse is not necessarily true. In this paper, we show novel conditions for a PPF

to define an EPPF. We show that all possible PPF’s in a certain class have to define

(unnormalized) probabilities for cluster membership that are linear in cluster size.

We give a new necessary and sufficient condition for arbitrary PPFs to define an

EPPF. Finally we construct a new class of SSM’s with PPF that is not linear in

cluster size. 1

1 Introduction

We study the nature of predictive probability functions (PPF) that define species sampling

models (SSMs) (Pitman, 1996). Almost all known SSMs are characterized by a PPF that

is essentially a linear function of cluster size. We study conditions for more general PPFs

and propose a large class of such SSMs. The PPF for the new model class is not easily

described in closed form anymore. We provide instead a numerical algorithm that allows

easy posterior simulation.

By far, the most popular example of SSM is the Dirichlet process (Ferguson, 1973)

(DP). The status of the DP among nonparametric priors has been that of the normal

distribution among finite dimensional distributions. This is in part due to the marginal-

ization property: a random sequence sampled from a random probability measure with a

Dirichlet process prior forms marginally a Polya urn sequence. Markov chain Monte Carlo

1AMS 2000 subject classifications: Primary 62C10; secondary 62G20
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2



simulation based on the marginalization property has been the central computational tool

for the DP and facilitated a wide variety of applications. See MacEachern (1994), Esco-

bar and West (1995) and MacEachern and Müller (1998), to name just a few. In Pitman

(1995,1996), the species sampling prior (SSM) is proposed as a generalization of the DP.

SSMs can be used as flexible alternatives to the popular DP model in nonparametric

Bayesian inference. The SSM is defined as the directing random probability measure of

an exchangeable species sampling sequence which is defined as a generalization of the

Polya urn sequence. The SSM has a marginalization property similar to the DP. It there-

fore enjoys the same computational advantage as the DP while it defines a much wider

class of random probability measures. For its theoretical properties and applications, we

refer to Ishwaran and James (2003), Lijoi, Mena and Prünster (2005), Lijoi, Prünster and

Walker (2005), James (2006), Jang, Lee and Lee (2007), and Navarrete, Quintana and

Müller (2008).

Suppose (X1, X2, . . .) is a sequence of random variables. This sequence is typically

considered a random sample from a large population of species, i.e. Xi is the species of

the ith individual sampled. Let Mj be the index of the first observed individual of the

j-th species. We define M1 = 1 and Mj = inf{n : n > Mj−1, Xn /∈ {X1, . . . , Xn−1}} for

j = 2, 3, . . ., with the convention inf ∅ = ∞. Let X̃j = XMj
be the jth distinct species

to appear which is defined conditional on the event Mj < ∞. Let njn be the number of

times the jth species X̃j appears in (X1, . . . , Xn), i.e.,

njn =
n∑

m=1

I(Xm = X̃j), j = 1, 2, . . . and nn = (n1n, n2n, . . .) or (n1n, n2n, . . . , nkn,n),

where kn = kn(nn) = max{j : njn > 0} is the number of different species to appear

in (X1, . . . , Xn). The sets {i : Xi = X̃j} define clusters that partition the index set

{1, . . . , n}. When n is understood from the context we just write nj, n and k or k(n).

We now give three alternative characterizations of species sampling sequences (i) by the

predictive probability function, (ii) by the driving measure of the exchangeable sequence,

and (iii) by the underlying exchangeable exchangeable partition probability function.
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PPF: Let ν be a diffuse (or nonatomic) probability measure on X . An exchangeable

sequence (X1, X2, . . .) is called a species sampling sequence (SSS) if X1 ∼ ν and

Xn+1 | X1, . . . , Xn ∼
kn∑
j=1

pj(nn)δX̃j
+ pkn+1(nn)ν, (1)

where δx is the degenerate probability measure at x. The sequence of functions (p1, p2, . . .)

in (1) is called a sequence of predictive probability functions (PPF). It is defined on

N∗ = ∪∞k=1Nk, where N is the set of natural numbers, and satisfies the conditions

pj(n) ≥ 0 and
kn+1∑
j=1

pj(n) = 1, for all n ∈ N∗. (2)

Motivated by these properties of PPFs, we define a sequence of putative PPFs as a se-

quence of functions (pj, j = 1, 2, . . .) defined on N∗ which satisfies (2). Note that not all

putative PPFs are PPFs, because (2) does not guarantee exchangeability of (X1, X2, . . .)

in (1). An important feature in this defining property is that the weights pj(·) depend

on the data only indirectly through the cluster sizes nn. The widely used DP is a special

case of a species sampling model, with pj(nn) ∝ nj and pk+1(nn) ∝ α for a DP with total

mass parameter α. The use of pj in (1) implies

pj(n) = P(Xn+1 = X̃j | X1, . . . , Xn), j = 1, . . . , kn,

pkn+1(n) = P(Xn+1 /∈ {X1, . . . , Xn} | X1, . . . , Xn).

In words, pj is the probability of the next observation being the j-th species (falling into

the j-th cluster) and pk+1 is the probability of a new species (starting a new cluster).

An important point in the above definition is that the sequence Xi be exchangeable.

The implied sequence Xi is an SSS only if it is exchangeable. With only one exception

(Lijoi et al 2005), all known SSSs have a PPF of the form

pj(n) ∝

a+ bnj j = 1, . . . , kn,

θ(n) j = kn + 1.

(3)

In Section 2 we show that all PPFs of the form pj(n) = f(nj) must be of the form (3).

A corollary of these results is that a PPF pj that depends on nj other than linearly must

be of a more complicated form. We define such PPF’s in Section 3.
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SSM: Alternatively a SSS can be characterized by the following defining property. Let

δx denote a point mass at x. An exchangeable sequence of random variables (Xn) is a

species sampling sequence if and only if X1, X2, . . . | G is a random sample from G where

G =
∞∑
h=1

Phδmh
+Rν, (4)

for some sequence of positive random variables (Ph) and R such that 1−R =
∑∞

i=h Ph ≤ 1,

(mh) is a random sample from ν, and (Pi) and (mh) are independent. See Pitman (1996).

The result is an extension of the de Finetti’s Theorem and characterizes the directing

random probability measure of the species sample sequence. We call the directing random

probability measure G in equation (4) the SSM (or species sampling process) of the SSS

(Xi).

EPPF: A third alternative definition of an SSS and corresponding SSM is in terms

of the implied probability model on a sequence of nested random partitions. Let [n] =

{1, 2, . . . , n} and N be the set of natural numbers. A symmetric function p : N∗ → [0, 1]

satisfying

p(1) = 1,

p(n) =

k(n)+1∑
j=1

p(nj+), for all n ∈ N∗,
(5)

where nj+ is the same as n except that the jth element is increased by 1, is called an

exchangeable partition probability function (EPPF). An EPPF p(n) can be interpreted as

a joint probability model for the vector of cluster sizes n implied by the configuration of ties

in a sequence (X1, . . . , Xn). The following result can be found in Pitman (1995). The joint

probability p(n) of cluster sizes defined from the ties in an exchangeable sequence (Xn)

is an EPPF, i.e., satisfies (5). Conversely, for every symmetric function p : N∗ → [0, 1]

satisfying (5) there is an exchangeable sequence that gives rise to p.

We are now ready to pose the problem for the present paper. It is straightforward to

verify that any EPPF defines a PPF by

pj(n) =
p(nj+)

p(n)
, j = 1, 2, . . . , k + 1. (6)
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The converse is not true. Not every putative pj(n) defines an EPPF and thus an SSM and

SSS. For example, it is easy to show that pj(n) ∝ n2
j does not. In this paper we address

two related issues. We characterize all possible PPF’s with pj(n) ∝ f(nj) and we provide

a large new class of SSM’s with PPF’s that are not restricted to this format. Throughout

this paper we will use the term PPF for a sequence of probabilities pj(n) only if there is

a corresponding EPPF, i.e., pj(·) characterizes a SSM. Otherwise we refer to pj(·) as a

putative PPF.

The questions are important for nonparametric Bayesians data analysis. It is often

convenient or at least instructive to elicit features of the PPF rather than the joint EPPF.

Since the PPF is the crucial property for posterior computation, applied Bayesians tend

to focus on the PPF to generalize the species sampling prior for a specific problem. For

example, the PPF defined by a DP prior implies that the probability of joining an existing

cluster is proportional to the cluster size. This is not always desirable. Can the user

define an alternative PPF that allocates new observations to clusters with probabilities

proportional to alternative functions f(nj), and still define a SSS? In general, the simple

answer is no. We already mentioned that a PPF implies a SSS if and only if it arises

as in (6) from an EPPF. But this result is only a characterization. It is of little use for

data analysis and modeling since it is difficult to verify whether or not a given PPF arises

from an EPPF. In this paper we develop several novel conditions to address this gap.

First we give an easily verifiable necessary condition for an PPF to arise from an EPPF

(Lemma 1). We then exhaustively characterize PPFs of certain forms (Corollaries 1 and

2). Next we give a necessary and sufficient condition for a PPF to arise from an EPPF.

Finally we propose an alternative approach to define an SSM based on directly defining a

joint probability model for the Ph in (4). We develop a numerical algorithm to derive the

corresponding PPF. This facilitates the use of such models for nonparametric Bayesian

data analysis.
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2 When does a PPF imply an EPPF?

Suppose we are given a putative PPF (pj). Using equation (6), one can attempt to define

a function p : N∗ → [0, 1] inductively by the following mapping:

p(1) = 1

p(nj+) = pj(n)p(n), for all n ∈ N and j = 1, 2, . . . , k(n) + 1. (7)

In general equation (7) does not lead to a unique definition p(n) for each n ∈ N∗.

For example, let n = (2, 1). Then, p(2, 1) could be computed in two different ways as

p2(1)p1(1, 1) and p1(1)p2(2) which correspond to partitions {{1, 2}, {3}} and {{1, 3}, {2}},

respectively. If p2(1)p1(1, 1) 6= p1(1)p2(2), equation (7) does not define a function p : N∗ →

[0, 1]. The following lemma shows a condition for a PPF for which equation (7) leads to

a valid unique definition of p : N∗ → [0, 1].

Suppose Π = {A1, A2, . . . , Ak} is a partition of [n] in the order of appearance. For

1 ≤ m ≤ n, let Πm be the restriction of Π on [m]. Let n(Π) = (n1, . . . , nk) where ni is

the cardinality of Ai, Π(i) be the class index of element i in partition Π and Π([n]) =

(Π(1), . . . ,Π(n)).

Lemma 1. If and only if a putative PPF (pj) satisfies

pi(n)pj(n
i+) = pj(n)pi(n

j+), for all n ∈ N∗, i, j = 1, 2, . . . , k(n) + 1, (8)

then p defined by (7) is a function from N∗ to [0, 1], i.e., p in (7) is uniquely defined. Any

permutation Π([n]) leads to the same value.

Proof. Let n = (n1, . . . , nk) with
∑k

i=1 ni = n and Π and Ω be two partitions of [n] with

n(Π) = n(Ω) = n. Let pΠ(n) =
∏n−1

i=1 pΠ(i+1)(n(Πi)) and pΩ(n) =
∏n−1

i=1 pΩ(i+1)(n(Ωi)).

We need to show that pΠ(n) = pΩ(n). Without loss of generality, we can assume Π([n]) =

(1, . . . , 1, 2, . . . , 2, . . . , k, . . . , k) where i is repeated ni times for i = 1, . . . , k. Note that

Ω([n]) is just a certain permutation of Π([n]) and by a finite times of swapping two

consecutive elements in Ω([n]) one can change Ω([n]) to Π([n]). Thus, it suffices to

show when Ω([n]) is different from Π([n]) in only two consecutive positions. But, this is

guaranteed by condition (8).
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The opposite is easy to show. Assume pj defines a unique p(n). Consider (8) and

multiply on both sides with p(n). By assumption we get on either side p(ni+j+). This

completes the proof. �

Note that the conclusion of Lemma 1 is not (yet) that p is an EPPF. The missing

property is symmetry, i.e., invariance of p with respect to permutations of the group

indices j = 1, . . . , k(n). We have only established invariance with respect to permutations

of the subject indices i = 1, . . . , n. But the result is very useful. It is easily verified for any

given family pi. The following two straightforward corollaries exhaustively characterize

all possible PPFs that depend on group sizes in certain ways that are natural choices

when defining a probability model. Corollary 1 describes all possible PPFs that have

the probability of cluster memberships depend on a function of the cluster size only.

Corollary 2 generalizes slightly by allowing cluster membership probabilities to depend

on the cluster size and the number of clusters.

Corollary 1. Suppose a putative PPF (pj) satisfies (8) and

pj(n1, . . . , nk) ∝

 f(nj), j = 1, . . . , k

θ, j = k + 1,

where f(k) is a function from N to (0,∞) and θ > 0. Then, f(k) = ak for all k ∈ N for

some a > 0.

Proof. Note that for any n = (n1, . . . , nk) and i = 1, . . . , k + 1,

pi(n1, . . . , nk) =


f(ni)Pk

u=1 f(nu)+θ
, i = 1, . . . , k

θPk
u=1 f(nu)+θ

, i = k + 1.

Equation (8) with 1 ≤ i 6= j ≤ k implies

f(ni)∑k
u=1 f(nu) + θ

f(nj)∑k
u6=i f(nu) + f(ni + 1) + θ

=
f(nj)∑k

u=1 f(nu) + θ

f(ni)∑k
u6=j f(nu) + f(nj + 1) + θ

,

which in turn implies

f(ni) + f(nj + 1) = f(nj) + f(ni + 1)
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or

f(nj + 1)− f(nj) = f(ni + 1)− f(ni).

Since this holds for all ni and nj, we have for all k ∈ N

f(m) = am+ b, (9)

for some a, b ∈ R.

Now consider i = k + 1 and 1 ≤ j ≤ k. Then,

θ∑k
u=1 f(nu) + θ

f(nj)∑k
u=1 f(nu) + f(1) + θ

=
f(nj)∑k

u=1 f(nu) + θ

θ∑k
u6=j f(nu) + f(nj + 1) + θ

,

which implies f(nj) + f(1) = f(nj + 1) for all nj. This together with (9) implies b = 0.

Thus, we have f(k) = ak for some a > 0. �

Remark 1. For any a > 0, the putative PPF

pi(n1, . . . , nk) ∝

 ani, i = 1, . . . , k

θ, i = k + 1

defines a function p : N→ [0, 1]

p(n1, . . . , nk) =
θk−1an−k

[θ + 1]n−1;a

k∏
i=1

(ni − 1)!,

where [θ]k;a = θ(θ+a) . . . (θ+(k−1)a). Since this function is symmetric in its arguments,

it is an EPPF.

Corollary 1 characterizes all valid PPFs with pj = c f(nj) and pk+1 = c θ. The result

does not exclude possible valid PPFs with a probability for a new cluster pk+1 that depends

on n and k in different ways.

Corollary 2. Suppose a putative PPF (pj) satisfies (8) and

pj(n1, . . . , nk) ∝

 f(nj, k), j = 1, . . . , k

g(n, k), j = k + 1,

where f(m, k) and g(m, k) are functions from N2 to (0,∞). Then, the following hold:
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(a) f(m, k) = akm+ bk for some constants ak ≥ 0 and bk.

(b) If f(m, k) depends only on m, then f(m, k) = am+ b for some constants a ≥ 0 and

b.

(c) If f(m, k) depends only on m and g(m, k) depends only on k, then f(m, k) = am+b

and g(k) = g(1)− b(k − 1) for some constants a ≥ 0 and b < 0.

(d) If g(n, k) = θ > 0 and bk = 0, then ak = a for all k.

(e) If g(n, k) = g(k) and bk = 0, then g(k)ak+1 = g(k + 1)ak.

Proof. For all k and 1 ≤ i 6= j ≤ k, using the similar argument as in the proof of

Corollary 1, we get

f(ni + 1, k)− f(ni, k) = f(nj + 1, k)− f(nj, k).

Thus, we have f(m, k) = akm + bk for some ak, bk. If ak < 0, for sufficiently large m,

f(m, k) < 0. Thus, ak ≥ 0. This completes the proof of (a). (b) follows from (a). For

(c), consider (8) with i = k + 1 and 1 ≤ j ≤ k. With some algebra with (b), we get

g(k + 1)− g(k) = f(nj + 1)− f(nj)− f(1) = −b,

which implies (c). (d) and (e) follow from (8) with i = k + 1 and 1 ≤ j ≤ k. �

A prominent example of PPFs of the above form is the PPF implied by the Pitman-Yor

process (Pitman and Yor, 1997). Consider a Pitman-Yor process with discount, strength

and baseline parameters d, θ and G0. The PPF is as in (c) above with a = 1 and b = −d.

Corollaries 1 and 2 describe practically useful, but still restrictive forms of the PPF.

The characterization of valid PPFs can be further generalized. We now give a necessary

and sufficient conditions for the function p defined by (6) to be an EPPF, without any con-

straint on the form of pj (as were present in the earlier results). Suppose σ is a permutation

of [k] and n = (n1, . . . , nk) ∈ N∗. Define σ(n) = σ(n1, . . . , nk) = (nσ(1), nσ(2), . . . , nσ(k)).

In words, σ is a permutation of group labels and σ(n) is the corresponding permutation

of the group sizes n.
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Theorem 1. Suppose a putative PPF (pj) satisfies (8) as well as the following condition:

for all n = (n1, . . . , nk) ∈ N∗, and permutations σ on [k] and i = 1, . . . , k,

pi(n1, . . . , nk) = pσ−1(i)(nσ(1), nσ(2), . . . , nσ(k)). (10)

Then, p defined by (7) is an EPPF. The condition is also necessary. If p is an EPPF then

(7) and (10) hold.

Proof. Fix n = (n1, . . . , nk) ∈ N∗ and a permutation on [k], σ . We wish to show that

for the function p defined by (7)

p(n1, . . . , nk) = p(nσ(1), nσ(2), . . . , nσ(k)). (11)

Let Π be the partition of [n] with n(Π) = (n1, . . . , nk) such that

Π([n]) = (1, 2, . . . , k, 1, . . . , 1, 2, . . . , 2, . . . , k, . . . , k),

where after the first k elements 1, 2, . . . , k, i is repeated ni − 1 times for all i = 1, . . . , k.

Then,

p(n) =
k∏
i=2

pi(1(i−1))×
n−1∏
i=k

pΠ(i+1)(n(Πi)),

where 1(j) is the vector of length j whose elements are all 1’s.

Now consider a partition Ω of [n] with n(Ω) = (nσ(1), nσ(2), . . . , nσ(k)) such that

Ω([n]) = (1, 2, . . . , k, σ−1(1), . . . , σ−1(1), σ−1(2), . . . , σ−1(2), . . . , σ−1(k), . . . , σ−1(k)),

where after the first k elements 1, 2, . . . , k, σ−1(i) is repeated ni − 1 times for all i =

1, . . . , k. Then,

p(nσ(1), nσ(2), . . . , nσ(k)) =
k∏
i=2

pi(1(i−1))×
n−1∏
i=k

pΩ(i+1)(n(Ωi))

=
k∏
i=2

pi(1(i−1))×
n−1∏
i=k

pσ−1(Ω(i+1))(σ(n(Ωi)))

=
k∏
i=2

pi(1(i−1))×
n−1∏
i=k

pΠ(i+1)(n(Πi))

= p(n1, . . . , nk),
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where the second equality follows from (10). This completes the proof of the sufficient

direction.

Finally, we show that every EPPF p satisfies (7) and (10). By Lemma 1 every EPPF

satisfies (7). Condition (11) is true by the definition of an EPPF, which includes the

condition of symmetry in its arguments. And (11) implies (10). �

3 A New Class of SSM’s

3.1 The SSM(p,G0)

We now know that an SSM with a non-linear PPF, i.e., pj different from (3), can not be

described as a function pj ∝ f(nj) of nj only. It must be a more complicated function

f(n). Alternatively one could try to define an EPPF, and deduce the implied PPF. But

directly specifying a function p(n) such that it complies with (5) is difficult. As a third

alternative we propose to consider the weights P = {Ph, h = 1, 2, . . .} in (4). Figure 1a

illustrates p(P) for a DP model. The sharp decline is typical. A few large weights account

for most of the probability mass. Figure 1b shows an alternative probability model p(P).

There are many ways to define p(P). In this example, we defined, for h = 1, 2, . . .,

Ph ∝ eXh with Xh ∼ N(log(1− (1 + eb−ah)−1), σ2), (12)

where a, b, σ2 are positive constants. The S-shaped nature of the random distribution

(plotted against h) distinguishes it from the DP model. The first few weights are a priori

of equal size (before sorting). This is in contrast to the stochastic ordering of the DP and

the Pitman-Yor process in general. In panel (a) the prior mean of the sorted and unsorted

weights is almost indistinguishable, because the prior already implies strong stochastic

ordering of the weights.

We use SSM(p,G0) to denote a SSM defined by p(P) for the weights Ph and mh ∼ G0,

i.i.d. The attraction of defining the SSM through P is that by (4) any joint probability

model p(P) defines an SSS, with the additional assumption of P (R = 0) = 1, i.e. a proper

SSM (Pitman, 96). There are no additional constraints as for the PPF pj(n) or the EPPF

12
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(a) DP (M = 1, G0) (b) SSM(p,G0) (note the shorter y-scale).

Figure 1: The lines in each panel show 10 draws P ∼ p(P). The Ph are defined for integers

h only. We connect them to a line for presentation only. Also, for better presentation we

plot the sorted weights. The thick line shows the prior mean. For comparison, a dashed

thick line plots the prior mean of the unsorted weights. Under the DP the sorted and

unsorted prior means are almost indistinguishable.
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p(n). However, we still need the implied PPF to implement posterior inference, and also

to understand the implications of the defined process. Thus a practical use of this third

approach requires an algorithm to derive the PPF starting from an arbitrarily defined

p(P). In this section we develop a numerical algorithm that allows to find pj(·) for an

arbitrary p(P).

3.2 An Algorithm to Determine the PPF

Recall definition (4) for an SSM random probability measure. Assuming a proper SSM

we have

G =
∑

Phδmh
. (13)

Let P = (Ph, h ∈ N) denote the sequence of weights. Recall the notation X̃j for the j−th

unique value in the SSS {Xi, i = 1, . . . , n}. The algorithm requires indicators that match

the X̃j with the mh, i.e., that match the clusters in the partition with the point masses of

the SSM. Let πj = h if X̃j = mh, j = 1, . . . , kn. In the following discussion it is important

that the latent indicators πj are only introduced up to j = k. Conditional on mh, h ∈ N

and X̃j, j ∈ N the indicators πj are deterministic. After marginalizing w.r.t. the mh or

w.r.t. the X̃j the indicators become latent variables. Also, we use cluster membership

indicators si = j for Xi = X̃j to simplify notation. We use the convention of labeling

clusters in the order of appearance, i.e., s1 = 1 and si+1 ∈ {1, . . . , ki, ki + 1}.

In words the algorithm proceeds as follows. We write the desired PPF pj(n) as an

expectation of the conditional probabilities p(Xn+1 = X̃j | n, π,P) w.r.t. p(P, π | n).

Next we approximate the integral w.r.t. p(P, π | n) by a weighted Monte Carlo average

over samples (P(`), π(`)) ∼ p(P(`))p(π(`) | P(`)) from the prior. Note that the properties

of the random partition can be characterized by the distribution on P only. The point

masses mh are not required.

Using the cluster membership indicators si and the latent variables πj to map clusters
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with the point masses mh of the SSM we write the desired PPF as

pj(n) = p(sn+1 = j | s)

∝
∫
p(sn+1 = j | s,P, π) p(π,P | s) dπdP

∝
∫
p(sn+1 = j | s,P, π) p(s | π,P) p(π, P) dπdP

≈ 1

L

∑
p(sn+1 = j | s,P(`), π(`)) p(s | π(`),P(`)). (14)

The Monte Carlo sample (P(`), π(`)) is generated by first generating P(`) ∼ p(P) and then

p(π
(`)
j = h | P(`), π

(`)
1 , . . . , π

(`)
j−1) ∝ P

(`)
h , h 6∈ {π(`)

1 , . . . , π
(`)
j−1}. In actual implementation the

elements of P(`) and π(`) are only generated as and when needed.

The terms in the last line of (14) are easily evaluated. Let ik = min{i : ki = kn}

denote the founding element of the last cluster. We use the predictive cluster membership

probabilities

p(si+1 = j | s1, . . . , si,P, π) ∝


Pπj

, j = 1, . . . , ki

Pπj
, j = ki + 1 and i < ik

(1−
∑kn

j=1 Pπj
), j = kn + 1 and i ≥ ik.

(15)

The special case in the last line of (15) replaces Pπj
for j = ki + 1 and i ≥ ik, i.e.,

for all i with ki = kn. The special case arises because π (in the conditioning set) only

includes latent indicators πj for j = 1, . . . , kn. The (kn + 1)-st cluster can be mapped

to any of the remaining probability masses. Note that ki = kn for i ≥ ik. For the first

factor in the last line of (14) we use (15) with i = n. The second factor is evaluated as

p(s | π,P) =
∏n

i=2 p(si | s1, . . . , si−1,P, π).

Figure 2 shows an example. The figure plots p(si+1 = j | s) against cluster size nj.

In contrast, the DP Polya urn would imply a straight line. The plotted probabilities are

averaged w.r.t. all other features of s, in particular the multiplicity of cluster sizes etc.

The figure also shows probabilities (15) for specific simulations.
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(a) SSM(p, ·) (b) DP(M, ·)

Figure 2: Panel (a) shows the PPF (15) for a random probability measure G ∼

SSM(p,G0), with Ph as in (12). The thick line plots p(sn+1 = j | s) against nj, aver-

aging over multiple simulations. In each simulation we used the same simulation truth to

generate s, and stop simulation at n = 100. The 10 thin lines show pj(n) for 10 simula-

tions with different n. In contrast, under the DP Polya urn the curve is a straight line,

and there is no variation across simulations (panel b).
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3.3 Example

Many data analysis applications of the DP prior are based on DP mixtures of normals

as models for a random probability measure F . Applications include density estimation,

random effects distributions, generalizations of a probit link etc. We consider a stylized

example that is chosen to mimick typical features of such models.

In this section, we show posterior inference conditional on the data set (y1, y2, . . . , y9) =

(−4,−3,−2, . . . , 4). We use this data because it highlights the differences in posterior

inference between the SSM and DP priors. Assume yi ∼ F, i.i.d. with a semi-parametric

mixture of normal prior on F ,

yi
iid∼ F, with F (yi) =

∫
N(yi; µ, σ

2) dG(µ, σ2).

Here N(x; m, s2) denotes a normal distribution with moments (m, s2) for the random

variable x. We estimate F under two alternative priors,

G ∼ SSM(p,G0) or G ∼ DP(M,G0).

The distribution p of the weights for the SSM(p, ·) prior is defined as in (12). The total

mass parameter M in the DP prior is fixed to match the prior mean number of clusters,

E(kn), implied by (12). We find M = 2.83. Let Ga(x; a, b) indicate that the random

variable x has a Gamma distribution with mean a/b. For both prior models we use

G0(µ, 1/σ2) = N(x; µ0, c σ
2) Ga(1/σ2; a/2, b/2).

We fix µ0 = 0, c = 10 and a = b = 4. The model can alternatively be written as

yi ∼ N(µi, σ
2
i ) and Xi = (µi, 1/σ

2
i ) ∼ G.

Figures 3 and 4 show some inference summaries. Inference is based on Markov chain

Monte Carlo (MCMC) posterior simulation with 1000 iterations. Posterior simulation is

for (s1, . . . , sn) only The cluster-specific parameters (µ̃j, σ̃
2
j ), j = 1, . . . , kn are analytically

marginalized. One of the transition probabilities (Gibbs sampler) in the MCMC requires

the PPF under SSM(p,G0). It is evaluated using (14).
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Figure 3 shows the posterior estimated sampling distributions F . The figure highlights

a limitation of the DP prior. The single total mass parameter M controls both, the

number of clusters and the prior precision. A small value for M favors a small number

of clusters and implies low prior uncertainty. Large M implies the opposite. Also, we

already illustrated in Figure 1 that the DP prior implies stochastically ordered cluster

sizes, whereas the chosen SSM prior allows for many approximately equal size clusters.

The equally spaced grid data (y1, . . . , yn) implies a likelihood that favors a moderate

number of approximately equal size clusters. The posterior distribution on the random

partition is shown in Figure 4. Under the SSM prior the posterior supports a moderate

number of similar size clusters. In contrast, the DP prior shrinks the posterior towards a

few dominant clusters. Let n(1) ≡ maxj=1,...,kn nj denote the leading cluster size. Related

evidence can be seen in the marginal posterior distribution (not shown) of kn and n(1).

We find E(kn | data) = 6.4 under the SSM model versus E(kn | data) = 5.1 under the DP

prior. The marginal posterior modes are kn = 6 under the SSM prior and kn = 5 under

the DP prior. The marginal posterior modes for n(1) is n(1) = 2 under the SSM prior and

n(1) = 3. under the DP prior.
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Figure 3: Posterior estimated sampling model F = E(F | data) = p(yn+1 | data) under

the SSM(p,G0) prior and a comparable DP prior. The triangles along the x-axis show

the data.
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Figure 4: Co-clustering probabilities p(si = sj | data) under the two prior models.
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4 Discussion

We have reviewed alternative definitions of SSMs. We have shown that all SSMs with a

PPF of the form pj(n) = f(nj) needs to necessarily be a linear function of nj. In other

words, the PPF depends on the current data only through the cluster sizes. The number

of clusters and the multiplicities of cluster sizes do not change the prediction. This is an

excessively simplifying assumption for most data analysis problems.

We provide an alternative class of models that allow for more general PPF. One of the

important implications is the implied distribution of probability weights. The DP prior

favors a priori a partition with stochastically ordered cluster sizes. The proposed new

class allows any desired distribution of cluster sizes.

R code for an implementation of posterior inference under the proposed new model is

available at http://odin.mdacc.tmc.edu/∼pm.
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