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We describe the use of a successful combination of Bayesian inference and decision theory in a clinical

trial design. The trial involves three important decisions, adaptive dose allocation, optimal stopping of the

trial, and the optimal terminal decision upon stopping. For all three decisions we use a formal Bayesian

decision-theoretic approach.

The application demonstrates how Bayesian posterior inference and decision-theoretic approaches combine

to provide a coherent solution in a complex application. The main challenges are the need for a flexible

probability model for the unknown dose-response curve, a delayed response, the sequential nature of the

stopping decision, and the complex considerations involved in the terminal decision.

The main methodological features of the proposed solution are the use of decision theory to achieve

optimal learning about the unknown dose-response curve, an innovative grid-based approximation method

to implement backward induction for the sequential stopping decision, and a utility function for the terminal

decision that is based on a posterior predictive description of a future confirmatory trial.

1. Introduction

The planning of a clinical trial provides an ideal setup for the innovative combination of decision-

theoretic methods and statistical inference in often complex probability models. At the beginning

of any clinical trial the investigator should ask several important questions. Why am I designing

this clinical trial; what do I hope to accomplish? What are the possible rewards? What are the

possible negatives? What do I know that will help me in setting up the design? What responses

are likely to be reported? The first questions are all about actions and utilities, about making

decisions and evaluating the consequences. The last two questions are about unknown quantities

and probabilities. The relevant unknown quantities include the future data that will eventually

be observed, but are unknown at the time of planning the trial. Other quantities are unknown

parameters that are never observed. Uncertainties about these quantities are best described by

defining appropriate probability models. Probability models that are defined on observable data as
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well as parameters are known as Bayesian models. Augmenting the Bayesian model for data and

parameters with a formal description of the desired decision and consequences leads to a Bayesian

decision problem. Marrying probability with utility is the essence of statistical inference, the ȳın

yáng of statistics.

The basic ingredients of a Bayesian decision-theoretic setup are an action space A of possible

decisions d ∈ A, a probability model p(θ, y) for all relevant random variables, including parame-

ters θ and future data y, and a utility function u(d, θ, y) that quantifies relative preferences for

hypothetical future outcomes y and assumed parameter values θ under alternative decisions d.

The probability model is conveniently factored into a prior probability model p(θ) and a sampling

model p(y | θ). The probability model could be indexed by the decision. If this is the case we write

pd(θ, y).

It can be argued (Robert 2001) that a rational decision maker should choose an action in A

to maximize the expectation of u. The expectation is with respect to p, conditioning on all data

observed at the time of decision making, and marginalizing over all parameters and all future data.

In the absence of observed data, the optimal decision is formally described as

d∗ = argmax
d

∫
u(d, θ, y) p(θ, y) dθdy.

The integral is known as expected utility, U(d) =
∫

u(d, θ, y) p(θ, y) dθdy. This would be the rele-

vant setup, for example, when a (fixed) sample size decision is carried out before a trial is initiated.

If some data is known at the time of decision making, for example, results from a related historical

study, the integrating measure changes to p(θ, y | yo), conditioning on the available information.

When we wish to highlight the dependence on the historical data we write U(d, yo). The optimiza-

tion for d∗ is still carried out with respect to d only, of course, d∗ = argmaxd U(d, yo). The decision

maker can not change the historical data yo.

Often decisions are made in stages, with additional data observed between the decisions. This

complication often arises in clinical trials, for example when dose allocation decisions are made

after each cohort, or interim analyses are planned to allow early stopping of the trial when the

experimental therapy is clearly superior or clearly inferior to placebo. A clinical trial with one

interim look might consist of the following sequence of decisions and data. First we decide the

initial sample size d1. After observing the responses y1 for the first d1 patients, we make a decision

about the stage two sample size, d2. Finally we observe the responses y2 of the d2 patients in the

second stage. At the time of the second decision d2, the responses y1, and the earlier decision d1,
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are known and conditioned upon, d∗2(d1, y1) = argmax
∫

u(d, θ, y) p(θ, y2 | y1) dθdy2. The optimal

solution for d2 is substituted when evaluating the utility for the first stage decision

d∗1 = argmax
d1

∫
u(d1, d

∗
2(d1, y1), θ, y) p(θ, y)dθdy =

argmax
d1

∫
y1

max
d2

{∫
θ,y2

u(d1, d2, θ, y) p(θ, y2 | y1)dθdy2

}
p(y1)dy1. (1)

Problems with an alternating sequence of decisions and observations as in (1) are known as sequen-

tial decision problems. In general, the solution of sequential decision problems requires computa-

tionally intensive backward induction. See, for example, DeGroot (1970) for a description. One

important feature of the solution (1) is that strict adherence to the Bayesian decision-theoretic

framework requires that all decisions be made with respect to the same utility function. Different

decisions only require different choices of conditioning and marginalizations.

The need for formal decision-theoretic approaches for clinical trial planning was highlighted

as early as Anscombe (1963). More recent general discussions appear in Berry (1993, 2004 and

2006), and Spiegelhalter et al. (2004). In practice, however, unabashedly Bayesian decision-theoretic

approaches in clinical trial design are rare. Many Bayesian clinical trial designs use an approach

that combines posterior inference for the probability model with reasonable, but ad-hoc rules for

the desired decisions. A typical example is Thall et al. (1995) and Yin et al. (2006) who proceed

by evaluating posterior probabilities of clinically meaningful events. When these probabilities cross

predefined boundaries certain decisions are indicated. The boundaries are set at clinically mean-

ingful values. The design is validated by evaluating frequentist properties. If necessary, boundaries

are adjusted to achieve desired frequentist properties, while keeping the value of the boundary

within a clinically meaningful range. Such decision rules are referred to as partial Bayes (Berry and

Stangl, 1996) or proper Bayes (Spiegelhalter et al., 2004). They stop short of a decision theoretic

framework with utility functions and expected utility maximization.

The following challenges currently prevent Bayesian decision-theoretic approaches from being

implemented more widely. But all of them can be overcome in principle and can provide unique

opportunities. Prior elicitation for complex probability models, like the model described in this

article, poses a difficult challenge. Rather than seeing this challenge as a problem, we argue that

it provides an opportunity for early team-building and discussion of critical issues pertinent to

the drug development program. Another major challenge is the choice of the utility function. We

argue that careful consideration of the appropriate utility function provides a great opportunity to

involve health economic aspects early on and move the perspective from thinking about an isolated

project, to considering a longer term program, portfolio, or even society at large. A third important
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challenge involves computational difficulties in implementing expected utility maximization. Carlin

et al. (1998) and Brockwell and Kadane (2003) propose simuluation-based implementations of

sequential designs. Christen et al. (2004) and Berry and Kadane (1997) justify randomization in

a Bayesian decision-theoretic setup by appropriate considerations of the utility function. Stallard

(2003) and Rossell et al. (2005) discuss decision-theoretic Bayesian designs that consider multiple

studies simultaneously, i.e., designs for a drug development process involving multiple studies.

In this article, we describe a Bayesian decision-theoretic approach to an adaptive design for a

dose-finding trial. Central to the decision-theoretic approach is a utility function that formalizes the

relative benefits of alternative dose assignments and stopping decisions. For practical reasons we

choose to deal separately with the decisions related to dose assignment and to sequential stopping.

We first consider the dose allocation problem. We propose a utility function related to learning

about the unknown dose-response curve. Specifically, we use the posterior variance of some key

summary statistic of the dose-response curve. The suggested dose for the next patient in the trial

is the dose resulting in maximum expected utility. After each patient cohort we consider sequential

stopping. We decide whether or not the trial should continue to accrue patients. For this decision

we use a utility function that is built on a stylized description of a possibly following confirmatory

trial. The utility function includes a large reward for a statistically significant outcome at the end of

the future confirmatory trial, and a sampling cost for the future trial. The problem of choosing an

appropriate reward for an eventual significant outcome illustrates the challenge of utility elicitation.

For the study discussed in this article we fixed the reward based on elicitation with marketing

experts in the company.

The discussion in this article is motivated by a phase II dose-response finding study as conducted

in the context of a drug development program of a neuroprotectant for acute stroke. Background

of the motivating clinical trial, implementation details and simulation studies to evaluate the

performance of the proposed approach in that study are discussed in Berry et al. (2001). In this

article we focus on the underlying decision-theoretic model.

In Section 2, we describe the motivating application. Section 3 introduces the underlying prob-

ability model. In Section 4, we develop an approach for optimal dose allocation. In Section 5, we

solve the optimal stopping problem. Section 6 concludes with a final discussion.

2. Data

The motivating case study is a phase II dose-response finding study as conducted in the context

of a drug development program of a neuroprotectant for acute stroke. Clinical aspects of the
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Figure 1 Typical dose-response curves (diamonds) and simulated patient responses (circles). Note the large

signal to noise ratio.

study are described in Krams et al. (2003) and Grieve and Krams (2005). Zhang et al. (2003)

discuss preclinical background. The main interest in the study is on the unknown dose-response

curve f(z) = E(y|z) which gives the mean response y at a given dose z. The recorded response

is the change of Scandinavian Stroke Scale (SSS; Scandinavian Stroke Study Group, 1985) score

relative to baseline. Higher scores of y are desirable. Thus an effective drug will show an increasing

dose-response curve f(z). Figure 1 shows hypothetical dose-response curves f(z) together with

responses y of simulated patients in a simulation experiment. The levels of measurement variances

are plausible for the observed response variable.

Inference is complicated by the fact that final measurements of the desired clinical effect are

delayed for up to M = 13 weeks after treatment. But early responses are recorded in weeks 1

through M − 1. We facilitate the use of early responses by augmenting the probability model for

the dose-response curve with a longitudinal data model for repeated measurements in weeks 0

through M for each patient. The longitudinal data model will allow us to impute missing final

week M measurements as latent data. We will denote with yij the measurement on patient i in

week j, j = 0, . . . ,M . We will use yi without a second index to denote the final outcome yiM . An

important covariate is yi0, the baseline measurement on the clinical outcome of interest at the time

of admitting the patient into the study. We will use xi to generically denote the covariate vector.

In the current implementation the only covariate considered is baseline score, i.e., xi = yi0. Other

covariates that might be useful in a stroke trial include time delay between the onset of stroke

and the administration of therapy, stroke severity, and indicators for ischemic versus hemorrhagic

stroke and cortical versus subcortical stroke.
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3. Probability Model

The choice of the probability model for f(z) is guided by the following considerations. First, we

need a model that allows analytic posterior inference to facilitate efficient computation of expected

utilities when solving the decision problem. Second, we want a flexible model which includes a priori

a wide range of dose-response curves. Although an increasing curve with asymptotes is a priori

likely, the model should allow for possible lack of monotonicity and other irregular features. Lees et

al. (2003) provide evidence for non-monotonic response-curves of the experimental drug. Based on

these considerations we chose a normal dynamic linear model (NDLM). See, for example, West and

Harrison (1997) for a formal definition and discussion of NDLM’s. Denote with Zj, j = 1, . . . , J ,

the range of allowable doses, and with θj = f(Zj), j = 1, . . . , J , the vector of mean responses at

the allowable doses. The underlying idea is to formalize a model which locally, for z close to Zj,

fits a straight line y = θj + (z−Zj)δj, with level θj and slope δj. Let Yjk, k = 1, . . . , νj, denote the

k-th response observed at dose Zj, i.e., Yj = (Yjk, k = 1, . . . , νj) is the vector of responses yi of all

patients with assigned dose zi = Zj. Note the notational convention of using upper case symbols for

quantities Zj and Yj indexed by doses, and lower case yi and zi for quantities indexed by patients.

We use an NDLM that assumes Yjk = θj + εjk with the following prior probability model for

θ = (θ1, . . . , θJ). The prior specifies that the coefficients change between doses by extrapolating the

line and adding an evolution error, θj+1 = θj + δj(Zj −Zj−1)+ ej1 and δj+1 = δj + ej2. The residual

εjk and the evolution error ej = (ej1, ej2) are assumed normal distributed, εjk ∼N(0, V σ2) and ej ∼

N(0,W ). The pairs (θj, δj) are known as the state parameters of the NDLM. The model includes

the hyperparameters σ2, V , W and (θ0, δ0). We fix V and W and assume conjugate hyperpriors for

θ0, δ0 and σ2. The main attraction of the NDLM is the availability of a straightforward recursive

algorithm to compute the posterior distribution p(θ | Y1, . . . , YJ) and any other desired posterior

inference. The algorithm, known as Forward Filtering Backward Sampling (FFBS), is described

in Frühwirt-Schnatter (1994) and Carter and Kohn (1994). It can be shown that the posterior

distributions p(θj | Y1, . . . , yJ) and the posterior predictive distributions p(Yjk | Y−jk) are normal

distributions. Here Y−jk denotes the data with Yjk removed. West and Harrison (1997) give recursive

equations to exactly compute the moments of these posterior distributions.

A minor shortcoming of the NDLM in the present application is that the prior specification

does not naturally allow one to fix arbitrary desired prior moments for θj = f(Zj). Only E(θ0)

and V ar(θ0) are fixed. Prior expectation and variance for θj, j > 0, are then implied by the evo-

lution equation. To increase the number of prior parameters and allow for essentially arbitrary

prior moments E(θj) and V ar(θj) we augment the model by introducing dummy observations Ỹj,
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j = 0, . . . , J , with associated observation variance σ̃2
j . When going through the FFBS scheme for

posterior inference in the NDLM we proceed then as if Ỹj were data sampled from Ỹj ∼N(θj, σ̃
2
j ).

By appropriate choice of Ỹj and σ̃2
j we can achieve any prior moments for θj, subject only to tech-

nical constraints (for example, the marginal prior variances V ar(θj) can not be larger than those

implied without the dummy observations).

For many patients with missing final score yi we have earlier scores available, yij, j < M . From

historical data we expect yij, even for j as early as week 4, to be a good predictor of yi. We

extend the probability model with a longitudinal data model for (yij, j = 1, . . . ,M) to allow formal

imputation. We assume

yij|yi ∼N(mj + ajyi, s
2
j).

Conditional on yij we assume that yi and any earlier response yij′ , j′ < j, are conditionally inde-

pendent. This formalizes the notion that knowing the latest available score we should ignore earlier

responses. This implies

p(yij|yi,j+1, . . . , yiM) = p(yij|yi,j+1) = N(m′
j + a′jyi,j+1, s

′2
j ), (2)

with parameters m′, a′ and s′2 which are easily derived from m,a and s2.

In the following discussion we will use θ = (θ1, δ1, . . . , θJ , αJ , σ2,m1, a1, s
2
1, . . . ,mM , aM , s2

M) to

denote the vector of all unknown model parameters.

We have introduced the NDLM and (2) as a flexible and computationally convenient probability

model for the curve (θ1, . . . , θJ) and the observed outcomes yij. For the upcoming discussion, the

only important feature of the probability model is the availability of computationally easy and fast

algorithms to evaluate the posterior mean curve and related posterior probabilities. The proposed

approach remains equally valid for any other probability model. Examples of alternative probability

models that might be appropriate for other applications are non-linear regression models with a

shifted and scaled logistic mean function, spline models, and models with non-normal sampling

distributions.

4. Adaptive Dose Allocation

Based on the assumed probability model, we can now consider the problem of computing an optimal

dose for the next patients. Let N denote the number of currently accrued patients, and let K

denote the maximum number of patients who are recruited into the trial on one day. Let θ denote

the vector of all unknown model parameters. We shall compute the optimal doses to be assigned

to the next K patients, i = N +1, . . . ,N +K.
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The idea is to choose a dose Zj which in expectation will let us learn most about the dose-

response curve f(z, θ), where we write f(z, θ) instead of f(z) to indicate that the dose-response

curve is parameterized by θ. Of course a specific implementation requires a formal definition of

this vague notion. How should we formalize learning, and with respect to which probability model

is the expectation to be taken?

We formalize learning as reducing posterior variance in some key parameters of the dose-response

curve. In the current implementation we use as key parameter Z95θ, the ED95 of the dose-response

curve. Here the ED95 is defined as follows. For given parameters θ, let zo
θ denote the dose with

maximum response f(z, θ), i.e., f(zo
θ , θ) = max{f(Zj, θ), j = 0, . . . , J}. The ED95 is defined as

Z95θ = min{Zj : f(Zj, θ)≥ f(0, θ)+ 0.95 [f(zo
θ , θ)− f(0, θ)]}.

In words, the ED95 dose Z95θ is the minimum dose for which the dose response curve f(z, θ)

achieves at least 95% of the maximum possible improvement.

For a formal description of the optimal dose finding, let ỹ = (ỹ1, . . . , ỹK) = (yN+1, . . . , yN+K) =,

k = 1, . . . ,K denote the (still unknown) responses of the future patients with covariates x̃ =

(x̃1, . . . , x̃K) = (xN+1, . . . , xN+K). Let z̃k denote the – to be determined – dose for the future patient

N +k. Let D denote the already observed data on previous patients, including early responses for

patients with still missing final response, and let D̃ denote the missing final responses for previ-

ous patients. Let g(θ) denote the key parameter, for example g(θ) = Z95θ. We consider posterior

variance of g(θ) to define a utility function for the choice of the optimal dose z̃k:

uk(D,D̃, ỹ1, x̃1, . . . , ỹk, x̃k) =−
∫

[g(θ)− ḡ]2 p(θ |D,D̃, ỹ1, . . . , ỹk)dθ, (3)

where ḡ =
∫

g(θ)dp(θ | D,D̃, ỹ1, . . . , ỹk) denotes the posterior mean. Note that uk does not (yet)

depend on the action z̃k. The dependence on z̃k will be introduced when we take the expectation

with respect to the response ỹk. Matching the notation in (3) with the notation for the generic

Bayesian decision problem in the introduction, note that (D,D̃, ỹ1, x̃1, . . . , ỹk, x̃k) are all observable

random quantities, and uk does in this case not include the parameters θ or the action z̃k. In other

words, the definition of uk already includes the integration with respect to θ.

Of course we have to choose dosage for the future patients before observing (x̃, ỹ, D̃). Thus choice

of z̃k is based on averaging uk(·) with respect to the relevant posterior predictive distribution

on (D̃, ỹ1, . . . , ỹk), and with respect to a distribution p(x̃) on x̃1, . . . , x̃k−1, derived from historical

data. For x̃k we substitute covariates x0 of a “typical” patient, i.e., we compute the optimal dose

allocation for a typical patient. Reporting a patient-specific recommended dose that depends on
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the baseline covariate x̃k would create excessive logistical difficulties for the administration of this

multi-center trial.

Uk(Zj) =
∫

uk(D,D̃, ỹ1, . . . , ỹk, x̃1, . . . , x̃k) p(D̃, ỹ1, . . . , ỹk | z̃k = Zj, x̃,D) dD̃ p(x̃)dx̃dỹ

=
∫ ∫ ∫

uk(D,D̃, ỹ1, x̃1, . . . , ỹk, x̃k) p(ỹ1, . . . , ỹk | θ, z̃k = Zj, x̃,D) p(x̃1, . . . , x̃k−1) p(θ |D)

dx̃1 . . . dx̃k−1 dỹ1 . . . dỹk dθ. (4)

Here Uk(zj) is the expected utility of decision z̃k = Zj for a future patient, i.e., Uk(zj) expresses

how much deciding on dose Zj is worth to us. See below for the distribution p(x̃) and the assumed

doses for z̃1, . . . , z̃k−1. The solution to the optimal dose problem is then formalized as

z̃k = arg max
Zj

Uk(Zj).

In words, recommend the dose which in expectation maximizes the utility defined by expected

posterior variance on the key parameters g(θ). The expectation is with respect to responses yN+k

and covariates xN+h of future patients h = 1, . . . , k (except x̃k), and with respect to still missing

final responses yi of current patients, i = 1, . . . ,N .

For a practical implementation of the proposed optimal design approach it is critical that the

posterior variance integral in (3) and the expected utility integral (4) be available for efficient

evaluation, analytically or by numerical integration. One of the reasons for choosing the NDLM

model was that the posterior variance of the response at the ED95, the choice for g(θ) in our

implementation, can be evaluated analytically. See the appendix for a description of a detailed

algorithm based on the commonly used recursive equations to compute posterior moments for the

state parameters.

However, the expected utility integral (4) is not analytically tractable. Instead we used indepen-

dent Monte Carlo simulation. First we generate by computer simulation posterior samples from

p(θ | D), using the FFBS algorithm; and x̃h ∼ p(xh), h = 1, . . . , k − 1, using the empirical distri-

bution from a historical data base of patients treated for the same medical condition. For each

patient h = 1, . . . , k− 1 we then substitute the optimal dose z̃h that we found earlier by maximiz-

ing Uh, h = 1, . . . , k − 1. Based on these imputed values for θ and x̃h and the assigned doses z̃h,

h = 1, . . . , k− 1, we can generate the missing data values D̃ and ỹ1, . . . , ỹk−1. Given these simula-

tions we evaluate the posterior variance uk(D,D̃, ỹ1, x̃1, . . . , ỹk, x̃k). Repeating the same simulation

many times, say M times, we can replace the integral (4) by a sample average over the evaluated

posterior variances.
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Note that the criterion (4) is myopic in the sense that we only think ahead for the next K

patients. Also, the choice of the posterior variance of Z95θ as a formal definition of learning about

the curve is arbitrary. Possible alternatives are to consider posterior variance on more than one

key parameter, or some measure of information gain, like Kulback-Liebler divergence of prior and

posterior.

Figure 2a shows the data at a given time t of a simulated realization of the study. The solid bullets

indicate observed final responses yi. The open circles show imputed final responses for recently

enrolled patients who have not yet reported the final week 13 response. The diamonds show the

assumed simulation truth for the dose-response curve. The smooth curve shows the estimated fit,

using the NDLM model. The assumed true dose-response curve rises from f(0) = 10 to f(1.5) = 13.

The small signal to noise ratio is realistic for the reported response. Figure 2b shows the estimated

expected utility curve U(Zj), defined in (4), for the first patient of the next cohort (k = 1). The

circles show Monte Carlo estimates of U(Zj) as a function of dose. We carried out two sets of

Monte Carlo simulations to evaluate numerical uncertainty. Both are shown in the figure, and are

connected by a smooth curve fit through the approximated expected utilities. The optimal dose

allocation for the next patient is at placebo, z̃k = 0. The low utility for high doses reflects the fact

that the model has already learned about the flat nature of the dose-response curve in the high

dose region. Compare with the estimate shown in panel (a). Figure 2c shows a trace of assigned

doses over the course of the entire simulated trial. Note how the system correctly narrows in around

Zj = 1.0. The ED95 in the true dose-response curve that was used to simulate the data is at 1.0.

The utility function (3) focuses on the learning about the curve. In other applications, alternative

and additional goals might be of interest. For example, one might want to add a term related to

the outcomes ỹ1, . . . , ỹk. Technically, any expression that can be evaluated for an assumed set of

decisions, future outcomes and hypothetical parameter values could be used. We recommend that

the utility function should include a reward for learning about the unknown curve. However, the

focus need not be exclusively on this goal. Other terms can be added to the utilty function without

changing the proposed approach.

5. Optimal Stopping

At periodic time intervals, say once a week, we consider the decision of stopping the trial. Let Dt

denote all data available at time t. This includes the observed final responses for patients that

were enrolled more than M weeks before t, and available early responses yij for recently recruited

patients. At each time we make a decision about stopping the trial, dt ∈ {0,1,2}, with dt = 0
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Figure 2 Panel (a) shows the data at a given time in a simulated run of the study. The solid bullets show

observed final responses. The open circles are imputed final responses for patients recruited within the

last 13 weeks only. The diamonds show the assumed simulation truth. The smooth curves shows the

estimated dose-response curve using the NDLM and a spline smoother. The two curves are almost

indistinguishable. Panel (b) shows the expected utility function U(Zj) for the dose allocation for the

first patient, k = 1, in the next cohort. The circles are Monte Carlo estimates of the expected utility

integral (4). The line is a smooth curve fit through the Monte Carlo simulations. Two sets of Monte

Carlo simulations were used to evaluate numerical errors. Panel (c) shows the assigned doses in a

simulated complete trial. The figure shows assigned doses z̃ against weeks in a hypothetical trial with

patient responses simulated using an assumed nominal dose-response curve.

indicating termination with the recommendation to abandon the drug (stopping for futility), dt = 1

indicating continuation, and dt = 2 indicating termination with the recommendation to initiate a

confirmatory phase III study that compares the drug at the recommended dose against placebo

(stopping for efficacy). The recommended dose is the currently estimated ED95, E(Z95θ | Dt).

We assume that the confirmatory trial is set up as a three-arm trial comparing placebo (z = 0),

recommended dose z? = E(Z95θ | Dt), and z?? = E(Z50θ | Dt). The third arm is included as an

alternative dose. The data Dt to compute the posterior expectation is the data at the time of

stopping, i.e., when dt = 2. Let df? = f(z?, θ)− f(0, θ) denote the advantage over placebo at the

recommended dose, and let (mt, st) denote the posterior mean and standard deviation of df? (again,

conditional on Dt). We assume that at the conclusion of the pivotal trial a hypothesis test is carried

out to compare H0 : df? = 0 versus H1: df? > 0, using an approximately normal distributed z-

statistic to compare the two treatment arms z = 0 and z = z?. Let DP denote the observed responses

in the future pivotal trial, let nP denote the number of patients enrolled in the future pivotal trial.

We assume that the sample size nP for the pivotal trial is chosen to achieve 90% Bayesian power.

Bayesian power is calculated using a normal approximation to the posterior predictive distribution
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p(df? |Dt). See, for example, Spiegelhalter et al. (2004, chapter 6.5.3) for a discussion of Bayesian

power. Briefly, it is the probability of rejecting the null hypothesis, taking the expectation with

respect to (in this case) the joint posterior predictive distribution of df? and DP given Dt. We write

nP (Dt) to highlight the nature of nP as a function of the data. Alternative sample size calculations

could be used. In particular, one could use traditional (frequentist) power instead of Bayesian

power. Also, as usual in sample size arguments, the target of 90% is a reasonable but arbitrary

choice. Any alternative threshold could be used without changing the approach, if desired.

The evaluation of alternative actions dt requires us to compare the sampling cost for a possible

future pivotal trial, and weight it against the benefit of a significant outcome of the pivotal trial,

weighted by the appropriate probability of such an outcome. If we decide to continue, dt = 1,

then we need to consider the cost of one more patient cohort and the optimal decision in the

next period. A utility function that formalizes these aspects allows us to formally compare the

alternative actions. Let B(DP ) denote the event of finding at the conclusion of the pivotal trial a

statistically significant advantage over placebo, and let mP = E(df? |Dt,DP ) denote the estimated

effect at the recommended dose z?. Let K denote the expected number of accrued patients in the

time interval between t and t+1. We use the utility function

u(dt,Dt,DP ) =


0 if dt = 0 (abandon)
−c1K +E{maxd E[u(dt+1 = d,Dt+1,DP )]} if dt = 1 (continue)
−nP (Dt)c1 + c2I{B(DP )}mP − c0 if dt = 2 (phase III)

(5)

In words, if we decide to terminate the trial and abandon the experimental therapy, no further loss

or payoff occurs. If we decide to stop and move to the pivotal trial, we incur a fixed cost c0 to set

up the study, and the sampling cost (c1 per patient) for the pivotal trial. A major payoff (c2mP ) is

awarded if the trial concludes with a statistically significant effect of the new therapy. The payoff is

proportional to the estimated effect, with c2 specified as payoff per point advantage over placebo.

If we decide to continue, then we pay the sampling cost for the next cohort of patients, and get the

optimal reward in the next period. The outer expectation, in the second line of (5), is with respect

to all patients who are enrolled between time t and t + 1. The inner expectation is with respect

to all other future outcomes that are required in the evaluation of u(dt+1,Dt+1,DP ), including in

particular the future pivotal trial data.

The evaluation of the utility of continuation, dt = 1, requires the optimal solution for the stopping

decision dt+1 in the next period. This characterizes a sequential decision problem, as in (1), and

greatly complicates the solution of the decision problem. Maximizing the expected utility function

to find the optimal decision is a computationally challenging problem. A full solution involves
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the use of backward induction. See, for example, DeGroot (1970). Instead we use a simulation-

based approximate solution, based on the method proposed in Brockwell and Kadane (2003) and

Müller et al. (1999). First we restrict the decision dt(Dt) to depend on the data only indirectly

through (mt, st). Recall that (mt, st) were defined as the posterior moments of df?. We consider a

bivariate grid on (mt, st). Let U(dt = d,Dt) = E[u(dt = d,Dt,DP ) |Dt] denote the expected utility

for decision dt = d. We use one common approximation U(dt = d,Dt)≈UG(d,m,s) for all data Dt

with summaries (mt, st)≈ (m,s) with (m,s) being the closest values on the (mt, st) grid. We use

Monte Carlo integration to evaluate the expectation UG(d,m,s). Carlin et al. (1998) refer to this

strategy as forward simulation. There remains the problem that the evaluation of UG(d = 1,m, s)

requires to substitute the optimal decision for the next period. We solve this by using an iterative

algorithm. We start out with initial values for all fields UG(d,m,s), and continue to update the

currently imputed values UG(d,m,s) over the entire grid until the number of changes in one iteration

is below a certain threshold.

Figures 3 and 4 show some aspects of the described solution of the sequential decision problem.

Figure 3a shows nP , on a grid over (mt, st). In particular, we use one common value nP for all Dt

with (mt, st) within the same grid cell. Panel (b) of the same figure shows P (B |Dt), again on a

grid over (mt, st). Panel (c) shows U(dt = 2,Dt) = E(u(dt = 2,Dt,DP ) |Dt) as a linear combination

of the two previous figures. Again, we assume a common value U(dt = 2,Dt) = UG(dt = 2,m, s) for

all Dt with summaries (mt, st) in the same grid cell. The optimal rule is shown in Figure 4.
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(a) nP (Dt) on (m,s) grid (b) P (B |Dt) on (m,s) grid (c) UG(2,m, s) ≈U(dt = 2,Dt)
Figure 3 Sample size for a future pivotal study (panel a), posterior predictive probability for a statistically

significant outcome at the end of the pivotal study (panel b), and approximate expected utility for

dt = 2. All summaries are shown on a grid over (m,s).
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Figure 4 Optimal rule d∗(Dt) ≈ d∗
G(mt, st). Using the grid approximations for U(d,Dt), as shown in Figure 3,

the optimal rule is a function of the data Dt only indirectly through (mt, st). Regions in the (m,s) grid

with d∗
G(m,s) = 0, 1, and 2 are identified in white, gray and black, respectively.

Similar to (3), the choice of (5) is arbitrary. We believe that the proposed utility is a reasonable

stylized description of the drug developer’s goals. An alternative choice could, for example, include

the treatment success for future patients who will benefit from a successful drug development.

Or one could consider minor changes, such as replacing the estimated advantage over placebo

E(df? |Dt,DP ) by the true advantage over placebo, df?.

6. Discussion

We proposed a Bayesian decision-theoretic approach to a phase II dose-response finding study. For

the adaptive dose allocation we use a utility function which formalizes learning about the unknown

dose-response curve. We showed how the required computations become practically feasible when

using an appropriate probability model for the dose-response curve and, if necessary, for the longi-

tudinal model of delayed responses. For the sequential stopping decision we used a utility function

that involves a reward for a statistically significant outcome of a subsequent pivotal trial.

The discussed implementation includes several compromises with a strict decision-theoretic text-

book approach. First, we used several utility functions for the different decisions. In a strict

implementation of the paradigm of expected utility maximization one would state only one util-

ity function, and all decisions would be made with respect to that utility function. Also, in the

discussion of the adaptive dose allocation we ignored the sequential aspect of the problem.

Implementation of the proposed approach involved several, to some level arbitrary, decisions to

formalize general concepts. For example, many alternatives exist to the chosen specification for the



Author: Article Short Title
Article submitted to Decision Analysis; manuscript no. (Please, provide the mansucript number!) 15

utility function (3). Also, the probability model could be modified in several directions without

compromising the overall goal of achieving a computationally feasible framework for a decision-

theoretic optimal solution to the given design problem. For example, the NDLM could include

additional covariates (in the observation equation); we could choose alternative NDLM models

which specify different levels of smoothing; the longitudinal data model could include a regression

on the baseline score yi0, etc.

We discussed in some detail the two important decisions related to the dose allocation for the next

patients and optimal stopping to decide continuation of the trial. Carrying out the trial requires a

loop over alternating steps that invoke the two decisions. Practical implementation also needs an

elaborate system to make the data available for the continuous updating of posterior and posterior

predictive distributions. For multicenter trials this is not a trivial effort. We used an automated

fax system in the study underlying the discussion of this paper.

Before the trial is initiated the same system is used in a simulation mode, that is, with simulated

patient responses in place of actual data, to evaluate frequentist operating characteristics under

selected scenarios. Frequentist operating characteristics are summaries of the system performance

under a specific assumed true dose-response curve. Summaries are evaluated as averages over

repeated simulations of possible patient outcomes, keeping the assumed fixed truth. Such summaries

are traditional criteria to evaluate and critique clinical trial designs.

Bayesian clinical trial design is not a panacea. It only provides a framework for a principled

approach to the development of study designs. Actual implementation usually requires extensive

consideration and judgement to specify the sampling models, the prior distributions, the utility

functions, and finally to find practicable implementations. The rewards for the effort are mani-

fold. A good Bayesian study design will allow early stopping for futility and will indicate when

an expansion of the originally planned sample size is called for. The sequential stopping rule pre-

sented here is one way of achieving this flexibility. Another important advantage of a model based

Bayesian decision-theoretic approach is that there always is a gold standard, namely the Bayes

rule that is defined by the expected utility optimization. A practical implementation often calls

for approximations and simplifications. But these choices are always guided by the theoretically

optimal solution. One of the practically important aspects of Bayesian inference is the ease of

hiearchical modeling. Most studies include some notions of hierarchical structure. Examples are

different patient subpopulations defined by, e.g., biomarkers, treatment history, family history, or

treatment centers; different treatments; different treatment schedules; multiple cycles of treatment;
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different phases of drug development, etc. Such hierarchies are easily accomodated in a Bayesian

framework, but could pose challenging problems for a traditional design approach.
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Appendix A: Posterior Inference for Z95θ

The expected utility integral (4) requires evaluation of V ar(Z95θ |D). Here D generically indicates observed

data in the NDLM. We show how posterior inference on Z95θ can be derived based on standard FFBS

algorithm. Assume first that zo
θ , the dose with respect to which we define Z95θ, is fixed. The FFBS pro-

vides the joint multivariate normal posterior distribution of the mean dose-response curve (θ0, . . . , θJ) =

(f(Z0, θ), . . . , f(ZJ , θ)). Note that Pr(Zj ≥Z95θ |D,zo
θ) = Pr{θj ≥ f(0, θ) + 0.95 [f(zo

θ , θ)− f(0, θ)] | D,zo
θ},

which is readily available from the FFBS output. Having computed Pj = Pr(Zj ≥ Z95θ |D) we easily find

V ar(Z95θ |D,zo
θ). The desired V ar(Z95θ |D) follows from this as V ar(Z95θ |D) = E{V ar(Z95θ |D,zo

θ) |

D}+V ar{E(Z95θ |D,zo
θ) |D}.
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