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Abstract

We consider simulation-based methods for exploration and maximization of ex-
pected utility in sequential decision problems. We consider problems which require
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increasing number of possible trajectories in the backward induction. The artificially
reduced action space allows strategies to depend on the full history of earlier obser-
vations and decisions only indirectly through a low dimensional summary statistic.
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infinite-dimensional optimal decision rule. We illustrate the proposed approach with
an application to an optimal stopping problem in a clinical trial.
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1 Introduction

We consider simulation-based methods for exploration and maximization of
expected utility in sequential decision problems. Formally, decision making
under uncertainty is choosing an action d to maximize expected utility U(d) =∫

u(d, y, θ)pd(θ, y). Here, u(d, y, θ) is the utility function modeling preferences
over consequences and pd(θ, y) is a probability distribution of parameter θ and
observation y, possibly influenced by the chosen action d. See Chaloner and
Verdinelli (1995) and Verdinelli (1992) for reviews of Bayesian approaches to
decision problems traditionally known as optimal design. Spiegelhalter et al.
(1994), Berry (1993) and Berry and Stangl (1996) discuss general issues related
to the use of Bayesian optimal design methods in medical decision problems.

In many applications decisions are made sequentially. Let d = (d1, . . . , dT ),
and y = (y1, . . . , yT ). Assume that yt depends on d1, . . . , dt only and that
decision dt is made after decision dt−1 and after observing yt−1. Then dt =
dt(d1, . . . , dt−1, y1, . . . , yt−1) is a policy depending on the observed outcome
from the first t− 1 decision periods. Such sequential decision problems where
later decisions depend on earlier outcomes are notoriously difficult. A complete
solution requires, in general, backward induction involving an exponentially
increasing number of possible scenarios. See, for example, Berger (1985, chap-
ter 7). In problems with continuous outcomes the set of possible decision rules
is infinite dimensional. The proposed simulation methods overcome two im-
portant practical problems which hinder a routine application of backward
induction. These are related to the large number of scenarios that need to
be considered, and the evaluation of many possibly analytically intractable
expected utility integrals.

Many sequential decision problems involve stopping: yt are independent obser-
vations from a common density p(yt|θ), and one decides after each observation
whether to stop sampling and make an immediate final decision or take an-
other observation. Let yt = (y1, . . . , yt). It is convenient to write d = (τ, δ),
where τ = (τ1, τ2, . . .) is a stopping rule with τt(y

t) defining the probability of
stopping at time t, and δ(yt) specifies the final decision to be made if we stop
at time t. The final decision could be, for example, a hypothesis test, or the
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decision whether to abandon a drug’s development or seek regulatory permis-
sion to market it. Although sequential sampling is a convenient example to
bear in mind for the following development, the proposed methods apply more
generally. Our approach is appropriate for any decisions that do not influence
the probability model beyond identifying a subset of possible responses. Be-
yond this, there are no constraints on the probability model and the structure
of the utility function. The allowable decisions include those that terminate an
experiment at a particular time, like sequential sampling, and also those that
select from alternative probability models, e.g., probability models associated
with alternative treatments, as is the case, for example, in bandit problems
(Berry and Fristedt, 1985). Also, we consider only problems with a finite hori-
zon T . The underlying probability model is (almost) entirely unconstrained.
In particular, the model can involve random functions. This is useful, for ex-
ample, in the context of a dose finding trial with an unknown dose-response
curve.

In some problems the optimal policy d is characterized by a low dimensional
summary vector of control parameters. For example, Carlin et al. (1998) ad-
dress stopping a clinical trial at each of K interim analyses. In their setup they
show that the optimal Bayes sequential procedure can be characterized by a set
of 2K critical cutoffs for the posterior mean on a parameter which quantifies
the advantage of a treatment over placebo. The problem is reduced to choosing
these cutoffs. Similar simplifications apply whenever the loss function and the
posterior distribution depend on the current history only indirectly through a
low dimensional statistic. Lewis and Berry (1994) discuss optimal sequential
design under binomial sampling and a 0-1 type inference loss related to a hy-
pothesis test about the unknown success probabilities. In their setup, at any
given time the state of information is given by the number of patients treated
and the parameters of the beta posterior distribution on the binomial success
probabilities. Christen and Nakamura (2003) discuss sequential stopping rules
for species accumulation. They show that the optimal rule depends on the cur-
rent history only indirectly through a bivariate summary, namely the number
of species accumulated and the area under the accumulation curve. Hsiao and
Clayton (2001) show that truncated repeated significance boundaries (Lan
and DeMets, 1983) can be optimal from a Bayesian perspective. They assume
a decision problem related to testing a hypothesis about the drift parameter
in a Brownian motion with drift. Hsiao and Clayton demonstrate how under
an appropriate choice of loss function and sampling cost repeated significance
test boundaries can be optimal from a Bayesian perspective.

Alternative Bayesian approaches to optimal sequential design in medical deci-
sion problems are discussed, among other references, in Thall et al. (1995) who
define stopping criteria based on posterior probabilities of clinically meaningful
events. Similarly, Thall and Russell (1998) define a sequential procedure based
on monitoring posterior probabilities of certain events. Using reasonable ad-
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hoc rules based on these probabilities they define designs and evaluate their
frequentist performance. Vlachos and Gelfand (1998) follow a similar strat-
egy. Whitehead and Brunier (1995) and Whitehead and Williamson (1998)
use what is essentially a Bayesian m-step look-ahead procedure to find the
optimal dose to assign to the next m patients in a dose-finding study. Spiegel-
halter et al. (1994) propose a Bayesian approach to monitoring clinical trials
based on posterior intervals of the unknown treatment success parameters.
Depending on the location of the posterior interval relative to some critical
thresholds they propose to consider appropriate decisions.

For inference problems with a low dimensional sufficient statistic to summarize
the posterior distribution Brockwell and Kadane (2003) propose a grid-based
scheme for numerical optimal sequential design that is similar to the solution
proposed in this paper. They use one-step ahead forward simulation to eval-
uate expected utilities. They focus on problems with inference loss related to
parameter estimation, although the algorithm could be easily used for more
general loss functions.

The methods described in this paper could in theory also be applied for non-
sequential problems. However, we do not recommend to do so. Without the
complications arising from the sequential nature of the problem other methods
are more efficient and preferable. A discussion of simulation-based methods for
non-sequential decision problems appears in Müller et al. (2004) and Amzal
et al. (2003).

In Section 2 we introduce the motivating case study. In Section 3 we review
simulation based optimal design in non-sequential problems. In Section 4 we
introduce an approach for simulation based sequential design. Section 5 illus-
trates the approach in two examples. Section 6 is the concluding discussion.

2 Optimal Stopping in a Clinical Trial

The motivation for the proposed methods is a dose-finding clinical trial. Pa-
tients are recruited into the trial at participating centers. Based on the in-
formation available at each time period t, say once a week, we have to de-
cide (dt) whether to terminate the trial and abandon the drug’s development
(dt = D0), continue with dose-finding (dt = D1), or terminate the dose-finding
trial and switch to a pivotal trial (dt = D2). The decision is allowed to depend
on all data observed up to time t, and trivially depends on earlier decisions
d1, . . . , dt−1 by force of the fact that we only reach time t if all earlier decisions
were to continue.

Let T denote the maximum number of periods that the trial is allowed to
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last. Let p(yt, t = 1, 2, . . . T | θ) denote a probability model for the data,
parametrized by θ = (θ1, . . . , θp), but not dependent upon d except for the
fact that we only get to observe yt if we decided to continue the trial at least
until time t. The probability model includes a dose-response curve fθ(z) which
gives the mean response of a patient treated at dose z. The model is completed
with a prior probability distribution p(θ). For a given parameter vector θ, the
difference ∆ = fθ(z

∗) − fθ(0) corresponds to the advantage of the proposed
new treatment (at the eventually recommended dose z∗) over placebo (z = 0).
Let yt = (y1, y2, . . . , yt) denote the observations up to time t. The posterior
moments mt = E(∆ | yt) and s2

t = V ar(∆ | yt) feature prominently in the
proposed decision rule. All we require from the probability model is that we
can generate (approximate) Monte Carlo samples θ ∼ p(θ | yt) by appropriate
Markov chain Monte Carlo simulation. A detailed description of the proba-
bility model and the posterior simulation scheme is discussed in Berry et al.
(2001). The ability to accomodate a complex hierarchical probability model
and to use a utility function which involves non-linear summaries of the pos-
terior distribution is key to the successful implementation in that application.

We use a utility function to quantify the worth of consequences of possible
decisions. We assume a fixed sampling cost c1 per patient in the trial. The
payoff is c2 · ∆̄ if we decide to initiate a pivotal trial and the pivotal trial con-
cludes that the drug at the recommended dose is in fact an effective treatment.
There is no payoff if the drug’s development is stopped or if the pivotal trial
turns out to be negative. Here ∆̄ is the advantage of the new treatment over
placebo, as estimated in the pivotal trial at the finally recommended dose. For
example, c1 could be $10,000, and c2 could be $10,000,000. The decision to
continue the trial will depend on the tradeoff c1/c2 between sampling cost and
benefit.

Implementing optimal stopping using the simulation based method proposed
in this paper has substantial advantages. First, the number of patients in a
sequential trial will usually be substantially smaller than when using standard
designs. This has important economical and ethical implications. Second, the
proposed approach allows a seamless transition between the dose-finding and
confirmatory stages. This eliminates the time required to set up a second trial.
Details are described in Berry et al. (2001). A related report in an industry
journal (Farr-Jones, 2001) and an article by Malakoff (1999) highlight the
practical impact of the proposed design.

In this paper we discuss only the decision of terminating versus continuation.
Another important decision problem in a dose-finding clinical trial is the as-
signment of doses to patients assuming that the trial is continued. See Berry
et al. (2001) for a (non-sequential) approach to that decision problem.
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3 Optimal Design by Simulation

Consider a non-sequential decision problem in which

U(d∗) = maxd∈D U(d) =
∫

u(d, y, θ) dpd(θ, y). (1)

Decision d∗ is said to be optimal. The probability model pd(θ, y) = p(θ)pd(y|θ)
is typically given as a prior distribution p(θ) on the parameters and a sampling
distribution pd(y|θ) for the observations given the parameters. In inferential
problems, i.e., when the decision is related to inference about the unknown
parameter θ, utility is typically a function of (d, θ) only. Negative expected
utility −U(d) is known as Bayes risk of the decision rule d, and −U(d∗) is
called the Bayes risk.

Even if the expected utility integration (1) is analytically intractable, it easily
can be approximated by Monte Carlo simulation if the prior and likelihood are
both available for efficient random variate (r.v.) generation, and if the utility
function u(d, y, θ) can be evaluated for any given realization of the experiment
(θ, y). Efficient r.v. generation from the probability model is typically feasi-
ble. However, evaluating the utility function can be difficult. For example, if
we wish to choose covariates in a non-linear regression to minimize expected
posterior variances, then evaluation of u(d, y, θ) requires the posterior vari-
ance integral and this may well be analytically intractable and may require
numerical quadrature.

Assuming that r.v. generation is feasible, and that the utility function can
be evaluated pointwise, we can solve (1) by simulation as follows. Simulate
experiments (θi, yi) ∼ pd(θ, y), i = 1, . . . ,M , and evaluate for each simulated
experiment the observed utility ui = u(d, yi, θi). Use Û(d) = 1

M

∑
ui to approx-

imate U(d). Using the approximate evaluations Û(d) we could proceed with a
suitable maximization method to find the optimal design d∗ = arg max Û(d).
Carlin et al. (1998) use such Monte Carlo evaluation of expected utilities to
find optimal thresholds to define stopping times in a sequential sampling prob-
lem. An attractive feature of Monte Carlo integration is that the probability
model p(θ) is not restricted to any particular form; it needs only to be acces-
sible for sampling. In many problems decisions have to be made conditionally
on available data x, in which case p(θ) is replaced by p(θ|x). Wakefield (1994)
considers choosing an optimal dose in a pharmacokinetic study, using Markov
chain Monte Carlo simulation to generate from p(θ|x) where x is data available
from earlier patients.
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4 Constrained Backward Induction and Forward Simulation

4.1 Backward Induction

Solving a sequential design problem is complicated by the fact that later de-
cisions can depend on earlier outcomes. To simplify notation we write yt for
(y1, . . . , yt), and d t for (d1, . . . , dt). Assuming a finite horizon T , let

UT (dT , dT−1, yT−1) =
∫

u(dT , yT , θ) pd(yT |θ) dyT p(θ|yT−1) dθ (2)

denote the posterior expected utility of the decision dT at the end of the final
period, conditioning on IT = {dT−1, yT−1}, and marginalizing over the rele-
vant posterior and posterior predictive distribution on the unknown param-
eter vector θ and the final observation yT . Let d∗T = d∗T (dT−1, yT−1) denote
the posterior Bayes decision which maximizes this expected utility, and let
U∗

T (dT−1, yT−1) = UT (d∗T , dT−1, yT−1). Similarly

UT−1(dT−1, d
T−2, yT−2) =

∫
U∗

T (dT−1, yT−1) dpd T−1(yT−1|yT−2) (3)

is the expected utility at time T − 1, assuming decision d∗T in the final period.
The optimal decision d∗T−1 is the one that maximizes UT−1. In the special case
of sequential sampling we interpret (3) with the understanding that if dT−1

specifies stopping at time T − 1, then the data yT−1 is the empty set, and the
right hand side of (2) reduces to

∫
u(dT−1, yT−1, θ) p(θ | yT−1) dθ.

Extending analogous definitions to t = T −2, . . . , 1, we arrive at the definition
of the sequential decision problem as an alternating sequence of expectations
(to find Ut) and maximizations (to find d∗t ). We write Ex for an expected value
with respect to x. The relevant distributions are clear from definitions (2) and
(3).

U(d∗1) = maxd1 Ey1 maxd2 Ey2 . . . maxdT
EyT ,θ u(dT , yT , θ) =

= maxd1 Ey1 maxd2 Ey2 . . . maxdT
UT (dT , yT−1) =

= maxd1 Ey1 maxd2 Ey2 . . . U∗
T (dT−1, yT−1) =

. . . . . . . . . . . .

= maxd1 Ey1maxd2U2(d2, d1, y1) =

= maxd1 Ey1U
∗
2 (d1, y1) =

= maxd1 U1(d1).

(4)

A traditional solution of (4) starts by solving the maximization problem for
d∗T for all possible scenarios IT = {dT−1, yT−1}. Having a table of solutions
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for d∗T (IT ) and expected utilities U∗
T (IT ) we can proceed to solve the max-

imization problem for d∗T−1, substituting the appropriate values for d∗T and
U∗

T . Considering t = T − 2, . . . , 1, in sequence, we eventually find the optimal
initial decision d∗1.

There are at least two difficulties in implementing this backward induction
scheme. First, it can require a great many maximizations. Even if the out-
comes yt are discrete, or can be appropriately discretized, the problem re-
quires keeping track of solutions d∗t (d

t−1, yt−1) for an exponentially increas-
ing number of scenarios. Second, the solution involves calculating expected
utility integrals of the form (2) and (3), and these are typically analytically
intractable. The proposed approach resolves both difficulties. We use a strat-
egy of constrained decision spaces to reduce the number of possible scenarios
to something manageable, and we use forward simulation and Monte Carlo
integration to evaluate the required integrals.

4.2 Constrained Backward Induction

Although each decision dt could depend on all earlier data and decisions
It = {d t−1, yt−1}, typically only some critical summary of It is important.
For example, Carlin et al. (1998) show that in the specific setup they con-
sider the optimal decision depends on It only indirectly through the current
posterior mean E(θ | yt−1). Although such a simplification may not always
be possible, it motivates an approximate solution strategy. We replace dt(It),
which is allowed to depend on the full history at time t, by a reduced decision
space which allows the decision dt to depend on It only indirectly through some
low-dimensional summary St(It). Additionally, we consider a finite grid over
possible values of St. Effectively, this means considering a finite discrete St. To
simplify notation we will write St = j to indicate that the value of St falls in
the jth grid cell, with the understanding that the grid would typically be two-
or three-dimensional. Also, we shall write Ut(dt, j) for the approximate eval-
uation of Ut(dt, d

t−1, yt−1) if St(d
t−1, yt−1) = j. This notation is meaningful

since the numerical integration scheme, details of which are described below
in Section 4.3, depends on (d t−1, yt−1) only indirectly through St. For each cell
(t, j) on the grid, starting with t = T , we report the expected utility Ut(dt, j)
under alternative decisions dt, the optimal strategy d∗t (St = j) and its value
U∗

t (j) = Ut(d
∗
t , j). To compute Ut(·) we use the already tabulated values for

U∗
t+1(·) to evaluate (3). The number of grid cells (t, j) remains constant over t,

thus avoiding the progressively increasing number of possible scenarios which
we would have to consider in an unconstrained backward induction. The re-
maining problem is to evaluate the integral expressions (2) and (3) required
for Ut(·).
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A critical step in the proposed algorithm is the choice of the summary sum-
mary statistic St. Desireable characteristics of a good statistic are as follows.
The statistic should be a good approximation of a sufficient statistic for the
posterior predictive distribution. A good candidate for St are estimators for
parameters and functions of parameters that feature prominently in the utility
function. Finally, to be practicable the statistic should be low dimensional, say
at most three-dimensional.

4.3 Forward Simulation

To evaluate expected utility integrals we use forward simulation. Recall that
we only consider decisions related to stopping or choice among finitely many
probability models, and with a finite horizon T . Thus we can always gener-
ate all possibly observed data. Let p(y|θ) denote the appropriate probability
model. We generate M possible experiments ωi = (θi, y

T
i ), i = 1, . . . ,M , using

the prior probability model to generate θi ∼ p(θ), and p(y | θ) to generate
yT

i ∼ p(yT | θi). To simplify exposition, in the following description of forward
simulation we focus on the special case of sequential sampling only. In this
case p(y | θ) is the probability model which generates responses for all peri-
ods, t = 1, . . . , T , although for a specific decision we will only get to observe
a subset of these. Extension beyond sequential sampling to decisions which
select from alternative probability models is straightforward.

For each simulated experiment ωi we record Sti = St(d
t−1, yt−1

i ) at t =
1, . . . , T , assuming continuation decisions d. Each experiment corresponds to
a trajectory on a (t, St) grid. This is illustrated in Figure 1. Starting with the
last period, T , we can now approximately evaluate integrals Ut(·) as a sam-
ple average. For the j-th cell on the (T, St) grid, denote with ATj the subset
of indices i ∈ {1, . . . ,M} corresponding to trajectories which terminate in
that cell. Let MTj = |ATj| denote the number of indices in Aj. Replacing the
integral in (2) by a sample average we propose using

ÛT (dT , ST = j) =
1

MTj

∑
i∈ATj

u(dT , yT
i , θi) (5)

as an approximate evaluation of UT (dT , dT−1, yT−1) for all IT = {dT−1, yT−1}
with ST (IT ) falling within the jth cell. Note that at time T continuation is not
possible because of the finite horizon. Having recorded ÛT (dT , j) we can find
the optimal decision d∗T (ST = j) for each grid cell, and the corresponding value
Û∗

T (j) = ÛT (d∗T , j). From here we proceed similarly for periods t = T−1, . . . , 1.
At each step t we approximate the expected utility of continuation as

Ût(dt, St = j) =
1

Mtj

∑
i∈Atj

Û∗
t+1(St+1,i), (6)

9



Fig. 1. Trajectories of simulated experiments on a grid over (t, St). The trajectories
passing through grid cells (t = 10, 4 ≤ S < 5) are shown as solid lines. Trajectories
passing through (t = 6, 8 ≤ S < 9) are marked as unbroken grey lines. Other
simulations are shown as dashed grey lines. The simulations are a stylized example
for illustration.

with Atj defined as the subset of size Mtj of all simulated experiments whose
trajectories at time t pass through cell j, and dt being the action corresponding
to continuation. For any decision dt which involves stopping at time t we use

Ût(dt, St = j) =
1

Mtj

∑
i∈Atj

u(dt, y
t
i , θi). (7)

We can now find the optimal decision d∗t (St = j) for each grid cell, and the
corresponding expected utilities Û∗

t (j) = Ût(d
∗
t , j). At the end of the recursion,

at time t = 1, we are left with the optimal decision d∗1 for the first period. Note
that (6) defines the numerical evaluation of (3). Equation (7) provides an al-
ternative expression for the special case of sequential sampling and decisions
involving stopping at time t, i.e., decisions which do not require backward
induction. The selection of the subset Atj is the simulation equivalent of con-
ditioning on the history Sti. In other words, we implement conditioning on
Sti by prior simulation (forward simulation) followed by subset selection. A
practical problem occurs when Atj is empty, i.e., when we wish to condition
on a subset Sti = j, but do not find any (or not many) forward simulations
that pass through the selected cell. In that case we propose to re-launch the
forward simulation, using the posterior predictive distribution conditional on
the partially observed data instead of the prior predictive distribution. Con-
sider, for example, a trial that ends up with S3 = 0 in Figure 1. There are no
saved forward simulations i that match S3i = 0. We could now generate a new
set of forward simulations starting in St = 0.

A minor variation of the algorithm described here allows using a grid of St
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values only instead of on (t, St). The problem is that without t, there is no
natural start for the backward induction. This problem can be circumvented by
using an iterative scheme. Without loss of generality assume d = 0 corresponds
to continuation, and all other decisions involve stopping. Start out with an
initial guess Û o(d = 0, j), j = 1, . . . , J , for the expected utilities Ut(dt =
0, St = j) under continuation We will now record expected utilities on a grid
over St only. Therefore we drop the index t on Û o(d, j). To evaluate Û o(d, j),
d 6= 0, use an appropriate modification of (7):

Û o(d, j) =
1

Mj

∑
i∈Aj

u(d, yt
i , θi), d 6= 0,

where Aj is the set of all indices i with Sti = j for some t. Analogous to

the above discussion, let d∗o(j) = arg maxd Û o(d, j) and Û∗o(j) = Û o[d∗o(j), j]
denote the optimal decision and expected utility under d∗o. We use an iterative
scheme to update Û . Scan over all grid cells j = 1, . . . , J , and replace Û o(d =
0, j) by

Û1(d = 0, j) ≡ 1

Mj

∑
i∈Aj

Û∗o(St+1,i).

For d 6= 0 the estimates remain unchanged, Û1(d, j) = Û o(d, j). Again, set
d∗1(j) = arg maxd Û1(d, j) and define Û∗1(j) = Û1[d∗1(j), j]. Repeat the pro-
cess until updating leaves all decisions unchanged, i.e., d∗k(j) = d∗k−1(j), ∀j.

The approach is particularly attractive if St already includes some summary
that is closely related to t, for example posterior variance of some (function)
of parameter of interest. In this case, there is a natural sequence to update the
table. Proceeding from large to smaller posterior variances is almost equivalent
to the recursion over time. In practical implementations we expect around 10
iterations to suffice.

5 Examples

Example 1 (Berger 1985, chapter 7).

For illustration we consider an example with an analytically known optimal
decision. Assume yt ∼ Bern(θ), t = 1, . . . , T , is a sequential sample from a
Bernoulli distribution, with a prior distribution p(θ = 0.4) = p(θ = 0.6) = 0.5.
Consider the decision problem of choosing between H1: θ = 0.4 versus H2: θ =
0.6. After each observation, possible decisions dt are to terminate and decide
for H1 (dt = 1); terminate and decide for H2 (dt = 2); or to continue sampling
(dt = 0). Let N be the observed stopping time, i.e., N = min{t : dt 6= 0}. Let
d = (d1, . . . , dN) and assume a “0-K” decision loss and a linear sampling cost
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of c = 1 per observation.

−u(d, Y, θ) = N +

0 if (θ = 0.4, dN = 1) or (θ = 0.6, dN = 2)

K if (θ = 0.4, dN = 2) or (θ = 0.6, dN = 1)

Let xt =
∑t

i=1 yi. It can be shown (Berger 1985, chapter 7) that the Bayes
sequential decision rule dB stops sampling for the first t for which |2xt−t| = k,
where k is some integer depending on K. For example, for K = 100 the cutoff
is k = 4. Conditional on stopping at time τ , the optimal decision is the Bayes
decision rule given yτ , i.e., dτ = 2 if xt/t > 1/2.

Implementing the proposed simulation-based algorithm we represent the pat-
tern of information as the pair (t, pt = xt/t), and consider a horizon of T = 50
periods. Since the known optimal rule dB can be written in terms of (t, pt) we
expect the numerical solution to approximately reproduce dB. We simulated
M = 1000 experiments and proceeded as described in Section 4. Figure 2 plots
the estimated expected utilities under alternative decisions, on a (t, pt) grid.
We discretized pt on a grid of size 50, resulting in a 50 × 50 grid for (t, pt).
Evaluation of the expected utilities Ut(dt = 1, pt) and Ut(dt = 2, pt) requires no
backward induction. We use appropriate summaries of the forward simulation
as in (7) to evaluate them. In this case, since the expected utilities depend on
It only through the chosen summary statistic we could analytically evaluate
the expected utilities exactly. Evaluation of Ut(dt = 0, pt) is done by backward
induction, starting at t = T .

Figure 3 shows the corresponding estimated optimal decisions d∗t (t, pt). For
comparison we show the exact Bayes sequential decision rule. The differences
between the estimated and the analytical solution around the boundary are
due to numerical errors in evaluating the Monte Carlo averages for the ex-
pected utility evaluations. The differences close to N = 50 are due to the
upper bound on N in the simulation. Enforcing monotonicity of the decision
rule can remove almost all discrepancies. For a given value N , it is reasonable
to enforce that for increasing values of pt the decision rule change from d = 1
to d = 0 to d = 2. The clever use of such ad-hoc rules to adjust the estimated
optimal decision rule is important, but naturally highly problem-specific.

Example 2 (continued from Section 2.)

Let n1(d) denote the number of patients recruited in the dose-finding trial
under decision d. Let A = A(d) denote the event that d = (d1, . . . , dT ) calls
for a pivotal trial, i.e., dt = D2, for some t ≤ T . Let y = yt denote the data
observed in the dose-finding phase. Since the decision rule is sequential, A
depends on y implicitly through d. If a pivotal trial is initiated, let n2(d, y)
denote the number of patients included in the pivotal trial. The sample size of
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Fig. 2. Example 1. Estimated loss −Ût(dt = 1, pt) (left panel), −Ût(dt = 2, pt)
(center panel), −Ût(dt = 0, pt) (right panel).

Fig. 3. Example 1. Recommended actions d∗t (t, pt) (left panel), and analytic solution
d∗t (t, It) (right panel). The grey shades in the left panel indicate d∗t = 1, 2 and 0,
where d∗ = 1 is grey, d∗ = 2 is black, and d∗ = 0 is white. The plot in the right
panel indicates d∗t ∈ {1, 2} (black) versus d∗t = 0 (white).

the pivotal trial can depend on the data collected in the first phase, thus the
dependence on y. Let yp denote the data collected in the pivotal trial, and let
B = B(yp) denote the event that the pivotal trial concludes that the drug is
effective. The utility function discussed in Section 2 is formally defined as

u(d, y, yp, θ) =


−c1 n1(d) if Ac

−c1 {n1(d) + n2(d, y)} if A ∩Bc

−c1 {n1(d) + n2(d, y)}+ c2 ∆̄(y, yp) if A ∩B,

and u(d, y, θ) replaces ∆̄(y, yp) by p(B | y, θ, A) E(∆̄(y, yp) | y, θ, A, B) and
combines the last two cases. Here ∆̄(y, yp) denotes the posterior mean on the
advantage over placebo, ∆, conditional on the data at the completion of the
confirmatory phase. Besides the constant sampling cost, the utility function is
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Fig. 4. Example 2. Trajectories on a grid over the bivariate summary statistic
St = (mt, st). Consider, for example, the grid cell j highlighted with a bold outline,
around s = 0.82 and m = 9.0. To compute expected utilities Ûj we use an average
over all simulations which pass through this grid cell. The corresponding trajectories
are plotted in bold.

determined only by the advantage ∆ of treatment over placebo. This motivates
considering St to be a summary of the current inference on ∆. Let mt =
E(∆|yt), st = SD(∆|yt) denote posterior mean and standard deviation of
∆. We use St = (mt, st) as summary statistic in the constrained backward
induction. We simulated M = 1000 experiments and record St = (mt, st) for
each week t. Figure 4 shows some of the simulated trajectories. Based on this
forward simulation we computed Û(d, St = j) for j on a 20 × 20 grid over
St. Evaluating the expected utilities we included an additional step to reduce
numerical uncertainties due to finite simulations. Namely, after computing
estimates Ûj as described above, we fit a smooth surface Ũj through the pairs

(j, Ûj). The smooth fit Ũj formalizes “borrowing strength” across simulations
for neighboring grid cells, and allows for interpolating for grid cells with few or
no simulations (with the usual caveat about extrapolation beyond the range
of the data). This is shown in Figure 5.

6 Conclusion

We proposed a simulation-based method for solving sequential design prob-
lems. The method is broadly applicable in that only minimal constraints are
assumed for the probability model and the utility function. Essentially, the
method applies to any model which allows posterior Markov chain Monte
Carlo simulation. The only constraint on the utility function is that it must
be possible to evaluate utility u(d, y, θ) for a given simulated experiment (θ, y)

14



Fig. 5. Example 2. Expected utilities on the grid over St = (mt, st). The left panel
shows Û(d = D1, St = j). The center panel shows Û(d = D2, St = j). The right
panel shows d∗(j) with light grey indicating d∗(j) = D0, grey for d∗(j) = D1 and
black for d∗(j) = D2.

for any particular decision d. The space of decisions is limited to those that
do not influence the probability model beyond identifying a subset of possible
responses. The allowable decisions include those that terminate an experiment
at a particular time, and also those that select from alternative probability
models, e.g., probability models associated with alternative treatments.

The solution we propose is not exact; it is an approximation with the quality
of the approximation depending on the summary statistic St, the number M
of the forward simulations, and the extent of discretization when defining the
grid on St.

We developed the algorithm in the context of a sequential decision problem at
the conclusion of a dose-finding clinical trial, but the methods apply for any
problem which fits into the described framework.
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