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Abstract

Histone modifications (HMs) are an important post-translational feature. Different

types of HMs are believed to co-exist and co-regulate biological processes such as

gene expression, and therefore are intrinsically dependent on each other. We develop

inference for this complex biological network of HMs based on a graphical model using

ChIP-Seq data. A critical computational hurdle in the inference for the proposed

graphical model is the evaluation of a normalization constant in an autologistic model

that builds on the graphical model. We tackle the problem by Monte Carlo evaluation

of ratios of normalization constants. We carry out a set of simulations to validate

the proposed approach and to compare it with a standard approach using Bayesian

networks. We report inference on HM dependence in a case study with ChIP-Seq

data from a next-generation sequencing experiment. An important feature of our

approach is that we can report coherent probabilities and estimates related to any

event or parameter of interest, including honest uncertainties. Posterior inference is

obtained from a joint probability model on latent indicators for the recorded HMs. We

illustrate this in the motivating case study. An R package including an implementation

of posterior simulation in C is available.

KEYWORDS: Auto logistic regression; Epigenetics; Histone modifications; Markov chain

Monte Carlo; Markov random fields; Network model; Pathway dependence.

1 INTRODUCTION

Genes are expressed in eukaryotes through complex processes that involve multiple layers

of control. In addition to transcription factors that activate or repress their target genes

by binding to DNA response elements in the promoters of the genes, the eukaryotic cells

have additional layers of control of gene expression by chemical modifications to the his-

tones. Histones are small proteins; they form a core around which DNA is wrapped, forming
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nucleosomes. The combination of DNA and nucleosomes is called chromatin (Figure 1).

Nucleosomes are the basic in-vivo structural unit of DNA, similar to thread wrapped around

a stool. The thread is 147 base pairs of DNA and the stool consist of an octamer of the

four core histones (two sets of H2A, H2B, H3, and H4). While the role of H2A and H2B are

primarily structural, histones H3 and H4 play key roles in integrating a variety of signals

that regulate gene transcription. In particular, these two histone proteins have “tails” —

strings of amino acids that protrude outside of the basic nucleosomal structure and make

contact with DNA. Specific post-translational modifications of the amino acids in these hi-

stone tails (e.g. methylation, acetylation, phosphorylation, sumoylation, and ubiquination)

interact with other proteins to either relax the chromatin and promote transcription, or to

condense the chromatin into a closed form, which excludes transcription factors and result in

gene silencing. Majority of these histone modifications (HMs) are epigenetic, i.e. that they

are faithfully preserved in DNA replications. Thus daughter cells inherit the same patterns

of HMs that occur in the parent cell. A comprehensive list of histone modifications appears

at http://bioinfo.hrbmu.edu.cn/hhmd (Zhang et al., 2010).

The correlation of HMs with translational activity and occurrence of promoters has been

been well documented in Bernstein et al. (2002), Kim et al. (2005) and Roh et al. (2005).

For example, histone methylations influence gene activation and repression, and histone

acetylations are associated with a variety of functions such as gene activation, nucleosome

assembly, higher-order chromatin packing and interactions with non-histone proteins (Grant

and Berger, 1999). HMs also play an influential role in DNA damage repair and chromosomal

segregation. See Bergink et al. (2006) and Andersson et al. (2009) for details.

Biochemically, different enzymes can facilitate different modifications to histones in par-

allel, thus making it possible for the co-existence of multiple HMs. It is hypothesized that

the combination of different HMs dictates the status of a gene being permissible to tran-

scription (active) or not (repressed) (Strahl and Allis, 2000). The hypothesis is known as
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the histone code. Understanding the histone code is among the most exciting challenges

facing scientists in genomics research today.

Motivated by the histone code hypothesis, researchers have attempted to demarcate func-

tional domains over the genome by signatures of histone patterns (Liu et al., 2005; Pokholok

et al., 2005; Heintzman et al., 2009) and reported some interesting findings. However, a full

description of the histone code remains elusive until now. Attempts to decode the combina-

tion of HMs using quantitative methods have been primarily based on descriptive statistics,

and independent and HM-specific hypothesis tests. For example, Wang et al. (2008) tested

the enrichment of 39 individual HMs across the genome and identified a set of 17 HMs with

largest p-values based on a Poisson assumption for the HM counts from a ChIP-Seq experi-

ment. They used a Bonferroni correction to adjust for the multiple comparisons. They also

computed pairwise correlations between any two HMs and conjectured that the set of these

17 HMs serves as a backbone of the dynamics of the chromatin structure genome wide and

plays an important role in gene regulation.

Building on these results, we propose to apply graphical models to investigate the com-

plex dependence relationship of multiple HMs. To our knowledge, this is the first attempt

to characterize the interaction of the HMs based on probabilistic graphical models. These

models will allow us to identify the type and the strength of interaction of co-existing HMs.

More importantly, the models provide a full probabilistic description of any subgraph in-

volving subsets of HMs. For example, we present in Section 7.1 a highly connected graph

involving the 17 backbone HMs. Our results confirm the findings in Wang et al. (2008) and

elaborate their results with a full descriptions of all interactions. In addition, applying the

same graphical model to the full list of 39 HMs in Wang et al. we reveal new insights in the

entire HM-interaction map, thus making a step forward towards filling in part of the puzzle

of the histone code. For the 17 backbone HMs, we shall focus only on dependence across

HM’s, assuming independence across loci. In the full data analysis we will restrict inference
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to coding regions only, thus reducing possible spatial correlations.

In the next section we give a brief overview of a ChIP-Seq experiment that was carried out

to record the HMs, and we discuss the statistical challenges posed by such data. In Section 3

we introduce the concept of Markov random fields (MRF) as a tool for describing dependence.

Section 4 elaborates on the proposed probability model and Section 5 describes posterior

inference. In Section 6 we present a simulation experiment to evaluate the performance of

the proposed graphical model. In Section 7 we report results of the analysis of the ChIP-Seq

data. Finally, we conclude with a discussion in Section 8.

2 ChIP-SEQ DATA

We analyze data from a ChIP-seq experiment for CD4+ T lymphocytes (Barski et al., 2007;

Wang et al., 2008). ChIP-Seq is a new technique that combines chromatin immunoprecipita-

tion (ChIP) with massively parallel DNA sequencing (Seq) to identify genome-wide binding

patterns of DNA-associated proteins, such as HMs. In such an experiment, HM-specific an-

tibodies are used to preferentially extract the histones along with the DNA associated with

it. DNA that cross-linked with the specific HM is then randomly broken up, by sonication,

into pieces of several hundred nucleotides. The DNA pieces are used to generate short reads,

which are sequenced and mapped to the genome. At the end of a ChIP-Seq experiment, the

final measurement is the counts of DNA short reads that are mapped to specific loci on the

genome. A loci here refers to a DNA segment of around 2,000 base pairs. The larger the

DNA short reads j count, the higher the amount of the HM. By using 39 different antibod-

ies and carrying out a ChIP-Seq experiment for each HM, Barski et al. (2007) and Wang

et al. (2008) report HMs counts for m = 39 types of HMs including 18 acetylations, 20

methylations, and one special histone modification H2A.Z.

We keep all genomic locations with at least one enriched HM and drop all the windows
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where none of the 39 HMs are enriched. For the purpose of this screening, we use the

peak-calling program SICER (Zang et al. 2009) to decide enrichment. SICER parameters

were set to W SIZE=200, GAP SIZE=600, EVALUE=1000, FRAG SIZE=150. Also any adjacent

windows with unchanged SICER calls for the 39 HM counts were merged to create larger

regions.

The data is arranged in an m × n matrix Y = [yit] of counts. Each row, i = 1, . . . ,m

represents a type of HM, and each column, t = 1, . . . , n, represents a genomic location. That

is, the count yit reports the number of HMs of type i at location t. In Sections 7.1 and 7.2,

we analyze two datasets with m = 17 or 39, and n = 50, 000 or 33, 681, respectively.

These HM counts are results of upstream data preprocessing and normalization, which

are themselves important research topics (Kuan et al., 2011; Rozowsky et al., 2009), but are

beyond the scope of this discussion. In addition, our approach does not infer enrichment of

histone counts over the genome, which is another concurrent topic in ChIP-Seq data analysis

(e.g., Kuan et al, 2011). Our goal is to study the dependence of HMs as an inference problem

downstreams of data normalization and peak detection.

3 MODELING DEPENDENCE

3.1 Network Models

Traditional inference for dependence structure is often implemented through Bayesian net-

works based on Gaussian graphical models. However, there are important limitations that

make it impractical to use this approach for the desired analysis of the HM data. First, the

estimation of the reported network is based on a greedy heuristic search. In contrast, the

proposed approach allows for a full model-based and probabilistic inference. For example,

under the posterior inference we can provide error summaries such as false discovery rates
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for each estimated graph; we can also report full posterior inference on any subgraphs of

interest. Second, the multivariate normal sampling model implied in a Bayesian network is

not appropriate for the application to HM data. To be a useful tool for decoding the histone

code, the sampling model needs to include biologically meaningful indicators for presence

versus absence of an HM.

We propose an extension of traditional Bayesian network models to address these limita-

tions. In particular, we propose a model and inference approach that relies on data reduction

to a binary latent biological signal eit. This latent binary variable codes for presence versus

absence of HMs. The reduction to a binary underlying signal is similar to the probability of

expression (POE) model proposed in Parmigiani et al. (2002) for microarray data.

Our proposed model for HM’s is based on a Markov random field (MRF) graph. We

define an MRF graph as a pair G = (V,E), where V is a set of vertices and E is a set of

undirected edges. The vertices correspond to the variables, in our case HMs. The edges are

a subset of {{v1, v2}, v1 �= v2 ∈ V }. The absence of an edge {vi, vj} indicates conditional

independence of the corresponding variables. The Hammersley Clifford Theorem assures us

that any given conditional independence structure can be represented by an MRF. See Besag

(1974). The MRF consists of undirected edges. Note that the proposed approach does not

allow inference on directed graphs. For a review of some interesting alternative approaches

that allow inference about directed graphs see, for example, Kalisch and Bühlmann (2007).

3.2 Prior on Random Graphs

We start the model construction for the HM data with a prior p(G) on the dependence struc-

ture represented by an MRF graph G = (V,E). We propose two types of prior constructions

depending on the size of the graph. For smaller graphs, such as the network with the selected

m1 = 17 HMs described in Section 2, we define a prior p(G) as a uniform distribution over
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all possible subgraphs with vertex set V including all 17 HMs. The proposed uniform prior

is only practical for a moderately small number of vertices, say for m1 close to 15. For larger

graphs we find in simulation studies (not shown) that posterior inference can no longer reli-

ably recover the simulation truth without bringing prior information to bear. One exception

is highly sparse graphs. More importantly, when sufficient prior information based on biolog-

ical expertise or related data is available, we can construct informative priors and consider

inference for a larger number of vertices (Telesca et al., 2010). For example, let G0 = (V,E0)

denote an informed prior guess of the dependence structure. For applications with genomic

data this is often available as a consensus pathway for a non-pathological state. Then p(G)

could be based on the number of changes relative to G0, d(G,G0) = |E ∩ Ec
0| + |Ec ∩ E0|,

using for example, a geometric distribution in d. That is, we assume

p(G) ∝ ρd(G,G0). (3.1)

We shall refer to ρ as the concentration parameter in later discussions. The prior p(G) implies

that we place less weight on graphs which are more distant from G0. The weights reduce

exponentially with increasing values of d. Noting that p(G)/p(G0) = ρd(G,G0) is interpreted

as prior odds, one can easily calibrate ρ to reflect the prior confidence on G0. For example,

if one believes that the true graph should not differ from G0 by more than 20 edges, placing

ρ = 0.90 would result in a prior odds of 0.9020 ≈ 0.12 for a graph G with 20 flipped edges

relative to G0. Lastly, model (3.1) can be easily modified to incorporate weights on different

edges, as a reflection of the reliability of the prior knowledge. For example, edges that are

experimentally validated could have larger weights in computing the distance function d().
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4 MODELING HMs

4.1 A Prior Model for HM Indicators eit

The proposed model for HM data is constructed as a hierarchical model, starting with the

prior p(G). The remaining layers of the hierarchical model are introduced one at a time in

this section. For reference we state the overall model structure

p(G) p(β | G) p(e | β, G) p(y | e). (4.1)

The first factor is the prior on G. The next two factors define a prior on latent binary

indicators eit for presence of histone modifications. The last layer of the hierarchical model

is a sampling model for the observed counts conditional on the latent indicators.

We next discuss the specification of p(e | β, G). The problem of constructing a joint

probability distribution that honors the dependence structure of the graphical model is

greatly simplified by reducing the count data yit to an underlying binary latent variable. Let

eit ∈ {0, 1} denote an indicator for the presence of the i-th HM in the t-th genomic location.

There are two main motivations for introducing the latent indicators eit. First, the presence

of an HM is a biologically meaningful variable. Second, and at least equally importantly,

for the binary indicator variables eit it is possible to consider the family of all possible

probability models. For the moment we drop the sample index t in eit to simplify notation

while we discuss the joint probability model for the vector of indicators. Besag (1974) gives a

convenient parameterization of all possible joint probability models for a multivariate binary

vector e = (e1, . . . , em) ∈ {0, 1}m that obey a given conditional independence structure of
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an MRF. Given G and a set of coefficients β that index the models we have

p(e | β, G) = p(0 | β, G)

× exp

{∑
i

βiei +
∑
i<j

βijeiej +
∑
i<j<k

βijkeiejek + . . .+ β1···me1 · · · em
}
, (4.2)

known as the autologistic model. If desired, additional covariates could be included in the

first term. The conditional independence structure implied in G is realized by a restriction

on β.

For any set of vertices i1, . . . , ik that do not form a clique in the graph G the corresponding

interaction coefficient βi1···ik is zero. A clique is a set of vertices of which all pairs of vertices in

the set are connected, i.e., {i1, i2} ∈ E for all i1, i2 in the set. Henceforth, we use β to denote

the vector of all non-zero coefficients βi1...ik . The inclusion of G in the conditioning subset in

(4.2) highlights the dependence of the autologistic model on G. For our implementation we

assume that all interactions of order 3 and higher are zero. If desired, it is straightforward

to allow for some non-zero higher order interactions. But it is impractical to consider all

possible higher order interactions.

Caragea and Kaiser (2009) and Hughes et al. (2010) proposed a centered parameteriza-

tion of the autologistic model (4.2) and argued that the centered version improves mixing

of the Markov chain Monte Carlo (MCMC) posterior simulation and simplifies prior specifi-

cation. Simulation studies in our application confirmed their argument. Denote with νi the

log odds for ei that would be implied if the i-th vertex were to share no edges with other

vertices, νi = exp(βi)/{1 + exp(βi)}. Then redefine (4.2) as

p(et | β, G) = p(0 | β, G) · exp
{∑

i

βieit +
∑
i<j

βij(eit − νi)(ejt − νj)

}
. (4.3)

The model introduces no additional parameters. The centering νj = νj(βj) is a deterministic
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function of βj only. There is a one-to-one mapping between the coefficients of the un-

centered model (4.2) and the centered model (4.3). However, despite the matching notation,

the interpretation of βi and βij in the two models differs.

The discussion in Besag (1974) implicitly assumes a known conditional independence

structure G and known coefficients β. When considering β and G as unknown quantities

with a hierarchical prior, we run into an additional complication. Evaluation of the posterior

distribution, including the complete conditional posterior distribution for β, requires the

evaluation of the normalization constant p(0 | β, G) in (4.3), which in turn requires a sum

over all possible m-dimensional binary vectors et ∈ {0, 1}m. The problem is well known to be

computationally challenging. There are no easy solutions. Later, in Section 5 we will briefly

introduce an implementation of MCMC posterior simulation that avoids the evaluation of

this normalization constant and an alternative importance sampling approximation.

4.2 Sampling Model for [yit]

We complete the model construction with a sampling distribution for the observed counts

yit. Inspection of the empirical distributions (not shown) of the counts for individual HMs

we note several characteristic features. The histograms show typical peaks at low counts.

The tails of the histograms are heavier than those of Poisson distributions, indicating against

the use of a traditional Poisson sampling model for the count data. In addition, for some

HMs the empirical distribution includes a second mode in the tail. This leads us to propose

a mixture model, with a Poisson distribution for the low counts, say yit < ci, and a mixture

of two log normal distributions for moderate to high counts. We interpret the peak for low

counts as background when the HM is not present, i.e., under eit = 0. Let Poi(λ) denote a

Poisson distribution with mean λ and let LN(m, s2) denote a log normal distribution with

10



location and scale m and s. In summary

p(yit | eit) ∝

⎧⎪⎪⎨⎪⎪⎩
Poi(λi) I(yit < ci) eit = 0

πiLN(μ1i, σ
2
1i) + (1− πi)LN(μ2i, σ

2
2i) eit = 1

(4.4)

Let δx denote a point mass at x. The Poisson/log-normal mixture can be further replaced

by introducing a trinary indicator zit ∈ {−1, 0, 1} with p(zit | eit = 0) = δ−1(zit) and

p(zit | eit = 1) = πiδ0(zit) + (1− πi)δ1(zit). Then

p(yit | zit) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Poi(λi) I(yit < ci) zit = −1

LN(μ1i, σ
2
1i) zit = 0

LN(μ2i, σ
2
2i) zit = 1

(4.5)

The sampling model (4.4) assumes conditional independence of y given e across both,

HM’s i and loci t. This simplifying assumption reflects a preference for parsimony. We

verified the assumption by considering the empirical covariance matrix of residuals and found

no evidence of serious violation of the assumption, with all empirical correlations |rij| < 0.18.

We will use θ = (πi, μ1i, μ2i, σ1i, σ2i, λi, ci, i = 1, . . . ,m) to denote the complete parameter

vector for the sampling model. Let Ga(a, b) denote a gamma distribution with mean a/b,

and let Unif(A) denote a uniform distribution over the set A. We assume conditionally

conjugate priors

λi ∼ Ga(α, β), μki ∼ N(0, τ), p(σki) ∝ 1/σ2
ki, πi ∼ Beta(1, 1), ci ∼ Unif({1, 2, 3, 4, 5})

for i = 1, . . . ,m, k = 1, 2 and τ = 106.
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For later reference we state the joint model (4.1):

p(Y , z, e,θ, G) ∝ p(Y | z,θ)︸ ︷︷ ︸
(4.5)

p(z | e,θ) p(e | β, G)︸ ︷︷ ︸
(4.3)

p(θ) p(β | G) p(G) (4.6)

The first factor is the sampling model (4.5). The second factor defines the trinary indicators

zit given eit. The third factor is the autologistic model (4.3). The next factor p(θ) is the prior

on the HM-specific parameters θ in the sampling model. The penultimate factor p(β | G)

is the prior on the non-zero coefficients in the autologistic model. We assume independent

normal priors p(βij | G) ∝ N(0, 106). The last factor p(G) is the prior model of Section 3.2.

5 POSTERIOR INFERENCE

We carry out inference for model (4.6) using MCMC posterior simulation. We use [x | y, z]
to generically indicate a transition probability that modifies x and is indexed by currently

imputed values of y and z. The actual transition probability could, for example, be a Gibbs

sampling step, replacing the parameter x by a draw from the conditional posterior. MCMC

posterior simulation proceeds by iterating over the following transition probabilities:

[e | G,β,θ,Y ], [z | e,θ,Y ], [θ | z,Y ], [β | e, G], [G | β, e]

We start by generating eit from its complete conditional posterior. Let e−it = (eht, h �= i)

denote the indicators for all HMs other than i at genomic location t and let i ∼ j indicate

that i and j are neighbors in the graph G. We update eit, i = 1, . . . ,m, using

p(eit | e−it,β,θ,Y ) ∝ exp

{
βieit +

∑
j: j∼i

βij(eit − νi)(ejt − νj)

}
p(Y | e,θ),

and repeat the same loop for each t = 1, . . . , n.

12



Note that et, t = 1, . . . , n are conditionally independent given all other parameters and

Y . Following the update of e we can then generate new values for z by generating from

the complete conditional posterior p(zit | eit,θ,Y ). If eit = 0 the update is deterministic,

zit ≡ −1. If eit = 1 the update requires a Bernoulli draw for zit = 0 versus zit = 1. The

HM-specific parameters θ are updated by draws from the complete conditional posterior

distributions. The details of these transition probabilities are straightforward.

Updating β and G is complicated by the fact that the complete conditional posterior

distributions for β and G require evaluation of the normalization constant that appears in

(4.3), given by

c(β, G) = 1/p(0 | β, G) =
∑
e

exp

{∑
i

βiei +
∑
i<j

βij(ei − νi)(ej − νj)

}
. (5.1)

For later reference let K(et; β, G) = exp
{∑

i βieit +
∑

i<j βij(eit − νi)(ejt − νj)
}

denote

the exponential factor in (4.3), i.e., the un-normalized autologistic conditional probability

for et. The un-normalized joint probability model for e is thus given as K(e; β, G) =∏
t K(et; β, G).

The constant c(β, G) is computationally intractable for the massively repeated evaluation

that is needed in MCMC simulation. The problem of evaluating the normalization constant

in the autologistic model is known to be a challenging computational problem. See, for

example, Welsh (1990) for a detailed discussion.

We instead implemented an importance sampling estimate to approximate the ratio of the

normalizing constants c(β, G) required for the evaluation of the acceptance probabilities in

the Metropolis-Hastings steps to update β and G. The use of importance sampling estimates

to evaluate ratios of normalizing constants is discussed in Chen and Shao (1997), and more

recently reviewed in Chen, Shao and Ibrahim (2000, chapter 5). Atchade et al. (2008)

discusses the theoretical basis for these algorithms.
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We describe the method in detail . Recall that K(e; β, G) is the un-normalized au-

tologistic probability. Let pe(· | β, G) denote the autologistic prior model 4.3. We gen-

erate a proposal for a new β̃ by drawing from β̃i ∼ q(β̃i; βi) = N(βi, c). Next we sam-

ple k binary vectors vi ∼ pe(vi; β, G). By the law of large numbers, the sample average

RR = 1
k

∑k
i=1 K(vi; β̃, G)/K(vi;β, G) converges to

∫
K(z; β̃, G)

K(z;β, G)
pe(z;β, G)dz =

∫
K(z; β̃, G)

c(β;G)
dz =

c(β̃;G)

c(β;G)
.

We use RR to estimate the ratio of the normalization constants c(β̃, G)/c(β, G) that appears

in the Metropolis-Hastings acceptance ratio

p(β̃)K(e | β̃)c(β, G)

p(β)K(e | β)c(β̃, G)

for the proposal β̃.

In our experience, the importance sampling is fast and sufficiently accurate with an

importance sampling size of k = 5, 000.

We similarly construct another transition probability to update G in a Metropolis-

Hastings step. An added complication is that a change in G requires to add or remove

coefficients in the autologistic model (4.3), thus changing its dimension. Consequently, a

transition probability for G requires trans-dimensional MCMC. We use a reversible jump

(RJ)-MCMC (Green, 1995). We construct a candidate G̃ by adding or deleting an edge from

G.
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6 SIMULATION STUDY

6.1 Uniform Prior on a Small Graph

We evaluate the proposed model and inference approach with 10 simulated data sets of

hypothetical observations of 10 HMs at n = 8, 000 genomic locations. For each of the 10

simulations, we first generated a simulation truth G1 by setting up vertices for m = 10

variables. For each pair of vertices {i, j} we included an edge between them with probability

0.25. In other words, the simulation truth is generated from a uniform prior for G, uniform

over all possible G with 10 vertices for a given graph size |E|, and a binomial prior on |E|
determined by the probability 0.25 of including each possible edge. For each imputed edge

{i, j} we generated values of βij in (4.3) using a uniform prior over three possible values, βij ∼
Unif({log(2), log(4),− log(2)}. These values were chosen arbitrarily. Autologistic intercepts

βi in (4.3) were generated as βi ∼ N(0, .3). We then generated e from the autologistic prior

model (4.3) using a Gibbs sampler simulation with 8, 000 iterations. We kept the last draw

as the simulation truth for e. Conditional on e we then imputed hypothetical HM counts

Y from (4.4), using the following HM-specific parameters θ. We fixed σ1i = σ2i = .2 and

generated μ1i ∼ N(log(4), .25) and μ2i ∼ N(log(5), .25). The thresholds ci were fixed at 3.

The Poisson rates were generated as λi ∼ N(1, .1).

For each simulated data set we implemented the described posterior MCMC simulation to

compute posterior summaries. The posterior estimates are computed using MCMC posterior

simulation with an initial burn-in of 7,000 iterations and a total of 10,000 iterations for all 10

simulations. We compared inference for G under the proposed model versus the simulation

truth for each of the 10 simulated datasets. We took the k = 3, 000 post burn-in MCMC

samples and computed the posterior inclusion probability P̂ij for each possible edge {i, j} in
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the graph, which is defined as

P̂ij =
1

k

∑
I({i, j} ∈ E),

substituting the edge set E of the imputed graph for each iteration of the MCMC. We then

estimate the graph G by including all edges with P̂ij > 0.5. This estimate is also known as

the median inclusion probability model (Barbieri and Berger, 2004). For 5 of the simulations

the posterior estimated graph exactly matched the simulation truth, and for the remaining

5 simulations they differed by up to two edges.

Next, we report parameter estimates. Let βo denote the simulation truth, including

βo
ij = 0 for edges that are not included in the simulation truth for G. Let β

(s)
= E(β | Y (s))

denote the posterior mean for the autologistic coefficients conditional on the s-th simulated

data set Y (s). Here Y (s) are the simulated HM counts, for s = 1, . . . , 10. In the posterior

mean we evaluate βij as βij = 0 when the corresponding edge is missing in the imputed graph

G. We calculated the mean squared errors (MSE) as MSEij = (1/10)
∑10

s=1

(
β
(s)

ij − βo
ij

)2

.

Similarly we compute MSE for the posterior means θ̄
(s)

of the parameters that index the

sampling model (4.4). Table 1a lists some MSE values. Recall that the simulation truth

for all parameters was around 1.0 in absolute values, leaving the reported MSE values quite

acceptable. The numerical errors of the MSE values are reported in parentheses besides the

reported MSE estimates in Table 1a.

Results in Table 1a are based on a uniform prior over G. We explored sensitivity with

respect to the prior choice for p(G) by repeating the same simulation with an alternative

informative prior. We used (3.1) with G0 specified as a slight variation of the simulation

truth which we achieved by continuing MCMC iteration for 500 iterations. To compare the

simulation truth and the estimated graph we compute the proportion of mismatched edges

in the posterior estimate. We evaluated average error rates over 10 simulations each for
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a variety of combinations of sample size n and prior hyper-parameter ρ. For sample sizes

n > 800 the value of ρ does not seem to affect the accuracy rates. For n = 850 we find error

rates between 0.044 and 0.015 for ρ between 0.50 through 0.95. Only as the sample size falls

below n = 450 we find that we need values of ρ > 0.95 to achieve reasonable accuracy rates.

In the simulation we found average error rates between 0.122 and 0.066 for ρ between 0.85

and 0.99.

6.2 Informative Prior for a Large Graph

We tested the performance of the uniform prior for larger graphs with m = 39 nodes. With

the same simulation setup as in Section 6.1, we find large error rates of 20% and more,

leading us to advise against the use of uniform priors for larger networks. This observation

is in agreement with similar advise in the recent literature (Jones et al., 2004; Ellis and

Wong, 2008). Instead, we investigate the performance of the informative prior (3.1) for

a graph with all 39 HMs. We keep all the simulation settings unchanged except that we

decrease the probability of generating an edge between any pair of vertices, {i, j}, from 0.25

to 0.05, lest estimated graphs become impossible to display and interpret. We also increased

the number of hypothetical loci to 45,000.

As prior p(G) we use the informative prior (3.1). We center the prior at a network G0

that is constructed to be a distorted version of the simulation truth. We generate G0 by

continuing prior simulation that was used to generate the simulation truth G1 for 500 more

MCMC iterations. The construction is meant to mimic the nature of an informative prior

based on expert opinion or related data.

As in the first simulation, we randomly generate 10 datasets and estimate the graphical

models to each of the 10 datasets. The posterior estimates are computed using MCMC

posterior simulation with a total of 5,500 iterations and an initial burn-in of 3,500 iterations.
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We found that the number of burn-ins are adequate by inspection of the trace plots. We

verified practical convergence using Geweke’s convergence diagnostic (Geweke, 1991) and

found no indication of lack of convergence.

We take the 2,000 post burn-in MCMC samples and compute the posterior inclusion

probability P̂ij for each possible edge {i, j} in the graph. We then estimate the graph G

by including all edges with P̂ij > c where the threshold c is chosen to achieve a posterior

expected false discovery rate (FDR) close to .01. The posterior expected FDR for any given

threshold c is calculated by

FDRc =

∑
i j [(1− P̂ij)I(P̂ij > c)]∑

i,j I(P̂ij > c)

To compare the simulation truth and the estimated graph, we compute for each simulation

an error rate

ER = 1− (|(E1 ∩ Ê)/|E1|) (6.1)

where | · | is the cardinality of a set, E1 is the edge set of the simulation truth, and Ê is

the edge set of the estimated posterior graph. We find an average ER of 0.09 over the 10

simulations. Figure 2 compares the estimated graphs to the true graph for one simulated

dataset. Table 1b lists the MSE values for selected β parameters.

6.3 Comparisons with Gaussian Graphical Models

We compared inference under the proposed graphical model with inference under Gaussian

graphical models (GGMs), using the graphical lasso method of Friedman et al. (2008) to

implement inference under the GGM. We used the R package g-lasso. HM counts for 10

hypothetical datasets were generated from the autologistic model described in Section 6.1.

Following the simulation setup in Friedman et al. (2008), we set the penalization parameter λ

for each dataset such that the estimated number of non-zero entries is closest to the number
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of non-zero entries in the simulation truth, noting that this choice favors the g-lasso. The

resulting λ values for the 10 imputed data sets were between 0.022 and 0.035. For each

data set we computed realized error rates ER as defined in (6.1). Averages across the 10

simulations are summarized in Table 2. When the true model is autologistic, the error rate

for the g-lasso estimate is substantially higher than under the proposed model. For the

HM data we believe that the autologistic model better reflects the underlying biology since

biologically, events such as modifications of histones are truly binary, which are modeled

as our latent binary indicators. The results of Table 2 would thus favor inference with the

proposed model for HMs. In general, the proposed model is applicable for the analysis of

data having latent binary structures.

7 ChIP-SEQ DATA ANALYSIS

7.1 Inference for 17 HMs

Wang et al (2008) suggest that multiple HMs can influence critical regulatory elements of

transcription in a combinatorial fashion, To identify HMs that may function together to

modify chromatin, they searched for robust modification features at promoter regions. This

analysis revealed an HM “backbone” consisting of 17 HMs. We implemented inference in

the proposed model for the ChIP-Seq data for this selected subset of m1 = 17 HMs, using

the uniform graphical prior p(G). The names of the 17 HMs and their ids are provided in

the Appendix.

We considered inference for global dependence structure, i.e., inference for one graphical

model G that represents conditional independence across all loci. Note that one common

dependence structure across all loci does not exclude varying abundance of HM for different

types of genomic regions. Later, in the next section, we will alternatively also consider
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models for varying dependence structure.

We carried out inference using the described MCMC posterior simulation. For purposes

of this analysis, we randomly sampled 50,000 genomic locations from the pre-processed

dataset. For each edge {vi, vj} we obtained the posterior inclusion probability P̂ij, defined

as before. Similarly, posterior estimates of the parameters θ that index the sampling model

were obtained by averaging over the 3,000 posterior samples, after discarding the initial

7, 000 iterations.

We obtained a posterior estimate of the unknown graph G for the selected 17 HMs by

connecting any pair of vertices with posterior inclusion probability P̂ij > .95. The threshold

was chosen to achieve a posterior expected false discovery rate (FDR) close to .01.

The estimated graph is shown in Figure 3. The colors (and line types) of the edges were

determined by p(βij > 0 | βij �= 0,Y ). If the reported probability is greater than 1/2, then

we say that the variables connected by the edge have an enhancing, positive relationship.

Otherwise we say that they have an inhibiting, negative relationship. We denote the positive

and negative edges by solid (blue) lines and dashed (red) lines, respectively.

We observe that the posterior graph in Figure 3 is a highly connected and dense graph.

In terms of the properties of the joint distribution, it implies that modification types are

marginally highly correlated.

In Figure 4, we show the four most frequent configurations of a set of 4 edges, based on

posterior inclusion probabilities. This set comprises of the edges shown in Figure 4(d). As

expected, the configuration of the 4 edges that appears in Figure 3 is the most frequent one

and is shown in Figure 4(a).

Finally, as a benefit of full posterior inference, we obtain posterior probabilities of the

presence or absence of HMs. These are biologically meaningful parameters. The Bayesian

network models the HMs as continuous variables and fails to provide any inference on the

latent biological signal.
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7.2 Biological Annotations for the 17 HM Backbone Network

In the analysis of the 17 backbone HMs, strong positive edges are observed between the

following pairs in Figure 3

H2BK5ac, H3K27ac H3K4ac, H3K91ac H2Az, H3K4ME3

H4K91ac, H2BK120ac H4K91ac, H2BK20ac H4K8, H4K5ac

These are the set of edges with values of β̂ij > .8, where β̂ij is the posterior mean of βij

The same pairs have high pairwise correlation in the heat-map analysis reported by Wang

et al. (2008, Figure 4 therein). Some of these results validate the related findings that are

reported in the literature on HMs. For example, it is well known that H3K4me3 modification

is strongly correlated with active transcription and often co-localized with H2A.Z enrichment

(Barski et al. 2007). In Bártfai et al. (2010) they find evidence of an almost perfect co-

localization of H2A.Z with H3K9ac and H3K4me3 in the plasmodium genome. The authors

suggest that these marks are preferentially deposited on H2A.Z-containing nucleosomes.

Karlić et al. (2010) mention H2BK5ac and H3K27ac in a list of 4 HMs that appear to be the

most important modifications associated with gene expression levels. Of these, H2BK5ac

and H3K27ac had the highest individual information content and their levels were highly

correlated. They went on to suggest that these two HMs are the most important ones for

gene expression. Interestingly, positive associations are also obtained between H3K4 and

H3K9 methylation groups. We shall refer to this again while discussing the results on 39

HMs.

7.3 Full Data of 39 HMs

The previous analysis assumed one common dependence structure across the entire genome.

We now relax this assumption and focus on a subset of the ChIP-seq data covering the 33,681

loci in promoter regions. Among these loci, 3,895 are close to non-coding RNA and 29,786
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are close to protein coding genes. We further focus on the regions close to coding regions

and classify them as high versus low expression. This data allows us to study differences in

dependence structure between regions that correspond to high and low gene expressions.

We define high and low expression by considering data (Su et al., 2004) on the expression

levels of the corresponding genes. Using the 25th and 75th percentiles as the threshold, we

define the subsets of the promoter regions corresponding to low expression (< 25th percentile)

and high expression (> 75th percentile).

We use HM counts from the excluded non-coding regions to construct an informative

prior. Specifically, we use the prior model (3.1) with the centering graph G0 defined by the

estimation of a Bayesian network for the non-coding regions. Figure 5 presents the prior

centering graph G0, and the posterior estimated graphs correspond to the regions with high

and low expression, respectively. For ease of display, we used a numeric id for each HM

(instead of its full name) in plotting the graph. Their names are given in Appendix. Table

3 gives a measure of the similarity between the HM networks in the regions of high and

low gene expression. For each type of network E1, a non-matching rate (NMR) relative to

the respective other network E2 is calculated as the proportion of edges in E1 that are not

present in E2. The proportion is relative to the size of E1. That is, NMR is 1−|E1∩E2|/|E1|.
Here E1 and E2 refer to the two networks for coding regions corresponding to low and highly

expressed genes, respectively. Matching rate (MR) is simply 1-NMR. The NMR values that

are reported in Table 3 for the high and low expression datasets indicate that the networks

in these two regions are highly dissimilar.

The network for the high expression regions is denser than that in the low expression

regions, which is denser than the prior network G0 for the non-coding region. This finding

agrees with what is discovered in Rosenfeld et al. (2009). However, there are some edges that

occur with high posterior probability in both these networks; these common edges include

(H3K14ac, H4K20me1), (H3K27me1,H2BK20ac), (H3K79me3, H3K9me3), as well as H3K27
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and H3K9 methylation groups.

In the high expression network in Figure 5(b), strong positive edges are observed between

pairs connecting H3K9ac and H3K27me3, H3K4me3 and H3K20me3; and some more pairs.

In the low expression network in Figure 5(c), we observe strong positive associations

between pairs such as H3K4me1 and H3K9me1.

Lastly we list the top HMs that have high posterior probability for high connectivity,

defined as having five or more edges. In the high expression network, the top HMs include

H3K36me3, H4K20me3, H3K27ac, and H3K9ac. In the low expression network, the promi-

nent HMs are H3K9me1 and H3K27AC. Barski et al. (2007) find that the H3K9 methylations

play a significant role in gene repression. So we expect it to play a prominent role in the

network for low gene expressions. We indeed find that it is the most connected node in the

low expression network.

Some of these findings require further studies and validations. An interesting example is

the positive connection between H3K4 and H3K9 methylations.

This may seem at first sight paradoxical because H3K4ME3 is known to be associated

with gene activation whereas H3K9ME3 is associated with gene repression. However, ac-

tivating H3K4ME3 and repressive H3K27ME3 are known to be over represented in the

promoters of embryonic stem cells. These bivalent genes are either to be activated or si-

lenced upon differentiation. Therefore, activating and repressive HM marks occupying the

same regions are potentially interesting biologically. In fact, consistent with our finding,

it has been suggested that H3K4ME3 and H3K9ME3 co-marked open reading frames are

engaged in dynamic transcriptional activity (Berger 2007). H3K4ME3 and H3K9ME3 are

found to be associated with different HMs in low and high expression sets (Figure 5). The

activating H3K4ME3 is associated with four acetylation marks as well as H3K36ME1 in high

expression set. All six HMs are activating. In low expression set, H3K4me3 is associated

with H3K4me1 and H3R2me1 which are less activating. H3K9me3 in high expression set
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is associated with activating H2AK9ac and H3K36me1, whereas in the low expression set

H3K9me3 is associated with repressive H3K27me3. This example indicates that the findings

of our model are biologically reasonable.

8 DISCUSSION

The proposed Bayesian graphical model implements an approach to decode the dependence

structure of HMs. Graphical models are not new and have been previously applied to

biological networks. We build on previous approaches and generalize them in two important

directions to adapt them for the HM problem. We employed Markov random fields to specify

the relationships among binary indicators for HMs. By this, we are able to build a model

that includes positive prior probability for all possible forms of conditional independence

structures among a selected set of HMs. The integration of the autologistic model and

latent variable modeling in a Bayesian framework is novel. Presence and absence of HMs

are modeled through hidden binary variables while the autologistic framework modeled the

relationships between them. Though introduced decades earlier in Besag (1974), the scope

of application of autologistic models has been limited due to computationally intractable

normalization constants in the model. We get around this computational challenge by using

an importance sampling approximation. In the application to HMs, we employ a centered

version of the model that greatly improves mixing of posterior MCMC simulations. The

combined use of these model choices and techniques enables us to report joint inference

about the latent signals of HMs and their underlying dependence.

Our results are suggestive of a crosstalk mechanism between the HMs. The posterior

graph is shown to be highly connected. Most inference confirmed and quantitatively eval-

uated known relationships. In a few cases, however, the strength of the association do not

match the hypothesized relationships. This is due to a number of factors. One potential
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limitation is that we are modeling the HM dependence across all types of genomic locations.

In the case of differential histone patterns, the model would report only associations that

are strong and universally present across all the locations. In future research we will in-

vestigate formal modeling of changing dependence patterns. A related natural next step is

inference for differential histone patterns, comparing dependence structure across biological

conditions, using one encompassing model that includes biologic condition as a covariate.
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APPENDIX: LIST of the HMs

Below are two sets of index of HMs selected from Wang et al. (2008). The 17-HM index is
used in the Figures 3 and 4, and the 39-HMs index is used in Figures 2 and 5.

Index HM
1 H2BK120ac
2 H2BK12ac
3 H2BK20ac
4 H2BK5ac
5 H3K4AC
6 H3K4ME1
7 H3K4ME2
8 H3K4ME3
9 H3K9AC
10 H3K9ME1
11 H3K27AC
12 H3K36AC
13 H3K18AC
14 H4K91AC
15 H2AZ
16 H4K5AC
17 H4K8AC

Index HM
1 H2AK5ac
2 H2AK9ac
3 H2BK120ac
4 H2BK12ac
5 H2BK20ac
6 H2BK5ac
7 H3K14AC
8 H3K18AC
9 K23AC
10 H3K27AC
11 H3K36AC
12 H3K4AC
13 H3K9AC
14 H4K12AC
15 H4K16AC
16 H4K5AC
17 H4K8AC
18 H4K91AC
19 H2AZ
20 H3BK5ME1
21 H3K27ME1
22 H3K27ME2
23 H3K27ME3
24 H3K36ME1
25 H3K36ME3
26 H3K4ME1
27 H3K4ME2
28 H3K4ME3
29 H3K79ME1
30 H3K79ME2
31 H3K79ME3
32 H3K9ME1
33 H3K9ME2
34 H3K9ME3
35 H4R2ME1
36 H4R2ME2
37 H4K20ME1
38 H4K20ME3
39 H4R3ME2
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(a) (b)

Figure 1: Panel (a) illustrates how DNA is wrapped around nucleosomes to form a picture
like beads on a string. Panel (b) focuses on one of the nucleosomes. Nucleosomes consist
of four core histone (H) proteins, H2A, H2B, H3, and H4. Each histone has two copies per
nucleosome, thus forming an octamer of histones. DNA are densely wrapped around these
octamers forming chromatins. Lysines (K) in the amino-terminal tails of histones H2A, H2B,
H3 and H4 are potential sites for modifications, including acetylation (A), phosphorylation
(P), methylation (M), ubiquitination (Ub), and sumoylation (Su). For example, H3K9ac
stands for an acetylation at the residue 9 (which is a lysine) of histone H3. The figure is
simplified from Marks et al. (2001).
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(a) Simulation truth (b) Posterior estimate (c) Posterior estimate
(uniform) (informative)

Figure 2: The simulated truth versus the estimated graph of one simulated dataset based on
39 vertices and the informative prior for the random graph. The concentration parameter
ρ is set to 0.93. In (a) we present the simulation truth. In (b) we present the posterior
estimated graph under a uniform prior. In (c) we present the posterior estimated graph
when the informative prior is centered at a graph that is slightly and randomly perturbed
from the simulation truth. The dotted (red) lines represent the HM pairs with negative
relationships, while the solid (blue) lines depict the positive ones.
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Figure 3: Posterior inference of the ChIP-Seq data based on 17 HMs (see Appendix) and a
uniform prior.
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Figure 4: The four most frequent configurations (a through d) of a subgraph consisting of 4
edges. The posterior probabilities (in percent) are given below each subgraph.
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(a) Prior (b) Low expression (c) High expression

Figure 5: Posterior inference of the ChIP-Seq data based on 39 HMs and informative prior.
In (a), we present the estimated HM network for non coding regions, which used as a prior
centering graph for inference in regions of high and low gene expression. In (b) and (c), we
present posterior estimated graphs for regions of low and high expression, respectively.
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Table 1: Simulation study: MSE values of the parameters and their standard errors (SE).
We arbitrarily selected four βij parameters that had non-zero values in the simulation truth.

(a) small graph

Parameter MSE
λ1 .03(.008)
σ17 .04(.009)
σ21 .05(.010)
μ17 .02(.004)
μ21 .02(.005)
β2,10 .04(.021)
β8,5 .08(.037)
β4,9 .06(.028)
β6,1 .07(.033)

(b) large graph

Parameter MSE
β15,4 .05(.005)
β22,17 .03(.006)
β1,33 .06(.008)
β16,7 .03(.005)

Table 2: Average error rates under the GGM and the proposed autologistic model.

Inference Simulation Model
Model GGM Autologistic
GGM .05 .14

Autologistic .12 .03
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Table 3: Summary statistics for the three networks. Here NMR is the non-matching rate of
one network (E1) relative to another network (E2), calculated as the proportion of edges in
E1 that are not present in E2. In the table below, E1 and E2 refer to the two networks for
coding regions corresponding to highly and lowly expressed genes, respectively. Matching
rate (MR) is simply 1-NMR.

NMR MR
High expression .88 .12
Low expression .92 .08
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