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Abstract

In this paper, we show how Bayesian neural networks can be used for time series
analysis. We consider a block based model building strategy to model linear and
nonlinear features within the time series. A proposed model is a linear combination
of a linear autoregression term and a feedforward neural network (FFNN) with an
unknown number of hidden nodes. To allow for simpler models, we also consider
these terms separately as competing models to select from. Model identifiability
problems arise when FFNN sigmoidal activation functions exhibit almost linear
behaviour, or when there are almost duplicate or irrelevant neural network nodes.
New reversible jump moves are proposed to facilitate model selection mitigating
model identifiability problems. We illustrate this methodology analyzing two time
series data examples.
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1 INTRODUCTION

Many neural network models have been applied to time series analysis and fore-
casting. There has been some interest in using recurrent networks such as Elman
networks (Elman, 1990), Jordan networks (Jordan, 1986) and real-time recurrent
learning networks (Williams and Zipser, 1989). However, the model most frequently
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used is the multilayer feedforward neural network (FFNN). Many papers compare
FFNNs and standard statistical methods for time series analysis, see e.g. Tang et
al. (1991), Foster et al. (1992), Stern (1996), Hill et al. (1996), Faraway and Chat-
field (1998). Several papers, have found FFNN superior to linear methods such as
ARIMA models for several time series problems and comparable to other nonlinear
methods like generalized additive models or projection pursuit regression.

We will consider FFNNs to model non-linear autoregressions. The net output
will represent the time series predicted value, when past values of the series are
given as net inputs. Fitting a FFNN model requires many choices about the model
structure: activation functions, number of hidden layers, number of hidden nodes,
inputs, and so on. A non linear optimization algorithm will typically be used to
estimate weights to optimize some performance criterion, for example, minimization
of mean square error, with weight decay. To fix the model structure, traditionally
rules of thumb are used. Remus et al. (1998) suggest appropriate rules for FFNN
in time series forecasting.

Alternatively, a Bayesian approach to FFNN modelling (Mackay, 1992; Neal,
1996; Müller and Ŕıos Insua, 1998; Ŕıos Insua and Müller, 1998) provides a co-
herent framework to deal with these issues. FFNN parameters are regarded as
random variables whose posterior distribution is inferred in the light of data. Most
importantly perhaps, we may include the number of hidden nodes as an additional
parameter and model its uncertainty. Predictions are obtained by averaging over
all possible models and parameter values according to their posterior distributions.

In this paper we introduce a Bayesian FFNN forecasting model for time series
data. We present an inference scheme based on Markov Chain Monte Carlo simula-
tion. To deal with model selection, we analyze why standard birth/death reversible
jump moves result in slowly mixing MCMC. Instead, we propose new reversible
jump moves to add or delete special kinds of nodes characterized as linearized, irrel-
evant or duplicate. Two examples are used to illustrate the methodology, the lynx
time series data (Priestley, 1988) and the airline passengers data (Box and Jenkins,
1970).

2 MODEL DEFINITION

Consider univariate time series data {y1, y2, . . . , yN}. We would like to model
the generating stochastic process in an autoregressive fashion,

p (y1, y2, . . . , yN ) = p(y1, . . . , yq)

N∏

t=q+1

p(yt|yt−1, yt−2, . . . , yt−q)

We shall assume that each yt is modelled by a nonlinear autoregression function of
q past values plus a normal error term:

yt = f(yt−1, yt−2, . . . , yt−q) + εt, t = q + 1, . . . , N

εt ∼ N(0, σ2)
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so that yt|yt−1, yt−2, . . . , yt−q ∼ N
(
f(yt−1, yt−2, . . . , yt−q), σ

2
)
, t = q + 1, . . . , N.

We complete model specification using a block-based strategy to describe f . We
propose a mixed model as a linear combination of a linear autoregression term and a
FFNN. A FFNN model with q input nodes, one hidden layer with M hidden nodes,
one output node and activation function ϕ is a model relating a response variable
ŷt and q explanatory variables, in our case xt = (yt−1, . . . , yt−p):

ŷt(xt) =
M∑

j=1

βjϕ(x′
tγj + δj)

with βj ∈ R, γj ∈ Rq. Biases δj may be assimilated to the rest of the γj vectors if we
consider an additional input with constant value one, say xt = (1, yt−1, . . . , yt−q), so
that, γj = (γ0j , γ1j, . . . , γqj) ∈ Rq+1. To be specific we will in the following assume
a logistic activation function: ϕ(z) = exp(z)/(1 + exp(z)). However, the discussion
remains valid for any other sigmoidal functions.

In the proposed model, the linear term accounts for linear features and the
FFNN term for a nonlinear correction:

f(yt−1, yt−2, . . . , yt−q) = x′
tλ +

M∑

j=1

βjϕ(x′
tγj), t = q + 1, . . . , N (1)

Initially, the parameters in our model are the linear coefficients λ = (λ0, λ1, . . . , λq)
∈ Rq+1, the hidden to ouput weights β = (β1, β2, . . . , βM ), the input to hidden
weights γ = (γ1, γ2, . . . , γM ) and the error variance σ2.

As there will be uncertainty about the number of hidden nodes M to include, we
shall model this uncertainty considering M as an unknown parameter. Note that
the mixed model (1) embeds as a particular case the standard linear autoregression
model, when M = 0, and the FFNN model, when λ = 0. We shall assume the au-
toregressive order q to be known in advance. If desired, one could model uncertainty
about q as a problem of variable selection in a model selection context. However in
the following discussion we assume q fixed.

To allow for simpler models, we also consider the linear and nonlinear terms
separately as competing models to select from: a simple linear autoregression model

ŷt = f(yt−1, yt−2, . . . , yt−q) = x′
tλ, t = q + 1, . . . , N (2)

and a nonlinear autoregression feedforward neural net model

ŷt = f(yt−1, yt−2, . . . , yt−q) =
M∑

j=1

βjϕ(x′
tγj), t = q + 1, . . . , N (3)

for each value of M .
As in Ŕıos Insua and Müller (1998), we assume a normal/inverse gamma prior

βj ∼ N(µβ , σ2
β), λ ∼ N(µλ, σ2

λI), γj ∼ N(µγ , Σγ), σ2 ∼ InvGamma(aσ, bσ).

(4)
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When there is non-negligible uncertainty about prior hyperparameters, we may
extend the prior model with additional hyperpriors. We shall use the following
standard conjugate choices in hierarchical models:

µβ ∼ N(aµβ
, bµβ

), σ2
β ∼ InvGamma(aσβ

, bσβ
) (5)

µλ ∼ N(aµλ
, bµλ

), σ2
λ ∼ InvGamma(aσλ

, bσλ
)

µγ ∼ N(aµγ , bµγ ), Σγ ∼ InvWishart(aΣλ
, bΣλ

)

Hyperparameters are a priori independent. Given hyperparameters, parameters are
a priori independent. Since the likelihood is invariant with respect to relabelings,
we include an order constraint to avoid trivial posterior multimodality due to index
permutation. For example, we may use γ1p ≤ γ2p . . . ≤ γMp.

3 MCMC POSTERIOR INFERENCE

WITH A FIXED MODEL

Consider first the mixed model (1) with fixed M . The complete likelihood for a
given data set D = {y1, y2, . . . , yN} is:

p(D | λ, β, γ, σ2) = p(y1, . . . , yq | λ, β, γ, σ2)p(D′ | y1, . . . , yq, λ, β, γ, σ2)

where D′ = {yp+1, . . . , yN} and

p(D′ | y1, . . . , yq, λ, β, γ, σ2) =
N∏

t=q+1

p(yt | yt−1, yt−2, . . . , yt−q, λ, β, γ, σ2)

is the conditional likelihood given first q values. From here on, we will make in-
ference conditioning on the first q values i.e., assuming they are known without
uncertainty (alternatively, we could include an informative prior over first q values
in the model and perform inference with the complete likelihood). Together with
the prior assumptions (4) and (5), the joint posterior distribution is given by:

p(λ, β, γ, σ2, χ | D′) ∝ p(yq+1, . . . , yN | y1, . . . , yq, λ, β, γ, σ2)p(λ, β, γ, σ2, χ)M !
(6)

where

p(λ, β, γ, σ2, χ) = p
(
µλ, σ2

λ, µβ , σ2
β, µγ , Σγ

)
p(σ2)

p(λ | µλ, σ2
λI)p(β | µβ , σ2

βI)
M∏

i=1

p(γi | µγ , Σγ)

is the joint prior distribution, χ = (µλ, σ2
λ, µβ , σ2

β, µγ , Σγ) is the set of hyperpara-
meters and M ! appears because of the order constraint on γ .

As in Müller and Ŕıos Insua (1998), we propose a hybrid, partially marginalized
MCMC posterior sampling scheme to implement inference in the fixed mixed model
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(1). We use a Metropolis step to update the input to hidden weights γj using the
marginal likelihood over (β, λ): p(D′ | y1, . . . , yq, γ, σ2) to partly avoid the random
walk nature of Metropolis algorithm:

1. Given current values of χ and σ2 (β and λ are marginalized), for each γj ,
j = 1, . . . , M, generate a proposal γ̃j ∼ N(γj , cΣγ), calculate the acceptance
probability

a = min

[
1,

p(γ̃ | µγ , Σγ)p(D′ | y1, . . . , yq, γ̃, σ2)

p(γ | µγ , Σγ)p(D′ | y1, . . . , yq, γ, σ2)

]

where γ = (γ1, . . . , γj−1, γj , γj+1, . . . , γM ), γ̃ = (γ1, . . . , γj−1, γ̃j , γj+1, . . . , γM ).

With probability a replace γ by γ̃ and rearrange indices if necessary to satisfy
order constraint. Otherwise, leave γj unchanged.

2. Generate new values for parameters, drawing from their full conditional pos-
teriors:

β̃ ∼ p
(
β | D′, γ, λ, σ2, χ

)
is a multivariate normal distribution.

λ̃ ∼ p
(
λ | D′, γ, β, σ2, χ

)
is a multivariate normal distribution.

σ̃2 ∼ p
(
σ2 | D′, γ, β, λ

)
is an inverse Gamma distribution.

3. Finally, given current values of
(
γ, β, λ, σ2

)
generate a new value for each

hyperparameter by drawing from their complete conditional posterior distri-
butions:

µ̃β ∼ p
(
µβ | D′, β, σ2

β

)
is a normal distribution.

σ̃2
β ∼ p

(
σ2

β | D′, β, µβ

)
is an inverse Gamma distribution.

µ̃λ ∼ p
(
µλ | D′, λ, σ2

λ

)
is a multivariate normal distribution.

σ̃2
λ ∼ p

(
σ2

λ | D′, λ, µλ

)
is an inverse Gamma distribution.

µ̃γ ∼ p
(
µγ | D′, γ,Σγ

)
is a multivariate normal distribution.

Σ̃γ ∼ p
(
Σγ | D′, γ, µγ

)
is an inverse Wishart distribution.

A similar sampling scheme can be used when using a neural net model without
linear term (3) but likelihood marginalization would be just over β. Posterior in-
ference with the normal linear autoregression model (2) is straightforward, see e.g.
Gamerman (1997).

4 MODELLING UNCERTAINTY ABOUT

THE ARCHITECTURE
We now extend the model to include inference about model uncertainty. In fact,

the posterior distribution (6) should be written including a reference to the model
k considered:

p(λ, β, γ, σ2, χ | D′, k) = p
(
θk | D′, k

)
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where θk =
(
λ, β, γ, σ2, χ

)
represents parameters and hyperparameters in model k.

We index models with a pair of indexes mhk, where h = 0(1) indicates absence
(presence) of the linear term; k = 0, 1, . . . indicates the number of hidden nodes
in the NN term. Therefore, m10 is the linear autoregression model (2), m0k is the
FFNN model (3) with k hidden nodes and m1k is the mixed models (1) with k
hidden nodes.

Linear + 

NN(1)

Linear + 

NN(2)

NN(1) NN(2)

j2a, j3a,,j4a

j2d, j3d,,j4d

j2a, j3a, j4aj2a, j3a

m11

m01 m02

m12

j1a j1aj1d j1d

j2d, j3d,,j4dj2d, j3d

Linear

m10

Linear + 

NN(k)

Linear + 

NN(k+1)

NN(1) NN(k+1)

j2a, j3a,,j4a

j2d, j3d,,j4dj2d, j3d,,j4d

j2a, j3a,,j4a

j2a, j3a, j4aj2a, j3a,,j4a

m1k

m0k m0(k+1)

m1(k+1)

j1a j1aj1d j1d

j2d, j3d,,j4dj2d, j3d,,j4d

Figure 1: Possible models along with moves available from each model.

Note that models m0k, k ≥ 1 are nested, as well as m1k, k ≥ 1. It would be
possible to think of the linear model m10 as a degenerate case of the mixed model
m11when β = 0 and of models m0k, k ≥ 1, as degenerate m1k, k ≥ 1 when λ = 0
and finally consider all models above as nested models. However, given our model
exploration strategy outlined below, we prefer to view them as non nested.

We wish to design moves between models to get a good coverage of the model
space. When dealing with nested models, it is common to add or delete model com-
ponents, consequently jumping between models, using add/delete or split/combine
moves pairs (Green, 1995; Richardson and Green, 1997). Similarly, we could define
two reversible jump pairs: add/delete an arbitrary node selected at random and
add/delete the linear term. With such strategy, it would be possible to reach a
model from any other model. However our experience shows that their acceptance
rate is low and model space is not adequately covered.

To avoid this, let us introduce the notion of LID (linearized, irrelevant and
duplicate) nodes.

Consider a node (βj , γj) with γj = (γ0j , γ1j, . . . , γpj) in a model m0k or m1k. We
call it:

Definition 1. (Approximately) linearized if its output βjϕ(x′
tγj) is nearly a hyper-

plane in the input/output space for the input data range.

Definition 2. (Approximately) irrelevant if βj ' 0.

Definition 3. We say nodes (βj , γj) and (βk, γk) are (approximately) duplicate
nodes if ‖γj − γk‖ ' 0.
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Note that a model with an (approximately) irrelevant node has (almost) identical
likelihood as a model without it. A model with (approximately) duplicate nodes
will perform similarly to a model with a single node (βj + βk, γj) instead of them.
Finally the linear behaviour of a linearized node may be assimilated into a linear
term or an other linearized nodes. The appearance of LID nodes, therefore, cause
problems of model identifiability and multimodality in model space.

Recall that the acceptance probability of a proposed model is computed using
the marginal likelihood over β and/or λ whenever possible. This marginalization
accelerates convergence. But γ is not easily marginalized. Thus, any proposed
model structure change is evaluated with the currently imputed value of γ. Adding
irrelevant, duplicate or linearized nodes implies less structural change, so that in
our simulation it was more common to accept add moves that add actually LID
nodes. And viceversa, it is very unlikely to accept a jump to a simpler model than
proposes an arbitrary node to be deleted. In fact, it is usually easier that a new
LID node is added before old ones are deleted.

This motivates an MCMC scheme that includes add/delete of LID nodes as
additional moves to a standard reversible jump scheme. Once moves to delete LID
nodes are defined, we shall propose the corresponding add nodes moves. Note
that whereas delete LID nodes, would mitigate our problem, add LID nodes would
seem to complicate our scheme, following our above discussion. In principle, we
could propose these add LID nodes with low probability. However, besides ensuring
balance, add moves have a useful side effect. Note that with add moves, we have
control over when and how a LID node is added. As mentioned above, adding
LID nodes will have more probability to be accepted than adding an arbitrary node
because it usually implies a smaller structural change. We expect that once a model
with a new LID node becomes the current model, the next iterations will delete some
other LID nodes. In this way, more complex models have a chance of being visited,
so it can help to get a wide coverage of model space. In a sense, this is related to
some global search optimization techniques in which a bad solution is sometimes
proposed to escape from a local minima with the hope of reaching a better minima
from it. As Bayesian inference implicitly embodies Occam’s razor principle and
clever delete moves are defined, we expect simpler models to be more common.

In the rest of this section we show how to characterize a linearized node so as to
generate it at random or propose for deletion. We also introduce modifications to a
basic thin/seed move to deal with duplicate nodes and we put an ad hoc distribution
over nodes to increase probability of an irrelevant node to be proposed for deletion.
Note that there is a decision to make about how much deterministic a move should
be. For example, we could look deterministically for two (approximately) duplicate
nodes in the set of nodes and, if they exist, delete them but, in general, it is good
to allow for some randomness in move definitions (Green, 1995). At the end of
this section a complete reversible jump scheme is outlined. A full description of
add/delete moves is given in the Appendixes.
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4.1 (Approximately) Linearized Nodes

To facilitate explanation, consider a FFNN model in a regression problem:

ŷ(x1, . . . , xq) = f(x1, . . . , xq) =
M∑

j=1

βjϕ(ζj)

ζj(x1, . . . , xq) = γj0 + γj1x1 + . . . + γjqxq

The net output ŷ is given by a linear combination of hidden node outputs. Each

hidden node output ϕ(ζj) =
1

1 + exp (−ζj)
, j = 1, . . . , M, represents a sigmoidal

surface in <q+1, which is approximately linear in its middle range (Figure 3). For
any data (xi1, . . . , xiq), i = 1, . . . , N , we may find weights (γj0, γj1, . . . , γjp) so that:

−ρ ≤ ζj(x1, . . . , xq) ≤ ρ, i = 1, . . . , N (7)

where ρ and ϕ(ζj) resembles a hyperplane in the input data domain. Note also that
when ζj > η, say η ≥ 4, the sigmoid is saturated (Figure 3) and ϕ(ζj) ' 1. It is
possible to adjust weights so that saturation is verified for the whole data set.

Figure 2: Sigmoidal surface when input space dimension is q = 2.

When fitting a FFNN model, some hidden nodes will ocasionally work in the
linear zone, behaving approximately as linear regression terms, or in the saturation
zone, behaving as a constant term. For example, in Figures 4 and 5 a FFNN with
four nodes fits a cosine function. The joint output of three of the four nodes has a
linear trend but none of them is working in the linear zone. The fourth node helps
to compensate this linear trend so that the cosine is fitted. Also, when using mixed
models, some nodes add up their linear behaviour to the linear term.

The previous comments emphasize the need to add and remove linearized nodes
to get a good coverage of the model space. When adding a linearized node, we will
have to randomly generate weights (γj0, γj1, . . . , γjq) so that the node behaves in
the linear zone for the given data set. To show how to achieve this, consider the
case in which q = 2. For a given node (γ0, γ1,γ2), ζ = γ0 + γ1x1 + γ2x2 belongs to
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 ϕ(ζj)

 ζj

-5 -4 -3 -2 -1 0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

+ro-ro

Figure 3: When −ρ ≤ z ≤ ρ, sigmoid function could be well approximated by its tangent
in z = 0.

a family of straight lines with slope
−γ2

γ1
. This node is linearized if (7) is verified.

Rewrite (7) as:

−ρ − γ0 ≤ z (xi1, xi2) ≤ ρ − γ0 ∀ (xi1, xi2) , i = 1, . . . , N (8)

where z (x1, x2) = γ1x1 + γ2x2 = κ (s1x1 + vs2x2) with

si = sgn(γi), i = 1, 2

κ = |γ1|

v =
|γ2|
|γ1|

For some data points z is maximized or minimized, so the above condition can
be summarized as

−ρ − γ0 ≤ zmin ≤ zmax ≤ ρ + γ0 (9)

where zmin = z (xzmin

1 , xzmin

2 ) and zmax = z (xzmax

1 , xzmax

2 ). To find zmin and zmax, it is
easier to force (9) into a rectangle

[(
xmin

1 , xmin
2

)
, (xmax

1 , xmax
2 )

]
containing all input

data points:

xmin
1 = min

i
(xi1) , xmax

1 = max
i

(xi1)

xmin
2 = min

i
(xi2) , xmax

2 = max
i

(xi2)
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0

-1
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0
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20 joint output first 3 nodes

output 4th node

Figure 4: A feedforward neural network with four nodes fitting a cosine function. Three
of the four nodes fit the cosine waves with a global up linear trend. The fourth node adds
up its linear behaviour to compensate the trend.

We may write then

xzmax

i =
1

2
(1 + sgn(γi))xmax

i +
1

2
(1 − sgn(γi)) xmin

i , i = 1, 2

xzmin

i =
1

2
(1 + sgn(γi))xmin

i +
1

2
(1 − sgn(γi)) xmax

i , i = 1, 2

and

zmax = γ1x
zmax

1 + γ2x
zmax

2 = κ (s1x
zmax

1 + vs2x
zmax

2 )

zmin = γ1x
zmin

1 + γ2x
zmin

2 = κ (s1x
zmin

1 + vs2x
zmin

2 )

Let

L = zmax − zmin =
κ

δ

δ =
1

(xmax
1 − xmin

1 ) + v(xmax
2 − xmin

2 )

Then, rewrite (9) as:

L ≤ 2ρ (10)

−ρ − γ0 + L ≤ zmax ≤ ρ − γ0
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Figure 5: The joint output of the four nodes in the neural net model resembles the target
cosine function.

We have three degrees of freedom to verify (10). Setting v =
γ2

γ1
and signs si, i = 1, 2,

fixes the slope of the straight line z which fixes the sigmoidal surface orientation.
Once this is defined, we could take a value for κ so that L ≤ 2ρ, fixing the sigmoidal
surface steepness. Finally, we should take γ0 so that −ρ − γ0 + L ≤ zmax ≤ ρ − γ0,
which locates the sigmoidal surface.

Rewrite δ =
u1

xmax
1 − xmin

1

for some u1 and

L =
κ

u1
(xmax

1 − xmin
1 ) = 2ρb

v =
xmax

1 − xmin
1

xmax
2 − xmin

2

[
1

δ(xmax
1 − xmin

1 )
− 1

]
=

1 − u1

u1

[
xmax

1 − xmin
1

xmax
2 − xmin

2

]

κ =
2ρbu1

xmax
1 − xmin

1

γ0 = −ρ + L − zmax + u0 (2ρ − L)

These new quantities may be interpreted as follows:

• u1 is related with the orientation of the sigmoidal surface, therefore with the

slope of the straight lines z. In fact,
1 − u1

u1
should take values in [0,∞).

• b is related with the width L of the interval (zmin, zmax) which is related with
the steepness of the sigmoidal surface. It should take values in (0, 1).
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zmax=g1*x1+g2*x2
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Figure 6: To find zmin and zmax, we force −ρ− γ0 ≤ zmin ≤ zmax ≤ ρ + γ0 into a rectangle[(
xmin

1 , xmin
2

)
, (xmax

1 , xmax
2 )

]
containing all input data points.

• u0 is related with the sigmoidal surface location given by how interval (zmin, zmax)
is placed within interval (−ρ − γ0, ρ − γ0). It should take values in (0, 1).

Let us rewrite γ0, γ1 and γ2 in terms of the above quantities:

γ1 = s1
2ρbu1

(xmax
1 − xmin

1 )

γ2 = s2
2ρb (1 − u1)

(xmax
2 − xmin

2 )

γ0 = 2ρu0 (1 − b) + ρ(2b − 1) − (γ1x
zmax

1 + γ2x
zmax

2 )

Suppose now that we randomly generate weights (γ0, γ1,γ2) from a multivariate
normal distribution accepting those verifying (10). The sample distribution of these
weights has no recognizable shape, but the distributions of the other quantities above
are suggested by their histograms:

p(si = +1) = 0.5; p(si = −1) = 0.5

b ∼ Beta(2, 2); u1 ∼ U(0, 1) ; u0 ∼ U(0, 1)

We can therefore generate at random weights corresponding to linearized nodes.
The generalization to q > 2 is straightforward:

γi =
2ρϕi

(xmax
i − xmin

i )
, i = 1, . . . , q

γ0 = 2ρu0 (1 − ϕ0) + ρ(2ϕ0 − 1) − (γ1x
zmax

1 + . . . + γqx
zmax

q )

with ϕ0 =
∑q

i=1 |ϕi| and xzmax

i defined as above.
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To generate ϕi, i = 1, .., q, first generate:

(ξ1, . . . , ξq−1) ∼ Dirichlet(1, 1, . . . , 1); ξq = 1 −
q−1∑

i=1

ξi

b ∼ Beta(q, 2)

p(si = +1) = p(si = −1) =
1

2
, i = 1, . . . , q

u0 ∼ U(0, 1)

and define: ϕi = bsiξi.
To propose a linearized node for deletion, we simply choose a node at random.

Instead of finding out, deterministically, which node, if any, is a linearized one, we
let some randomness in the move definition. Once a node is selected, we recover the
quantities defined previously:

ξi = |ϕi| =
|γi| (xmax

i − xmin
i )

2ρ
i = 1, . . . , q

u =
γ0 + (γ1x

zmax

1 + . . . + γqx
zmax

q ) − ρ(2ϕ0 − 1)

2ρ(1 − ϕ0)

b = ϕ0 =

q∑

i=1

|ϕi|

Should the node selected be approximately linearized, the following conditions would
verify:

q∑

i=1

ξi = 1 and ξi < 1 ∀i = 1, . . . , q

u ∈ [0, 1]

b ∈ [0, 1]

The density of any of these parameters, see the Appendix B , would be zero if they
do not satisfy that condition. Hence, the probability of deleting a non linearized
node with this move is zero, i.e. the move would be rejected.

4.2 (Approximately) Irrelevant nodes

We let chance to deal with generation of an irrelevant node. We modify a basic
birth/death move just to put some knowledge when selecting a node for deletion.We

choose a node at random with probabilities pj =
ψj∑M+1

k=1 ψk

, j = 1, . . . , M where

ψj =
1

ε
√

2π
exp

{−1

2ε2
x2

}
so that more weight is given to those nodes whose βj is

almost zero. Full details are given in the Appendix C.
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4.3 (Approximately) Duplicate nodes

Consider two (approximately) duplicate nodes (βj , γj) and (βk, γk) in a model m0k

or m1k. As we have mentioned we could propose a simpler model collapsing them
into a new node (βj + βk, γj). The proposed add/delete pair is a basic thin/seed
move with minor modifications.

To add a duplicate node, take a node (βj , γj) at random and introduce small per-
turbations to produce two (approximately) duplicate new nodes, hence substituting

(βj , γj) by
(
β̃j , γ̃j

)
and

(
β̃j+1, γ̃j+1

)
with:

β̃j = βj(1 − v), β̃j+1 = βjv

γ̃j = γj , γ̃j+1 = γj + δ

Perturbations v and δ are generated from:

v ∼ Beta(2, 2)

δ ∼ N (0, cΣγ)

where c is a small enough constant (say c = 0.01). As we introduced an order
constraint on γ, the add move proposed will be rejected if γ̃j and γ̃j+1 do not
satisfy the order constraint.

Given the order constraint on γ, we expect that for a given (βj , γj), the next
node (βj+1, γj+1) could be an almost duplicate version of it. Then, we propose to

remove (βj+1, γj+1) and transform (βj , γj) as β̃j = βj + βj+1 and γ̃j = γj . See
Appendix D for full details.

4.4 Our reversible jump scheme

We propose then the following moves:

1. Add/Delete Linear term (j1a, j1d)

2. Add/Delete Linearised node (j2a, j2d)

3. Add/Delete Arbitrary nodes (j3a, j3d)

4. Add/Delete Duplicate nodes (j4a, j4d)

Not all of them are reachable from a given model. For example, we cannot
delete a linear term when the current model is the linear model, nor can we delete
duplicate nodes if we have just one node (see Figure 1 ).
Specifically:

• From the linear autoregression model m10 valid moves are: j2a and j4a.

• From a feedforward neural net model with one node m01 valid moves are: j1a,
j2a, j3a and j4a.

• From a feedforward neural net model with k ≥ 2 nodes m0k, valid moves are:
j1a, j2a, j2d, j3a, j3d, j4a and j4d.
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• From a mixed model with k ≥ 1 the nodes m1k, valid moves are: j1d, j2a, j2d,
j3a, j3d, j4a and j4d.

We will assume that from a given model all reachable moves are equally likely.
Formally, unreachable moves are given zero probabilty. Note that the definition of
each move depends on the current model where to jump from. For example, adding
a linearized node when current model is m10 involves proposing neural network
parameters and hyperparameters absent in m10. However, when current model is
m0k, k ≥ 1, adding a linearized node is a jump between nested models with shared
parameters and hyperparameters. Shared parameters and hyperparameters could
be proposed with same values as in previous model. But, non shared parameters
and hyperparameters have to be proposed from scratch, for example, from their
prior distribution. This usually implies less chance for the move to be accepted. It
would be useful for convergence purposes to generate non shared parameters using
proposals centered in the values they had the last time the model was visited. We
are not going to deal with this matter here and will use priors as proposals. Similar
comments apply to other moves. See Appendix for a complete description.
The general reversible jump posterior inference scheme is as follows:

1. Start with an initial model mhk, h = {0, 1}, k = 0, 1, . . . and initial values for
its parameters (and hyperparameters if needed) (for example, prior means).

Until convergence is achieved iterate through steps 2 to 4:

2. With probability p1 (say, p1 = 0.5) decide to stay within the current model,
otherwise (with probability 1 − p1) decide to move to another model

3. If staying in the current model, perform the MCMC scheme described previ-
ously.

4. If moving to another model, select at random a move from the list of reachable
moves with probabilities assigned as mentioned and propose a new model
accordingly. If accepted, new model is the current model.

5 EXAMPLES

We illustrate the methodology described above with two time series data sets.

5.1 Lynx data

As a first example we consider a time series data giving the annual number of lynx
trappings in the Mackenzie River Distric of North–West Canada for the period 1821
to 1934 (Piestley 1988) (see Figure 7).

In NN applications, the data set is often split into two subsets, one for estimation
and the other for validation. We split the lynx data set into a training data set (first
72) and a test data set (last 38 observations).

Prior distributions for the unknown parameters and hyperparameters in the
model, are chosen as described in Section 2, using the following choices for the
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hyperparameters distributions:

µβ ∼ N(0, 3), σ2
β ∼ InvGamma(9, 1)

µλ ∼ N((0, 0, 0), 3I), σ2
λ ∼ InvGamma(9, 1)

µγ ∼ N((0, 0, 0), 3I), Σγ ∼ InvWishart(10, 2.5I)

σ2 ∼ InvGamma(1, 1)

Also, the unknown number of nodes M , is given a geometric prior distribution
with parameter α = 2. Two runs were carried out from different starting points,
namely M = 0 and M = 15. A burn–in of 1000 iterations was used and then a
further 9000 iterations were monitored for inference purposes. Figure 8 and Figure
9 show trace plots of the Markov chains for the number of nodes in the FFNN and
histogram of the posterior distribution of M , respectively, suggesting M = 2 as the
most likely number of nodes for the hidden layer of the FFNN term.

Finally Figure 10 shows the time series (log-transformated and detrented) and
the one-step ahead forecast values for the test data set, showing good performance
of the Bayesian nonlinear autoregression model developed.

5.2 Airline data

As a second example, we will consider the well known international airline data by
Box and Jenkins (1970). This time series is one of the most commonly used seasonal
ARIMA models. It was modelled by Box and Jenkins (1970) as ARIMA(011)(011)12
and in fact, this classic model is usually known as airline model due to the time
series.

Exploratory data analysis suggests seasonal behaviour of the time series with
similar properties exihibited every 12 observations (every 12 months). We shall
therefore model each yt on the basis of the inmediately past values, yt−1, yt−2 as
well as corresponding seasonal values yt−13, yt−14.

Once more we initialized the MCMC algorithm by two well dispersed values
for the number of hidden nodes M and let the Reversible jump MCMC algorithm
described to run for a sufficient number of iterations, 2000 burn in and another
18000 iteration for making inference. Similar comments about prior choices to the
previous example, apply also here. Figure 13 shows the histogram of the posterior
distribution of M , in this case, three hidden nodes should be included in the hidden
layer of the FFNN.

It is of interest to look at the reversible jump algorithm development. Table
1 resumes the number of times each node has been propose and accepted, as well
as percentage of acceptance for each plausible move. Note that acceptance rates
are considerably bigger for irrelevant nodes than for linearized or duplicate nodes,
given, perhaps, to the simplicity of the movement.

Finally Figure 14 shows the time series data and the forecasts for the test data
set, almost undistinguishable.
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Move Times proposed Times accepted

j1a 1 1
j1d 840 1
j2a 483 130
j2d 831 36
j3a 731 229
j3d 823 396
j4a 428 68
j4d 837 7

Table 1: Number of times proposed, and times accepted for the different moves.

6 CONCLUSIONS

We have presented a reversible jump algorithm for the analysis of FFNNs viewed
as nonlinear autoregression models. The advantages of the Bayesian approach out-
weighs its additional computational effort: as no local optimization algorithms are
used, local minima issues are mitigated; model selection is performed as part of
Bayesian methodology without need of deciding explicitly a range of models to
select from and having to use ad hoc methods to rank them; Bayesian analysis em-
bodies naturally Occam’s razor principle, the principle of preferring simpler models
to complex models, also it is possible to include a priori information about param-
eters and number of hidden nodes in accordance to this principle; the final product
of a Bayesian analysis is a predictive distribution that averages over all possible
models and parameters values, so uncertainty about predictions is estimated and
overfitting risk is reduced.

Many issues remain to be explored. An obvious extension is the application of
the reversible jump algorithm based on LID nodes to other standard NN applications
like regression, classification or density estimation. Also we have confined to FFNNs
but many other NN models, analysed from a Bayesian point of view, might prove
useful. Relating to time series analysis, here we have assumed autoregressive order
q to be known in advance. We could also model uncertainty about q as a problem
of model selection.
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APPENDIX A: Add/Delete Linear Term

We propose this move with probability B1

Add Linear Term

NN(m) −→ Linear + NN(m), m ≥ 1

(θ, uθ) −→ (φ, uφ)

where

θ =
{
β1, β2, . . . , βM , γ1, γ2, . . . , γM , σ2, µβ, σ2

β , µγ , Σγ

}

uθ = {λ, µλ, Σλ}
φ =

{
β1, β2, . . . , βM , γ1, γ2, . . . , γM , σ2, µβ, σ2

β , µγ , Σγ , λ, µλ, Σλ

}

The Jacobian of the one-to-one transformation φ = g(θ, uθ) is J = 1.
The proposal is given by

µλ ∼ N(mλ, Sλ)

Σλ ∼ IWishart(wλ, Ωλ)

λ ∼ N(µλ, Σλ).

Thus

p(φ | j)

p(θ | k)
= p(λ | µλ, Σλ)p(µλ | mλ, Sλ)p(Σλ | wλ, Ωλ)

p(j)

p(k)
= 1 assuming K equiprobable models: p(i) =

1

K
,∀i

pj−→k

pk−→j

=
B1d

B1a
= 1 assuming B1d = B1a =

B1

2

q(uφ | φ)

q(uθ | θ)
=

1

N(λ | µλ, Σλ)N(µλ | mλ, Sλ)IW (Σλ | wλ, Ωλ)

so that the acceptance probability is given by

α = min

(
1,

p(y | φ)

p(y | θ)

)

Delete Linear Term

Linear + NN(m) −→ NN(m), m ≥ 1

(θ, uθ) −→ (φ, uφ)
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where

θ =
{
β1, β2, . . . , βM , γ1, γ2, . . . , γM , σ2, µβ , σ2

β, µγ , Σγ , λ, µλ, Σλ

}

φ =
{
β1, β2, . . . , βM , γ1, γ2, . . . , γM , σ2, µβ , σ2

β, µγ , Σγ

}

uφ = {λ, µλ, Σλ}

The Jacobian of the one-to-one transformation (φ, uφ) = g(θ) is J = 1 and

p(φ | j)

p(θ | k)
=

1

p(λ | µλ, Σλ)p(µλ | mλ, Sλ)p(Σλ | wλ, Ωλ)

p(j)

p(k)
= 1 assuming Kequiprobable models p(i) =

1

K
,∀i

pj−→k

pk−→j

=
B1a

B1d

= 1 assuming B1d = B1a =
B1

2

q(uφ | φ)

q(uθ | θ)
= N(λ | µλ, Σλ)N(µλ | mλ, Sλ)IW (Σλ | wλ, Ωλ)

so that the acceptance probability is given by

α = min

(
1,

p(y | φ)

p(y | θ)

)

APPENDIX B: Add/Delete Linearized Node

We propose this move with probability B2

Add Linearized Node

Linear + NN(m) −→ Linear + NN(m + 1), m ≥ 1

(θ, uθ) −→ (φ, uφ)

where

θ =
{
β1, β2, . . . , βM , γ1, γ2, . . . , γM , σ2, µβ , σ2

β, µγ , Σγ

}

uθ = {$, ϕ1, ϕ2, . . . , ϕp, u}
φ =

{
β̃1, β̃2, . . . , β̃M , β̃M+1, γ̃1, γ̃2, . . . , γ̃M , γ̃M+1, σ̃

2, µ̃β , σ̃2
β, µ̃γ , Σ̃γ

}

The transformation φ = g(θ, uθ) is defined by

β̃j = βj , γ̃j = γj j = 1, . . . , M

β̃M+1 = $, γ̃M+1,i =
2ρϕi

(xmax
i − xmin

i )
i = 1, . . . , p

γ̃M+1,0 = 2ρu(1 − ϕ0) + ρ(2ϕ0 − 1) − (γ̃M+1,1x
zmax

1 + . . . + γ̃M+1,px
zmax

p )

σ̃2 = σ2, µ̃β = µβ , σ̃2
β = σ2

β , µ̃γ = µγ , Σ̃γ = Σγ

19



where

ϕ0 =

p∑

i=1

|ϕi|

xzmax

i =
1

2
(1 + sgn(ϕi)) xmax

i +
1

2
(1 − sgn(ϕi)) xmin

i , i = 1, . . . , p.

The Jacobian of the transformation is

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2ρ(1 − ϕ0) 0 . . . 0 0

− 2ρ

(xmax

1
−xmin

1
)

. . . 0 0

− 0 . . . 0 0

− 0 . . .
2ρ

(xmax
p−1 − xmin

p−1)
0

− 0 . . . 0
2ρ

(xmax
p − xmin

p )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
(2ρ)p(1 − ϕ0)∏p

i=1(x
max
i − xmin

i )

The proposal is given by:

u ∼ U(0, 1)

$ ∼ N(µβ , σ2
β)

b ∼ Beta(p, 2)

(ξ1, . . . , ξp−1) ∼ Dirichlet(1, 1, . . . , 1)

p(si = +1) = p(si = −1) =
1

2
, i = 1, . . . , p,

then, define
ϕi = sibξi, i = 1, . . . , p.

and it can be shown that

fϕ(ϕ1, . . . , ϕp) =
1

2p
Γ(p + 2)

(
1 −

p∑

i=1

ϕi

)
, 0 < |ϕi| < 1 −

∑

k 6=i

|ϕk| i = 1, . . . , p

Thus

p(φ | j)

p(θ | k)
= p(βM+1 | µ̃β , σ̃2

β)p
(
γM+1 | µ̃γ , Σ̃γ

) (M + 1)!

M !

p(j)

p(k)
= 1 assuming Kequiprobable models p(i) =

1

K
,∀i

pj−→k

pk−→j

=
B21d

B21a

1

M + 1
1

=
1

M + 1
assuming B2d = B2a =

B2

2

q(uφ | φ)

q(uθ | θ)
=

1
1

2p
Γ(p + 2) (1 − ∑p

i=1 ϕi)N($ | µβ , σ2
β)
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so that the acceptance probability is given by

α = min


1,

p(y | φ)p
(
γM+1 | µ̃γ , Σ̃γ

)

p(y | θ)
1

2p
Γ(p + 2) (1 − ∑p

i=1 ϕi)

(2ρ)p(1 − ϕ0)∏p
i=1(x

max
i − xmin

i )




Delete Linearized Node

Linear + NN(m + 1) −→ Linear + NN(m), m ≥ 1

(θ, uθ) −→ (φ, uφ)

where

θ =
{
β1, β2, . . . , βM , βM+1, γ1, γ2, . . . , γM , γM+1, σ

2, µβ , σ2
β, µγ , Σγ

}

φ =
{

β̃1, β̃2, . . . , β̃M , γ̃1, γ̃2, . . . , γ̃M , σ̃2, µ̃β , σ̃2
β , µ̃γ , Σ̃γ

}

uφ = {$, ϕ1, ϕ2, . . . , ϕp, u}

Select node h = 1, . . . , M+1 at random, take nodes in θ : 1, . . . , h−1, h+1, . . . , M+
1 and relabel as 1, . . . , M.
The transformation (φ, uφ) = g(θ) is defined by

β̃j = βj , γ̃j = γj j = 1, . . . , M

σ̃2 = σ2, µ̃β = µβ , σ̃2
β = σ2

β, µ̃γ = µγ , Σ̃γ = Σγ

$ = βh

ϕi =
γh,i(x

max
i − xmin

i )

2ρ
i = 1, . . . , p

u =
γh,0 + (γh,1x

zmax

1 + . . . + γh,px
zmax

p ) − ρ(2ϕ0 − 1)

2ρ(1 − ϕ0)

where

ϕ0 =

p∑

i=1

|ϕi| ,

xzmax

i =
1

2
(1 + sgn(ϕi)) xmax

i +
1

2
(1 − sgn(ϕi)) xmin

i , i = 1, . . . , p.

The Jacobian of the transformation is

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1
2ρ(1−ϕ0) 0 . . . 0 0

− (xmax

1
−xmin

1
)

2ρ
. . . 0 0

− 0 . . . 0 0

− 0 . . .
(xmax

p−1
−xmin

p−1
)

2ρ
0

− 0 . . . 0
(xmax

p −xmin
p )

2ρ

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∏p
i=1(x

max
i − xmin

i )

(2ρ)p(1 − ϕ0)
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If γh is not a linearised node then the acceptance probability is

α = 0

otherwise

p(φ | j)

p(θ | k)
=

1

p(βh | µβ , σ2
β)p (γh | µγ , Σγ)

M !

(M + 1)!

p(j)

p(k)
= 1 assuming Kequiprobable models p(i) =

1

K
,∀i

pj−→k

pk−→j

=
B21a

B21d

1
1

M + 1

= M + 1 assuming B21d = B21a =
B21

2

q(uφ | φ)

q(uθ | θ)
=

(
p∏

i=1

I[0,1−
∑

k 6=i|ϕk|](|ϕi|)
)

1

2p
Γ(p + 2)

(
1 −

p∑

i=1

ϕi

)
I[0,1](u)N($ | µβ , σ2

β)

so that the acceptance probability is given by

α = min


1,

p(y | φ)
(∏p

i=1 I[0,1−
∑

k 6=i|ϕk|](|ϕi|)
) 1

2p
Γ(p + 2) (1 − ∑p

i=1 ϕi) I[0,1](u)

p(y | θ)p (γh | µγ , Σγ)

∏p
i=1(x

max
i − xmin

i )

(2ρ)p(1 − ϕ0)




APPENDIX C: Add/Delete Irrelevant Node

We propose this move with probability B3

Add Irrelevant Node

Linear + NN(m) −→ Linear + NN(m + 1), m ≥ 1

(θ, uθ) −→ (φ, uφ)

where

θ =
{
β1, β2, . . . , βM , γ1, γ2, . . . , γM , σ2, µβ , σ2

β, µγ , Σγ

}

uθ = {βM+1, γM+1}
φ =

{
β1, β2, . . . , βM , βM+1, γ1, γ2, . . . , γM , γM+1, σ

2, µβ , σ2
β, µγ , Σγ

}

The proposal is given by

γM+1 ∼ N(µγ , Σγ)

βM+1 ∼ N(µβ , σ2
β)

rearranging γ to satisfy order constraint γ1,p < . . . < γM+1,p.
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The Jacobian of the one-to-one transformation (φ, uφ) = g(θ) is J = 1. Also

p(φ | j)

p(θ | k)
=

p(βM+1 | µβ , σ2
β)p (γM+1 | µγ , Σγ)

1

(M + 1)!

M !

p(j)

p(k)
= 1 assuming K equiprobable models p(i) =

1

K
,∀i

pj−→k

pk−→j

=
B3d

B3a

ψM+1∑M+1
k=1 ψk

=
ψM+1∑M+1
k=1 ψk

assuming B3d = B3a =
B3

2

q(uφ | φ)

q(uθ | θ)
=

1

p(βM+1 | µβ , σ2
β)p (γM+1 | µγ , Σγ)

so that the acceptance probability is given by

α = min

(
1,

p(y | φ)

p(y | θ)

(M + 1)ψM+1∑M+1
k=1 ψk

)

Delete Irrelevant Node

Linear + NN(m + 1) −→ Linear + NN(m), m ≥ 0

(θ, uθ) −→ (φ, uφ)

where

θ =
{
β1, β2, . . . , βM , βM+1, γ1, γ2, . . . , γM , γM+1, σ

2, µβ , σ2
β, µγ , Σγ

}

φ =
{
β1, β2, . . . , βM , γ1, γ2, . . . , γM , σ2, µβ , σ2

β , µγ , Σγ

}

uφ = {$, δ}

Let ψj =
1

ε
√

2π
exp

{−1

2ε2
x2

}
j = 1, . . . , M + 1 for a given ε. Choose node

h at random with probabilities pj =
ψj∑M+1

k=1 ψk

, j = 1, . . . , M + 1. Remove node h

and relabel as 1, . . . , M.
The transformation (φ, uφ) = g(θ) is defined by

$ = βh

δ = γh
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with Jacobian J = 1 and

p(φ | j)

p(θ | k)
=

1

p(βh | µβ , σ2
β)p (γh | µγ , Σγ)

M !

(M + 1)!

p(j)

p(k)
= 1 assuming K equiprobable models p(i) =

1

K
,∀i

pj−→k

pk−→j

=
B3a

B3d

1

ψh∑M+1
k=1 ψk

=

∑M+1
k=1 ψk

ψh

assuming B3d = B3a =
B3

2

q(uφ | φ)

q(uθ | θ)
=

p($ | µβ , σ2
β)p (δ | µγ , Σγ)

1

so that the acceptance probability is given by

α = min

(
1,

p(y | φ)

p(y | θ)

∑M+1
k=1 ψk

(M + 1)ψh

)

APPENDIX D: Add/Delete Duplicate Node

We propose this move with probability B4

Add Duplicate Node

Linear + NN(m) −→ Linear + NN(m + 1), m ≥ 1

(θ, uθ) −→ (φ, uφ)

where

θ =
{
β1, β2, . . . , βM , γ1, γ2, . . . , γM , σ2, µβ , σ2

β, µγ , Σγ

}

uθ = {ν, δ}
φ =

{
β1, β2, . . . , β̃h, β̃h+1, . . . , βM , γ1, γ2, . . . , γ̃h, γ̃h+1, . . . , γM , σ2, µβ , σ2

β, µγ , Σγ

}

Choose h = 1, . . . , M at random and propose
(
β̃h, γ̃h

)
and (β̃h+1, γ̃h+1) where

β̃h = βh(1 − ν)

γ̃h = γh

β̃h+1 = βhν

γ̃h+1 = γh + δ

and reject if (γ1, γ2, . . . , γh, γ̃h+1, . . . , γM ) is not ordered.
The Jacobian of the transformation φ = g(θ, uθ) is defined by
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J =

∣∣∣∣∣∣

∂
(
β̃h, γ̃h, β̃h+1, γ̃h+1

)

∂ (γh, βh, ν, δ)

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

0 1 0 1
(1 − ν) 0 ν 0
−βh 0 βh 0

0 0 0 1

∣∣∣∣∣∣∣∣
= |βh|

The proposal is given by

ν ∼ Beta(2, 2)

δ ∼ N(0, cSγ).

Thus

p(φ | j)

p(θ | k)
=

p(β̃h | µβ , σ2
β)p (γ̃h | µγ , Σγ) p(β̃h+1 | µβ , σ2

β)p (γ̃h+1 | µγ , Σγ)

p(βh | µβ , σ2
β)p (γh | µγ , Σγ)

(M + 1)!

M !

p(j)

p(k)
= 1 assuming K equiprobable models p(i) =

1

K
,∀i

pj−→k

pk−→j

=
B4d

B4d

1

M
1

=
1

M
assuming B4d = B4a =

B4

2

q(uφ | φ)

q(uθ | θ)
=

1

Beta(ν | 2, 2)N(δ | 0, cSγ)

so that the acceptance probability is given by

α = min

(
1,

p(y | φ)p(β̃h | µβ , σ2
β)p (γ̃h | µγ , Σγ) p(β̃h+1 | µβ , σ2

β)p (γ̃h+1 | µγ , Σγ) (M + 1)

p(y | θ)p(βh | µβ , σ2
β)p (γh | µγ , Σγ) M Beta(ν | 2, 2)N(δ | 0, cSγ)

|βh|
)

Delete Duplicate Node

Linear + NN(m + 1) −→ Linear + NN(m), m ≥ 1

(θ, uθ) −→ (φ, uφ)

where

θ =
{
β1, β2, . . . , βM , βM+1, γ1, γ2, . . . , γM , γM+1, σ

2, µβ , σ2
β, µγ , Σγ

}

φ =
{

β1, β2, . . . , β̃h, . . . , βM , γ1, γ2, . . . , γ̃h, . . . , γM , σ2, µβ , σ2
β, µγ , Σγ

}

uφ = {ν, δ}

select h = 1, . . . , M at random. Remove (βh+1, γh+1) and propose
(
β̃h, γ̃h

)

where

β̃h = βh + βh+1

γ̃h = γh

ν =
βh+1

βh + βh+1

δ = γh+1 − γh
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Then relabel as 1, . . . , M .
The Jacobian of the transformation (φ, uφ) = g(θ) is

J =

∣∣∣∣∣∣

∂
(
β̃h, γ̃h, ν, δ

)

∂ (γh, γh+1, βh, βh+1)

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 −1
0 0 0 1

1 0
−βh+1

(βh + βh+1)
2 0

1 0
βh

(βh + βh+1)
2 0

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣
1

βh + βh+1

∣∣∣∣

and

p(φ | j)

p(θ | k)
=

p(β̃h | µβ , σ2
β)p (γ̃h | µγ , Σγ)

p(βh | µβ , σ2
β)p (γh | µγ , Σγ) p(βh+1 | µβ , σ2

β)p (γh+1 | µγ , Σγ)

M !

(M + 1)!

p(j)

p(k)
= 1 assuming K equiprobable models p(i) =

1

K
,∀i

pj−→k

pk−→j

=
B4a

B4d

1
1

M

= M assuming B4d = B4a =
B4

2

q(uφ | φ)

q(uθ | θ)
= I(0,1)(ν)Beta(ν | 2, 2)N(δ | 0, cSγ)

so that the acceptance probability is given by

α = min

(
1,

p(y | φ)p(β̃h | µβ , σ2
β)p (γ̃h | µγ , Σγ) M I(0,1)(ν)Beta(ν | 2, 2)N(δ | 0, cSγ)

p(y | θ)p(βh | µβ , σ2
β)p (γh | µγ , Σγ) p(βh+1 | µβ , σ2

β)p (γh+1 | µγ , Σγ) (M + 1)

∣∣∣∣
1

βh + βh+1

∣∣∣∣

)
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Notes:

• Rearrangement of γ to satisfy order constraint should be done once this jump
between models has been accepted, to save computational time.

• p(y | φ) and p(y | θ) may be substituted by marginal likelihood in β

• It can be easily demonstrated that the results in appendixes A, B and C, for
models containing a linea term Linear +NN(m) also apply for corresponding
models without the linear term, NN(m).
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[15] Müller, P.; Ŕıos Insua, D. (1998), “Issues in Bayesian Analysis of Neural Net-
work Models”, Neural Computation, 10, 571-592.

[16] Neal, R.M. (1996), Bayesian learning for neural networks, Springer-Verlag.
New York

[17] Newton, M. A. and Raftery, A. E. (1994), “Approximate Bayesian inference
with the weighted likelihood bootstrap (with discussion)”, Journal of the Royal
Statistical Society B, 56(1):3–48.

[18] Priestley, M.B. (1988) Non-linear and Non-stationary Time Series Analysis.
Academic Press, London.

[19] Remus, W., O’Connor, M. and K. Griggs, (1998), “The Impact of Information
of Unknown Correctness on the Judgmental Forecasting Process”, International
Journal of Forecasting , 14, pp. 313-322.

[20] Richardson, S. and Green, P.J. (1997), “On Bayesian analysis of mixtures with
an unknown number of components”, Journal of the Royal Statistical Society
B, 59, 731-792.
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Figure 7: Annual number of lynx trappings in the Mackenzie River Distric of North–West
Canada for the period 1821 to 1934 (Piestley 1988)
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Figure 8: Lynx Data:Trace plots of the Markov chains for the number of hidden nodes,
from two well dispersed starting points, M = 0 and M = 15.
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Figure 9: Lynx Data: Histogram of the posterior distribution of M , suggesting M = 2
nodes for the hidden layer of the FFNN term.
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Figure 10: Time series (log-transformed and detrented) and predicted values for the test
data set.
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Figure 13: Airline data: Histogram of the posterior distribution of M , suggesting M = 2
nodes for the hidden layer of the FFNN term.
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Figure 14: Airline time series data and predicted values for the test data set.
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