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Abstract

We consider the choice of an optimal sample size for multiple comparison problems. The

motivating application is the choice of the number of microarray experiments to be carried

out when learning about differential gene expression. However, the approach is valid in

any application that involves multiple comparisons in a large number of hypothesis tests.

We discuss two decision problems in the context of this setup: the sample size selection

and the decision about the multiple comparisons. We adopt a decision theoretic approach,

using loss functions that combine the competing goals of discovering as many differentially

expressed genes as possible, while keeping the number of false discoveries manageable. For

consistency, we use the same loss function for both decisions. The decision rule that emerges

for the multiple comparison problem takes the exact form of the rules proposed in the recent

literature to control the posterior expected false discovery rate (FDR). For the sample size

selection, we combine the expected utility argument with an additional sensitivity analysis,

reporting the conditional expected utilities, and conditioning on assumed levels of the true

differential expression. We recognize the resulting diagnostic as a form of statistical power,

facilitating interpretation and communication.

As a sampling model for observed gene expression densities across genes and arrays, we

use a variation of a hierarchical Gamma/Gamma model. But the discussion of the decision

problem is independent of the chosen probability model. The approach is valid for any model

that includes positive prior probabilities for the null hypotheses in the multiple comparisons,

and that allows for efficient marginal and posterior simulation, possibly by dependent Markov

chain Monte Carlo simulation.
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1 Introduction

We consider the problem of sample size selection for experiments involving massive multiple

comparisons. Approaching the sample size question as a decision problem, we argue that

a solution needs to address the choice of sample size as part of a larger decision problem,

involving both the sample size decision before carrying out the experiment and the later

decision about the multiple comparisons once the data has been collected. We consider loss

functions that combine the competing goals of controlling false-positive and false-negative

decisions. For a variety of reasonable loss functions, we show that the form of the terminal

decision is the same: reject all comparisons with marginal posterior probability beyond a

certain threshold. We prove a formal result about the slow rate of change of the expected

utility over a range of practically relevant sample sizes; this suggests that the preposterior

expected utility alone may not suffice for a decisive sample size recommendation. Motivated

by this, we conclude by recommending appropriate summaries of sensitivity of the expected

utility with respect to the parameters of interest. The discussion includes specific algorithms

to evaluate the proposed diagnostics. With a view towards the motivating application, we

propose a nonparametric probability model that allows the use of pilot data to learn about

the relevant sampling distribution for the sample size decision. Formally, this amounts to

using the posterior predictive distribution from the pilot data as the prior model that is used

in the sample size calculation.

Our discussion is motivated by the specific problem of choosing the number of replications

in microarray experiments. Gene expression microarrays are technologies for simultaneously

quantifying the level of transcription of a large portion of the genes in an organism (Schena

et al., 1995; Duggan et al., 1999). (For a recent review of microarray technology and related

statistical methods see, for example, Kohane et al., 2002.) The range of applications is

broad. Here we focus on controlled experiments that aim to search or screen for genes whose

expressions are regulated by modifying the conditions of interest, either environmentally

or genetically. There are a number of pressing biological questions that can be addressed

using this type of genomic screening. Because microarrays are costly, the design of the ex-

periment and choice of sample size result in a difficult trade-off between the allocation of

limited research resources and statistical learning. Our approach is applicable to the process

of selecting the number of biological replicates (such as the number of mice to be assigned

to each group), as well as the selection of the number of technological replicates (such as the
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number of separate aliquots of RNA to be extracted from two biological samples that are

being compared). In our theoretical discussion, we use the term “replicate” to refer to ei-

ther type. Each situation requires a different interpretation of the array-to-array variability,

as well as different priors, or different pilot samples. Our illustration specifically concerns

biological replicates. General issues of experimental design in microarray experiments, be-

yond the sample size selection considered in this article, are discussed by Kerr and Churchill

(2001), Yang and Speed (2002) and Simon et al. (2002).

The general goal of the genomic screening is to discover as many as possible of the

genes that are differentially expressed across the experimental conditions, while keeping the

number of false discoveries at a manageable level. The consequences of a false discovery are

often similar across genes. The decision-making process when selecting a sample size can

benefit from explicitly acknowledging these experimental goals by following a formal decision

theoretic approach. Sample size selection using decision theoretics, including the multistage

nature central to our discussion, was formalized within a Bayesian framework as early as

1961 through the work of Raiffa and Schlaifer (1961). (See also Lindley, 1997 or Adcock,

1997 and references therein for discussions of sample size determination.)

Following this paradigm, we present a general decision theoretic framework for the choice

of sample size for genomic screening or for use in a similar selection problem. Central to

our analysis is the concept of the false-discovery rate (FDR), introduced by Benjamini and

Hochberg (1995). In controlled experiments, it is plausible to assume that genes can be

divided into two groups: truly altered and truly unaltered genes. For a given approach to

selecting a set of putatively altered genes, the FDR is the fraction of truly unaltered genes

among the genes classified as differentially expressed. Commonly used microarray software

uses the FDR to guide gene selection (see, for example, Tusher et al., 2001). Applications

of FDRs to microarray analysis are discussed by Storey and Tibshirani (2003). Extensions

are discussed by Genovese and Wasserman (2002), who also introduce the definition of the

posterior expected FDR as we use it here. We show that the decision theoretic approach

leads to a multiple comparison decision of the form described in Genovese and Wasserman

(2002). They focus on decision rules of the following kind. Assume that for each comparison

some univariate summary statistic vi is available. This could be, for example, a p-value or

any other univariate statistic related to the comparison of interest. All comparisons with vi

beyond a certain cutoff t are considered discoveries. Central to their approach is the use of

an upper bound on the FDR to calibrate that cutoff t.
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In the context of microarray experiments, important initial progress towards the evalu-

ation of sample sizes has been made by Pan et al. (2002), who developed traditional power

analyses for use in the context of microarray experiments. Their modeling is realistic in

that it acknowledges heterogeneity in gene-specific noise, and specifies a mixture model

for regulated and unregulated genes. Further progress, however, is necessary. Pan et al.

(2002) do not exploit heterogeneity in developing screening statistics, as done by hierarchi-

cal models. This can potentially underestimate the power, especially in the critical range of

experiments with very few replicates. Also, their power analysis considers a single effect size

for all regulated genes. Finally, explicit consideration of properties of the entire selection,

such as FDR, is preferable in the context of multiple testing. Zien et al. (2002) propose an

alternative approach to an informed sample size choice. They consider ROC-type curves,

showing achievable combinations of false-negative and false-positive rates. Mukherjee et al.

(2003) discuss sample size considerations for classification of microarray data. They assume

a parametric learning curve for empirical error as a function of the sample size. Their ap-

proach is based on estimating the parameters in that learning curve. Lee and Whitmore

(2002) consider an ANOVA setup, including, among other parameters, interaction effects for

the gene and biologic conditions. Hypothesis testing for these interactions formalizes the

desired inference about differential expression. They assume approximate normality for an

estimator of these interaction effects and proceed with a conventional power analysis. Bickel

(2003) proposes a framework for inference on differential gene expression that includes a loss

function consisting of a payoff for correct discoveries and a cost for false discoveries. (See

Section 2.1 for a definition of these events.) The net desirability function defined in Bickel

(2003) is equivalent to one of the loss functions introduced in Section 2.1.

As in many traditional sample size problems, the practical use of the proposed approach

will be as a decision support tool. We do not expect investigators to blindly trust the

proposed solution. Rather, we envision that an investigator may be operating under budget

and resource constraints that allow for a narrow range of sample size choices. The proposed

methods can guide the choice within that range by informing the investigator about the

likely payoffs and decision summaries.

In Section 2 we outline the decision problem and our approach to the solution in a

general form, without referring to a specific probability model. In Section 3 we develop

an efficient simulation approach for evaluating the required sample size selection criteria.

We define a Monte Carlo simulation method that allows us to evaluate the expected false-
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negative rate (FNR) and power across the sample sizes. We demonstrate that, because of

their preposterior nature, the required simulations are easier and less computation-intensive

compared to posterior simulation in the underlying probability model. In Section 4 we

introduce a specific probability model that is used in Section 5 to show results in an example.

Section 6 concludes with a final discussion.

2 The Decision Problems

To highlight the general nature of the proposed approach, we first proceed without reference

to a specific probability model or comparison of interest. We let ω and y denote the model

parameters and expression measurements, and let zi ∈ {0, 1} denote an indicator for the

regulation of gene i. Regulation is broadly defined to include any of the typical questions

of interest, such as differential expression across two conditions; time trends; sensitivity to

at least one out of a panel of compounds; and so forth. We assume that the probability

model includes indicators zi as parameters, or as easily imputed latent variables. We will

write yJ when we want to highlight that the data y is a function of the sample size J . We

assume that the underlying probability model allows for efficient posterior simulation. Let

vi = P (zi = 1|y) denote the marginal posterior probability for the i-th comparison. Com-

putation of vi could involve some analytical approximations, like empirical Bayes estimates

for hyperparameters, etc. In Section 4, we will introduce the probability model used in our

implementation and discuss posterior inference in that model.

An important aspect of the problem is that the earlier decision about the sample size

needs to take into account the later decision about gene selection. This will be either a

selection (also referred to as discovery, or rejection, and denoted as di = 1 for comparison i),

or not (also referred to as a negative and denoted as di = 0). Decision theoretic approaches

to sample size selection assume that the investigator is a rational decision maker choosing

an action that minimizes the loss of the possible consequences – averaging with respect to

all the relevant unknowns (Raiffa and Schlaifer, 1961; DeGroot, 1970). At the time of the

sample size decision the relevant unknowns are the data y, the indicators z = (z1, . . . , zn) and

the model parameters ω. The relevant probability model with respect to which we average

is the prior probability on (z, ω) and the conditional sampling distribution on y given (z, ω).

At the time of the decision about multiple comparisons the data y is known and the relevant

probability model is the posterior distribution conditional on y.
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In the traditional backward induction fashion the solution proceeds by first considering

the terminal multiple comparison decision of the gene selection. Knowing the optimal policy

for the eventual gene selection we can then approach the initial sample size problem. It is thus

natural to first discuss inference about the multiple comparison decisions di, i = 1, . . . , n.

2.1 Terminal Decision

The choice of a decision rule for multiple comparisons is driven by the following considera-

tions. First, the rule should have a coherent justification as the solution that minimizes the

expected loss under a sensible loss function. Second, inference about the multiple compari-

son decision is nested within the sample size selection, making computational efficiency an

important issue. In the type of experiments considered here, a relatively small number of

genes are regulated, and the noise levels are relatively high. Finally, although our approach

is based on joint probability models on data and parameters, i.e., in essence Bayesian, we

are concerned about frequentist operating characteristics for the proposed rule. The use of

frequentist properties to validate Bayesian inference is common practice in the context of

medical decision making.

With these considerations in mind, we propose loss functions that have the following

characteristics: they capture the typical goals of genomic screening; they are easy to evaluate;

lead to simple decision rules; and can be interpreted as generalizations of frequentist error

rates. We consider four alternative loss functions that all lead to terminal decision rules

of the same form. We start with a notation for various summaries that formalizes the

two competing goals of controlling the false-negative and false-positive decisions. Writing

D =
∑

di for the number of discoveries, we let

FDR(d, z) =

∑
di(1− zi)

D + ε
and FNR(d, z) =

∑
(1− di)zi

n−D + ε
(1)

denote the realized false-discovery rate and false-negative rate, respectively. FDR(·) and

FNR(·) are the percentage of wrong decisions, relative to the number of discoveries and

negatives, respectively (the additional term ε avoids a zero denominator). (See, for example,

Genovese and Wasserman, 2002, for a discussion of FNR and FDR.) Conditioning on y and

marginalizing with respect to z, we obtain the posterior expected FDR and FNR

FDR(d, y) =

∫
FDR(d, z) dp(z | y) =

∑
di(1− vi)/(D + ε)
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and

FNR(d, y) =

∫
FNR(d, z) dp(z | y) =

∑
(1− di)vi/(n−D + ε).

Let FD =
∑

di(1 − vi) and FN =
∑

(1 − di)vi denote the posterior expected count of false

discoveries and false negatives. We consider four ways of combining the goals of minimizing

false discoveries and false negatives. The first two specifications combine false-negative and

false-discovery rates and numbers, leading to the following posterior expected losses:

LN(d, y) = c FD + FN,

and LR(d, y) = c FDR + FNR. The loss function LN is a natural extension of (0, 1, c) loss

functions for traditional hypothesis testing problems (Lindley, 1971). From this perspective

the combination of error rates in LR seems less attractive. The loss for a false discovery and

false negative depends on the total number of discoveries or negatives, respectively. Alter-

natively, we consider bivariate loss functions that explicitly acknowledge the two competing

goals, leading to the following posterior expected losses:

L2R(d, y) = (FDR, FNR), L2N(d, y) = (FD, FN).

Using posterior expectations we marginalize with respect to the unknown parameters, leaving

only d and y as the arguments of the loss function. The sample size is indirectly included in

the dimension of the data vector y. For the bivariate loss functions we need an additional

specification to define the minimization of the bivariate functions. A traditional approach

to select an action in multicriteria decision problems is to minimize one dimension of the

loss function while enforcing a constraint on the other dimensions (Keeney et al., 1976). We

thus define the optimal decisions under L2N as the minimization of FN subject to FD ≤ αN .

Similarly, under L2R we minimize FNR subject to FDR ≤ αR.

Under all four loss functions the optimal decision for the multiple comparisons takes the

same form.

Theorem 1 Under all four loss functions the optimal decision takes the form

di = I(vi ≥ t∗).

The optimal cutoff t∗ is t∗N = c/(c + 1), t∗R(y) = v(n−D∗), t∗2N(y) = min{s : FD(s, y) ≤ αN},
and t∗2R(y) = min{s : FDR(s, y) ≤ αR}, under LN , LR, L2N and L2R, respectively. In the

expression for t∗R, v(i) is the i-th order statistic of {v1, . . . , vn}, and D∗ is the optimal number

of discoveries. See the proof in the appendix for a constructive definition of D∗.
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The proof proceeds by straightforward algebra. (See the appendix for details.) Under

LR, L2N and L2R, the optimal threshold t∗ depends on the observed data. The nature

of the terminal decision rule di is the same as that in the work of Genovese and Wasserman

(2002), which is a more general rule, allowing the decision to be determined by cutoffs on

any univariate summary statistic vi. Using vi = P (zi = 1|y) is a special case.

For simplicity we will focus on L = L2N only in the upcoming discussion (omitting the

subscript 2N to simplify the notation). In Section 5.3 we will revisit the other three loss

functions. Also, by a slight abuse of the notation, we write d = t for the decision rule

di = I(vi ≥ t). Finally, we note that not all loss functions lead to decisions di = I(vi ≥ t).

For example, assuming a loss of a false negative that depends on the true level of differential

expression would lead to different rules. One could argue that discovering a gene that

shows a very small differential expression in a given experiment may not be as interesting as

discovering one that shows a major change in its expression.

2.2 Sample Size

2.2.1 Marginal FN and FNR

In contrast to the terminal decision of the gene selection, which is made conditional on

the observed data, the sample size is decided prior to conducting the experiment. Thus

we now consider the marginal prior mean of the proposed loss functions, also known as

the preposterior expected loss (Raiffa and Schlaifer, 1961), after substituting the optimal

terminal decision for the multiple comparison decision. The relevant loss function Lm(J) for

the sample size selection is

Lm(J) = E[min
d
{L(d, y)}] = E[min

d
{FN(d, yJ) | FD ≤ αN}] = E[FN(t∗(yJ), yJ)}] (2)

The conditioning bar in the nested optimization indicates that the minimization is subject to

the bound on FD. The sequence of alternating between the expectation and the optimization

is characteristic for sequential decision problems. (See, for example DeGroot, 1970, and

Berger, 1985, for a discussion of sequential decision problems in general.) The expectation is

determined with respect to the prior probability model on the data yJ under a given sample

size J . The only argument left after determining the expectation and the minimization is

the sample size J . The nested minimization with respect to d is the solution of the multiple

comparison problem. It reduces to di = I{vi > t∗(yJ)}. We will denote the preposterior
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expected FN by FNm(J) = E[FN(t∗(yJ), yJ)], with the bound on FD being implicit in the

definition of t∗(yJ). Thus we could alternatively write (2) as Lm(J) = FNm(J). We use

analogous definitions for FNRm, FDRm and FDm. The latter is equal to αN by definition of

t∗(yJ).

In Section 3, we will introduce a simulation-based algorithm for a practical evaluation of

the expectation and nested optimization in (2). Using the algorithm one could evaluate and

then plot the marginal expected utility, i.e., FNm, against J to select a sample size. At this

time one could add a (deterministic) sampling cost, if desired. But in practical application

this would require the difficult choice of a relative weight for the sampling cost versus an

inference loss. Alternatively, we take a goal-oriented perspective and use the plot of Lm(J)

versus the sample size J to find a sample size for any set goal of Lm(J).

However, in doing so a practical complication arises. For relevant sample sizes of J ≤ 20

the decrease in Lm(J) is too flat to allow a conclusive choice of sample size. (See Figure 1a

for an example.) The slow rate of decrease is a general feature of FNR and FN.

Theorem 2 Consider the three loss functions L = L2N , LN , and L2R. The false-negative

rate and counts of FNR and FN decrease asymptotically as

FNR(t∗, yJ) = OP (
√

log J/J),

where t∗ generically indicates the optimal cutoff under each of the three loss functions, and

FN(t∗, yJ) = OP (n
√

log J/J).

For both results we have to assume that the genes are “randomly chosen,” i.e., that a fraction

p, 0 < p < 1, of the genes are truly differentially expressed. In other words, we assume that

the level of differential expression is neither always equal to zero (or very small), nor always

different from zero. A formal argument is given in the appendix. The argument starts with

a Laplace approximation for vi = P (zi = 1 | yJ). Based on this approximation we show

that only genes with a low or zero differential expression are included in the negative set,

i.e., the set of genes with di = 0. We then approximate the average in FNR (or FN) by an

integral, exploiting the fact that these are genes with small differential expressions. Finally,

we recognize that the integral expression is on the order of
√

log J/J .
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2.2.2 Conditional Preposterior Expected Utility

The relatively flat nature of the expected utility Lm(J) does not allow for a conclusive sample

size recommendation. A natural next step is to investigate the expected utility as a function

of an assumed true value for some key parameters of the probability model. Specifically,

we assume that the probability model includes a parameter ρi that represents the level of

differential expression for gene i, with ρi = 0 if zi = 0 and ρi 6= 0 when zi = 1. For example,

in the probability model discussed in Section 4 we would use ρ = log θ1/θ0. We thus proceed

by considering the expected utility, conditional on an assumed true level of ρi. Recall the

definition of FN as the false-negative count. Conditioning on ρi only changes the term

that is related to gene i. For a large n, conditioning ρi for one gene leads to only negligible

changes in inference for other genes (a posteriori, as well as a priori). Finally, note that for

ρi 6= 0 gene i only contributes to FN, not to FD. Thus, we can characterize the conditional

expected utility as a function of ρi by considering the relevant term in FNm:

β(J, ρi) = P{vi(yJ) > t∗ | ρi} =

∫
I(vi(yJ) > t∗) dp(yJ | ρi), (3)

writing vi(yJ) to highlight the nature of the marginal posterior probability vi as a function of

the data. The expectation is determined with respect to the joint probability model on data

y. In particular, the expected utility appropriately adjusts for dependencies, uncertainties

on other model parameters, and the entire process of finding and applying t∗(yJ). Assuming

that the genes are a priori exchangeable, the marginal expectation is the same for all i,

allowing us to drop the i subindex.

The diagnostic β(J, ρ) has interesting interpretations. We define it as the term in the

conditional expected utility that varies as a function of ρi. Our main reason to propose it

is due to its link with the traditional notion of power. The definition of β is essentially the

power to test one hypothesis in the multiple comparison decision, although with an added

twist of marginalizing it with respect to all other parameters. To simplify the terminology,

we will refer to β(J, ρ) as “power,” with the understanding that the definition includes the

mentioned marginalizations. Figure 2 shows a typical example.

Thus the following modification to the approach outlined in Section 2.2.1 emerges. The

investigator fixes a minimum level of differential expression that is of interest in the given

experiment, and the desired probability of discovering a gene that is differentially expressed

at that level. Inspection of a power plot like Figure 2, together with FNm and FDm in the

marginal loss function allows the investigator to obtain an informed sample size choice. The
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FDm and FNm plots, and plots of related summaries FDRm and FNRm, add the experiment-

wise dimension to the marginal, comparison-wise summary that provided by the power plot.

It tells the investigator how many false negatives might be missed, averaging over the range

of likely differential expression levels and summing over all genes. Computation of β(J, ρ) is

achieved within the same preposterior simulation that is used to evaluate FNm and FDm.

3 Simulation

The described approach to sample size selection involves several calculations that are typi-

cally analytically intractable. Details depend on the specific probability model. Often the

posterior mean probabilities vi, the threshold t∗(yJ), and the expected FNR are not available

in closed form. However, all can be computed by Monte Carlo simulation. In this section

we describe how such Monte Carlo simulation is implemented. Before we give a step-by-step

algorithm, we introduce the notations and review the important steps in the algorithm in

words. The discussion is still possible without reference to a particular probability model.

For a given sample size J we simulate data yJ ∼ p(yJ). Simulating from the marginal

p(yJ) =
∫

p(yJ | ω, z) dp(ω, z) is conveniently implemented by first generating “true” param-

eters (ω, z) from the prior, and then generating from the assumed sampling model p(yJ | ω, z)

given the simulated parameter. To distinguish this prior simulation from a posterior MCMC

simulation that will be required later in the algorithm, we mark the realizations of this prior

simulation by a superindex as in ωo, etc.

For each simulated data set yJ we compute the marginal posterior probabilities vi =

p(zi = 1 | yJ) and evaluate FD(t, yJ) and FDR(t, yJ) on a grid over t to find the optimal cutoff

t∗(yJ). Plugging in the optimal cutoff t∗ in di = I(vi > t), we evaluate the posterior means

FN(t∗, yJ) and FNR(t∗, yJ). Averaging over yJ by (independent) Monte Carlo simulation,

with repeated simulation of yJ ∼ p(yJ), we compute

Lm(J) = EyJ

{
FN(t∗, yJ)

}
. (4)

The nonlinear thresholding di = I(vi > t∗) implicit in the definition of FN hinders the

interpretation of (4) as one joint integral with respect to the joint distribution p(ω, yJ) on

parameters and data. Instead we need to proceed with two nested steps, as described above.

Finally, evaluating (4) across J we find the sample size J∗, which allows us to achieve a

desired marginal expected loss.
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The information in the marginal loss Lm(J) is supplemented by power curves β(J, ρ).

Power β(J, ρ) as defined in (3) is a summary of the preposterior expected utility. It is

evaluated as part of the same simulation described above to find Lm. For each simulated

experiment we record (J, ρo
i , vi, di), i = 1, . . . , n. Here ρo

i is the true simulated level of the

differential expression. The recorded simulations are then arranged by J to compute FNm

as described above. Arranging the same simulations by J and ρ (possibly on a grid) we

estimate β(J, ρ), which can be summarized in plots like those in Figure 2.

Implementation is facilitated by several simplifications that increase the computational

efficiency. First, we will use common random numbers across J , in the following sense. We

consider sample sizes on the interval J0 ≤ J ≤ J1. We start by generating one large sample

yJ1 , and use appropriate subsamples yJ ⊂ yJ1 to compute FNm(J), FDm(J), FNRm(J) and

FDRm(J), for J over a grid J0 ≤ J ≤ J1. Using the common underlying data reduces

sampling variation across J .

Another simplification arises in the setup of the posterior simulations required to evaluate

the posterior expected FN(t, yJ) and FD(t, yJ). Both require posterior simulation ω ∼
p(ω|yJ) by MCMC. In the context of the preposterior simulation we can start the MCMC

at the true parameter values ωo used to simulate the data yJ . Details are explained in the

step-by-step algorithm below.

Finally, when computing Lm(J), we borrow strength across different sample sizes. In-

stead of averaging separately for each J the computed values L(t∗, yJ) for that J , we proceed

as follows. Consider a scatterplot of all pairs (J, L(t∗, yJ)). We fit a smooth curve L̂m(J)

through all points of the scatterplot. This formalizes the borrowing strength across different

sample sizes J , exploiting the fact that Lm(J) is smooth across J . In fact, we recommend

enforcing the smooth fit L̂m to be monotone, decreasing, and to follow the (log J/J) asymp-

totics. We used a least squares fit of a linear regression of the observed FN(t∗, yJ) values

on
√

log J/J . For comparison, we fit a smoothing spline without any such constraints. The

spline fit is practically indistinguishable from the simple regression, validating the use of the

asymptotic law for the curve fitting. (See Section 5.)

Algorithm 1: Sample Size Determination

1. Simulation: Loop over repeated simulations yJ1 ∼ p(yJ1).

1.1. Prior simulation (ωo, zo) ∼ p(ω, z).
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1.2. Data simulation: yJ1 ∼ p(yJ1 | ωo, zo).

We simulate data for the largest sample size J1 considered in the design.

1.3. Loop over J : loop over a grid of sample sizes J = J1, . . . , J0.

Let yJ ⊂ yJ1 denote the size J subset of the maximal data set.

1.3.1. Posterior simulation ω ∼ p(ω|yJ).

a. Initialize MCMC posterior simulation with (ω, z) = (ωo, zo).

b. Simulate S transitions of the posterior MCMC.

1.3.2. Posterior probabilities:

Compute vi = P (zi = 1|yJ) as the appropriate ergodic average and evaluate

FD(t, yJ) =
∑

(vi > t) (1− vi) and FDR(t, yJ) = FD(t, yJ)/(D + ε)

for t ∈ {v1, . . . , vJ} and find the optimal cutoff t∗(yJ).

Record
(
J, FD(t∗, yJ), FN(t∗, yJ), FDR(t∗, yJ), FNR(t∗, yJ)

)
.

1.3.3. Power: Let di = I(vi > t∗) and record the triples (J, ρo
i , di).

2. Curve Fitting of Monte Carlo Experiments:

2.1. Preposterior expectations Lm(J), FDm, FNm, FDRm and FNRm: For each of

the last four quantities fit a curve through the observed pairs (J, FN), etc. Use

the asymptotic expressions reported in Theorem 1 to guide the curve fitting.

2.2. Power vi: Use the triples (J, ρo
i , di) computed in step 1 to estimate β(J, ρ).

3. Optimal sample size:

Use L̂m(J) and power curves as in Figure 2 to make an informed sample size choice.

4 The Probability Model

Our approach to sample size selection assumes an encompassing probability model that

specifies a joint distribution across comparisons and across repeated experiments. In general,

the model should be sufficiently structured and detailed to reflect the prior expected levels of

noise, a reasonable subjective judgment about the likely numbers of differentially expressed

genes, and some assumption about dependencies, if relevant. It should also be easy to include

prior data when available.
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The design argument can be developed with a simplified model, ignoring all details of

the data cleaning process, including the spatial dependence of measurement errors across the

microarray, correction for misalignments, etc. While such detail is critical for the analysis

of the observed microarray data, it is an unnecessary burden for the design stage. The

variability resulting from preprocessing and normalization can be subsumed as an aggregate

in the prior description of the expected noise. In the following discussion we thus assume

that the data are appropriately standardized and normalized and that the noise distribution

implicitly includes the consideration of those processes. (See, for example, Tseng et al., 2001;

Baggerly et al., 2001; or Yang et al., 2002, for a discussion of the process of normalization.)

For the implementation in the example we choose a variation of the model introduced in

Newton et al. (2001) and Newton and Kendziorski (2003). We focus on the comparison of

two conditions and assume that data will be available as arrays of appropriately normalized

intensity measurements Xij and Yij for gene i, i = 1, . . . , n, and experiment j, j = 1, . . . , J ,

with X and Y denoting the intensities in the two conditions.

Newton et al. (2001) propose a hierarchical Gamma/Gamma model. The model starts

by assuming that the observed intensities are sampled from Gamma distributions, with

a conjugate Gamma prior on the scale parameters. The model includes a positive prior

probability mass for matching the means of the Gamma distribution for the same gene

under the two conditions of interest. For the purpose of the sample size design we extend

the model to multiple experiments, j = 1, . . . , J . We assume a Gamma sampling distribution

for the observed intensities Xij, Yij for gene i in sample j,

Xij ∼ Gamma(a, θ0i) and Yij ∼ Gamma(a, θ1i). (5)

The scale parameters are gene-specific random effects (θ0i, θ1i), with positive prior probability

for a tie,

Pr(θ0i = θ1i) = Pr(zi = 0) = p.

Conditional on latent indicators zi for differential gene expression, zi = I(θ0i 6= θ1i), we

assume conjugate Gamma random effects distributions

θ0i ∼ Gamma(a0, ν)

(θ1i|zi = 1) ∼ Gamma(a0, ν) and (θ1i|zi = 0) ∼ Iθ0i
(θ1i). (6)

The model is completed with a prior p(η) for the parameters η = (a, a0, ν, p). In the imple-

mentation for the example in Section 5 we fix ν. We assume a priori independence and use
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marginal Gamma priors for a0 and a, and a conjugate Beta prior for p. As in Newton et

al. (2001), the above model leads to closed-form marginal likelihoods p(Xi, Yi | zi = 0, η)

p(Xi, Yi | zi = 1, η) and p(Xi, Yi | η) after integrating out θ1i, θ0i; but which are still condi-

tional on η = (p, a, a0). This greatly simplifies the posterior simulation.

We add two more generalizations to the model. First, we want to modify the model to

allow the use of a pilot data set to learn about the sampling distribution of the observed gene

expressions across genes and repeated samples. We envision a system where the investigator

collects some pilot data (on control tissue) before going through the sample size argument.

These pilot data could then be used to learn about the important features of the sampling

distribution. If the observed pilot data can be adequately fit by the marginal model p(Xi|zi =

0) under the Gamma/Gamma hierarchical model, then the sample size design should proceed

as before. If, however, the pilot data show evidence against the Gamma/Gamma model,

then the system should estimate a model extension and proceed with the extended model.

A convenient way to achieve the desired extension is a scale mixture extension of the basic

model (5). In particular, we assume

Xij ∼
∫

Ga(a, θ0i rij) dp(rij | w, m) and Yij ∼
∫

Ga(a, θ1i sij) dp(sij | w, m) (7)

where p(r | w, m) is a discrete mixing measure with P (r = mk) = wk (k = 1, . . . , K). Loca-

tions m = (m1, . . . ,mK) and weights w = (w1, . . . , wK) parameterize the mixture. To center

the mixture model at the basic model, we fix m1 = 1.0 and assume a high prior probability

for a large weight w1. We use the same mixture for sij, P (sij = mk) = wk. The model is

completed with mk ∼ Ga(b, b), k > 1 and a Dirichlet prior w ∼ DirK(M ·W, W, . . . ,W ). Se-

lecting a large factor M in the Dirichlet priors assigns a high prior probability for a large w1.

By assuming a dominating term with m1 = 1.0 and E(m2) = . . . = E(mK) = 1, we allocate

a large prior probability for the basic model and maintain the interpretation of ρi = θ0i/θ1i

as the level of differential expression.

A concern related to microarray data experiments prompts us to introduce a further

generalization to allow for the occasional presence of slides that are outliers compared to the

other arrays in the experiment. This happens for reasons unrelated to the biologic effect of

interest, but needs to be accounted for in the modeling, nevertheless. We achieve this by

adding a second mixture to (7)

(Xij|rij, gj) ∼ Ga(a, θ0i gj rij) and (Yij|sij, gj) ∼ Ga(a, θ1i gj sij), (8)
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with an additional slide-specific scale factor gj. Paralleling the definition of p(rij | w, m),

we use a finite discrete mixture P (gj = mgk) = wgk, k = 1, . . . , L with a Dirichlet prior

(wg1, . . . mgL) ∼ DirL(Mg ·Wg, Wg, . . . ,Wg), mg1 = 1 and mgk ∼ Ga(bg, bg) for k = 2, . . . , L.

An important feature of the proposed mixture model is its computational simplicity. We

will proceed in two stages. In a first stage we use the pilot data to fit the mixture model.

Let Xo
ij, j = 1, . . . , Jo, denote the pilot data. We will use posterior MCMC simulation to

estimate the posterior mean model. This is done once, before starting the optimal design.

Posterior simulation in mixture models like (8) is a standard problem. We include reversible

jump moves to allow for random size mixtures (Green, 1995).

We then fix the mixture model at the posterior modes K̂ and L̂, and the posterior means

(w̄, m̄, w̄g, m̄g) = E(w,m, wg, mg | Xo, K̂, L̂). We proceed with the optimal sample size

approach, using model (8) with the fixed mixtures. The procedure, including all posterior

and marginal simulation, is done exactly as before, with only one modification. We add a

step to impute rij, sij and gj. Conditional on (rij, sij, gj), we replace Xij by Xij/(rij gj) and

Yij by Yij/(sij gj). Everything else remains unchanged. Updating the mixture variables rij,

sij and gj is straightforward. The following algorithm summarizes the proposed approach

with the pilot data.

Algorithm 2: Sample Size Determination with Pilot Data

1. Pilot data: Assume pilot data Xo = {Xo
ij, i = 1, . . . , n, j = 1, . . . , Jo}, from control

tissue is available.

2. Mixture model: Estimate the mixture model and report the posterior modes (K̂, L̂), and

the conditional posterior means (w̄, m̄, w̄g, m̄g) = E(w,m, wg, mg | Xo, K̂, L̂). Both are

computed by posterior MCMC simulation for the mixture model (8).

3. Optimal Sample Size: Proceed as in Algorithm 1, replacing Xij with Xij/(rijgj) and Yij

by Yij/(sijgj), and adding an additional step in the posterior MCMC to update the

mixture indicators rij and sij (Step 1.2. in Algorithm 1).

The indicators are initialized with the (true) values from the data simulation. The

mixture model parameters remain fixed at (w̄, m̄, w̄g, m̄g, K̂, L̂).

Rescaling with the iteratively updated latent scale factors rijgj and sijgj formalizes the use

of the pilot data to inform the sample size selection by changing the prior simulation (as in
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Algorithm 1) to the preposterior simulation, conditional on the pilot data.

5 Example

We analyze the data reported in Richmond et al. (1999). The data are also used as an

illustration in Newton et al. (2001). We use the control data to plan for a hypothetical

future experiment.

5.1 Implementation

We proceed as proposed in Algorithm 2. First, we estimate the mixture model (8), using

the available control data as a pilot data set Xo. Estimation of (8) is implemented as a

Markov chain Monte Carlo posterior simulation with reversible jump (RJ) moves. We use

split-merge moves (Richardson and Green, 1997) for both mixtures defined in (8). Recall

that the mixtures are defined with respect to the discrete mixing measures p(rij | w, m) and

p(gj | wg, mg). The third mixture, with respect to sij, does not appear in the model since

the pilot data includes only the control data. We find the posterior mode for the size of the

mixture models at K̂ = 3 and L̂ = 2.

To define the probability model for the design calculations, we fix K = 3 and L = 2

and set the mixture model parameters (m, w, mg, wg) at their posterior means (conditional

on the fixed size of the mixture). Maintaining the randomness of the mixture parameters

in the design model would not significantly complicate the procedure, but it would also not

contribute much to the final inference. Implementing Algorithm 1, we compute the expected

losses, and power β(J, ρ) across a grid of sample sizes J .

Algorithm 1 is implemented as three nested loops. The outer loop is simply a repeated

simulation from model (8), with fixed mixture of gamma priors for the scale factors rij, sij

and gj. We start by generating the hyperparameters η = (a, a0, p) for the prior model, given

in (5) through (8) (Step 1.1 of Algorithm 1). Let Ga(α, β) denote a Gamma distribution

with a shape parameter α and a mean of α/β. We use a Ga(2, 2) prior for a, a Ga(12, 1)

prior for a0, and a Be(1, 10) Beta prior for p. We include the additional prior constraints

a < 1, a0 < 1 and 0.01 < p < 0.15. Next, we generate indicators zi and random effects

(θ0i, θ1i), i = 1, . . . , n. Simulation for the outer loop is concluded by simulating hypothetical

data (Xij, Yij), i = 1, . . . , n, j = 1, . . . , J1 (Step 1.2).
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We then proceed with the second loop, nested within the first, by iterating over J =

J1, . . . , J0 (Step 1.3). For each J we generate a posterior Monte Carlo sample from p(ω | yJ).

This is achieved by the third nested loop (Step 1.3.1), which implements a posterior MCMC

simulation. Posterior simulation is initialized with the known true parameter values (saved

from Step 1.1). In each iteration of the MCMC simulation we update rij, sij, gj and the

hyperparameters (a, a0, p). The first three steps are draws from the multinomial complete

conditional posterior for the respective indicators. The last three steps are implemented as

random walk Metropolis-Hastings steps to update the hyperparameters. The random walk

proposals are generated from a truncated univariate normal centered at the current values of

the respective parameter, with normal standard deviations of 0.05, 0.1 and 0.05 for a, a0 and

p, respectively. Implementation of the MCMC is greatly simplified by noting that p(ω | yJ)

can be analytically marginalized with respect to the random effects θ0i, θ1i and zi. (See

Newton et al., 2001, for a statement of the marginal likelihood.) At the end of each sweep

of the posterior MCMC, we compute the posterior probabilities of the differential expression

p(zi = 1 | η, r, g, s, yJ).

Upon completion of the innermost loop, we use ergodic averages of the conditional prob-

abilities p(zi = 1 | η, r, g, s, yJ) to approximate vi = P (zi = 1 | yJ) (Step 1.3.2). Using

the marginal posterior probabilities vi, we then evaluate the posterior false-discovery and

false-negative counts and rates and corresponding decisions di and record them for later use.

We also record the triples (J, ρo
i , di) (Step 1.3.3).

Upon completion of the outer loop, we summarize the observed FDR, FD, FNR, FN and

the triples (J, ρo
i , di). For example, the sample average over the simulated values of FDR

under a given sample size J provides a Monte Carlo estimate of the preposterior expected

FDRm(J). The fraction of di = 1 under a given sample size and the true effect ρo
i = ρ

provides a Monte Carlo estimate for β(J, ρ). To ensure sufficient Monte Carlo sample size,

the latter is done for a grid on ρ.

5.2 Results

Recall that FNm(J) and FNRm(J) denote the preposterior expectations of FN and FNR.

We will use analogous notations Dm(J) and t∗m(J) to denote the preposterior expectations

of the number of discoveries D and the threshold t∗, computed under the loss L and sample

size J , defined analogously to FNRm and FNm. All inference was computed in one run of
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Figure 1: L2N : Expected loss and other relevant summaries. Panel (a) shows the expected

loss function Lm = FNm (FN in the plot). Panels (b) through (e) plot the expected false-

negative rate FNRm (FNR in the plot), false-discovery count FDm (labeled FD) and rate

FDRm (labeled FDR), the number of discoveries D and the threshold t∗ (TSTAR). In each

panel, the dots show the values recorded in each of the simulations (in panel (d) some dots

fall outside the range of the figure). The false-discovery count FDm is fixed by design,

leading to an increasing number of discoveries Dm. The dashed curves for FNRm and FNm

(almost indistinguishable from the solid line) show an alternative curve fit. See the text for

an explanation of the curve fit.
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Figure 2: Power β (labeled BETA in the plot) against true effect ρ (labeled RHO) and

against sample size J . In panel (b) power curves for two-fold (ρ = log 2) and four-fold over

expression (ρ = log 4) are highlighted in bold. Power β(J, ρ) is defined in (3) as the average

posterior probability of discovery, conditional on the true level of differential expression

ρi = log(θ0i/θ1i).

Algorithm 1, collecting the necessary Monte Carlo averages for all summaries.

Figure 1 shows the expected loss Lm(J) = FNm(J), and other summaries under the loss

function L = L2N . We set the threshold for FD as αN = 7.1. It is chosen to match a bound

FDR ≤ αR for αR = 40%. The value is computed as αN = 0.1 np̄αR/(1 − αR), under the

assumption that 10% of the true differential expressions are discovered. Under L2N , the false-

discovery count FD, and thus also the preposterior expectation FDm, is fixed by definition

at FD = αN . To maintain the fixed FD the procedure has to eventually start lowering the

threshold t∗ to reject comparisons with increasingly lower posterior probabilities of differen-

tial expression. The estimated curves FNRm(J) and FNm(J) are derived by fitting a linear

model with predictor
√

log(J + 1)/(J + 1) to the observed pairs (J, FNR(t∗N , yJ)). This is

motivated by the asymptotic results of Theorem 1 (with the offset +1 to avoid a singularity

at J = 0). For comparison we estimate the same curve using a cubic smoothing spline, using

the smoothing.spline function in R with default parameters. The corresponding curves
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for FNRm and FNm are shown as dashed lines. For FDRm, FDm, Dm and t∗m we use cubic

smoothing splines to estimate the mean value as a function of J .

The relatively flat nature of FNm and FDm does not allow a conclusive sample size choice.

We propose to consider additional power curves, as defined in (3). Figure 2 shows β(J, ρ) as

a function of ρ and J . Panel (a) plots the power against the assumed true level of differential

expression ρ, with a separate curve for each sample size J . Figure 2b plots the same summary

against the sample size J , arranged by the level of differential expression ρ. In practice a

sample size argument would then proceed as follows. First, the investigator determines a

minimum level of differential expression that would be considered biologically meaningful,

say two-fold expression at ρ = log 2. Using a pilot data set, we proceed with Algorithm 2 to

compute the expected FNR, FN, and power across the sample sizes. Inspection of the power

plot for the level ρ of interest, together with the FNR and FN plots informs the investigator

about the minimum sample size needed to achieve the desired power and/or error rates.

5.3 Alternative Loss Functions

While the general nature of the loss function as trading off false positives and false negatives

is natural, the specific form of combining them is less clear. A strength of the proposed

approach is that it allows us to evaluate the alternative loss functions that combine the basic

summaries FN, FD, FDR, and FNR, in different ways with minimal computational effort.

We discuss the results for three alternative loss functions, L2R, LN and LR (introduced in

Section 2.1).

We already established (in Theorem 1) the fact that there is a common optimal terminal

decision rule under all four loss functions. This allows us to easily adapt Algorithm 1 for all

four loss functions. The only required change is in step 1.3.2. For L2R, LN and LR different

definitions of t∗ are required. The rest of the algorithm proceeds unchanged. It is possible

to use a single implementation of Algorithm 1, recording J, t∗, FN, FD, FNR and FDR for

all four loss functions. Appropriate summaries of the saved Monte Carlo samples allow us

to produce summaries such as those shown in Figure 1 for all four loss functions, based on

a single run of Algorithm 1.

An important implication of the different strategies for choosing the cutoff is the nature

of FDR as a function of the sample size J . Under L2R it remains, by design, constant over

J . This has awkward implications. Imagine the asymptotic case with a large sample size
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when the true zi are practically known. To achieve the desired FDR we have to knowingly

flag some genes as differentially expressed even when vi ≈ 0. By the same argument the

loss L2N leads to similar asymptotics. However, fixing the count FD instead of the rate

FDR slows the awkward decrease in the threshold that is required to maintain the fixed

false-discovery rate under L2R. The number of discoveries is still increasing, but starts at a

higher level and avoids the steep increase seen under L2R. In contrast, under LN the cutoff

t is fixed across the sample size, leading to a vanishing FDR in the limit as J →∞, due to

posterior consistency. However, these problems might only be of asymptotic relevance and

not of concern for moderate sample sizes. Apart from these concerns, all three loss functions,

L2R, LN and L2N , are very similar with regard to their properties, nature of the inference,

and implementation details.

Inference under LR leads to different behaviors among the various summaries. In contrast

to the other three loss functions the optimal decision under LR does not constrain an error,

the error rate or the cutoff. Considering plots similar to those in Figure 1, we find that at an

intermediate sample size the threshold t∗ swiftly moves from an initial value of t∗ ≈ 0 to the

other extreme of t∗ ≈ 1. This unintuitive behavior confirms our initial reservations against

LR for including penalties for a false discovery and false negative that depend on the total

number of discoveries or negatives, respectively.

In summary, inference under the four loss functions differs in how the competing goals

of reducing false positives and false negatives are balanced. The loss functions L2R, L2N

and LN define the trade-off implicitly by fixing FDR, FD, and t∗, respectively. Under LR

the trade-off is explicitly included as a coefficient in the loss function. The constraint on

FDR under L2R has the awkward implication that with an increasing sample size we have to

knowingly include an increasing number of false positives in the rejection region to maintain

the set false-positive rate. The loss function LR induces counterintuitive jumps in FDR and

t∗. This leads us to favor L2N and LN . Both lead to very similar inference, with L2N having

the advantage that the constraint is on the practically more important FD, rather than t∗,

as in LN .

6 Conclusion

The design of microarray experiments for measuring gene expression is a critical aspect of

genomic analyses in biology and medicine. Microarrays are costly and difficult trade-offs
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need to be evaluated in the allocation of resources to alternative investigations. Even in

the simplest two-sample comparison setting, microrarray analyses pose difficult challenges

to traditional sample size approaches: first, in terms of hypothesis testing, they present

with a multitude of heterogeneous alternatives; second, they are generally performed with

goals that are best captured by properties of the ensemble of the choices made; third, they

mandate the incorporation of existing knowledge, as signal-to-noise ratios vary significantly

with the specific technology, the source of RNA, and the overall experience of the laboratory’s

personnel.

Our goal in this article has been to develop a formal decision theoretic framework to

address these challenges. This provides investigators the opportunity to quantify both the

a priori uncertainty about the likely expression levels and the implications of sample size

choices on the performance of inference about differential expression. The consequences of

decisions are captured by loss functions related to genome-wise error rates. We argue for

using posterior expected error rates for the terminal decision about the multiple comparisons,

and marginal expected error rates for the design decision about the sample size, consistently

with a Bayesian sequential approach. Similar issues recur in other high-dimensional multiple

comparison problems and in the detection of faint signal levels in noisy data: the methods

we propose are applicable more generally to those problems, as well.

In situations requiring complex decision making, decision models such as ours are best

thought of as decision support tools. As is common in simpler settings, we envision inves-

tigators exploring various scenarios rather than simply eliciting input and blindly trusting

the emerging sample size recommendation. A reasonable situation is also one in which an

investigator has in mind a certain sample size that is feasible within given resource con-

straints. The proposed method informs the investigator about the effect sizes that she or

he can realistically expect to discover with the proposed sample size, and about the ensuing

error rates.

An interesting application of the proposed method is in a sequential framework. An

investigator could proceed in steps, starting with an initial batch of experiments and stop-

ping when a satisfactory balance of classification error rates is achieved. This could be

implemented without preposterior calculations. Because genome-wise error rates refer to

the ensemble of genes, an investigator could not sample to a foregone conclusion about any

individual genes by using this stopping rule.

In our model, we assume that genes are from a discrete mixture in which some genes are
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altered across the two samples, while others are completely unaltered. This assumption is

realistic in tightly controlled experiments, but is less so in the comparison of RNA samples

across organs, or across organisms. These broader comparisons are often made to produce

exploratory analyses, such as clusters. The choice of sample sizes in these circumstances is

different from that used in controlled experiments. Some insight into this issue is offered by

Simon et al. (2002) and Bryan and van der Laan (2001).

An important practical indication for microarray design arises from the illustration de-

scribed in Section 5. In particular, for a realistic set of parameters and pilot data, we show

that the improvement in the genome-wide error rate appears to be non-concave, with a small

initial plateau at very small sample size. In some cases the payoff of increasing the sample

size from, say, two, to three appears to be negligible. This has implications for the common

practice of planning experiments with only two or three replicates. We suggest that an anal-

ysis of the kind presented in Figure 1 would provide valuable information to investigators

entertaining experiments with a very small number of replicates.

Appendix 1: Optimal Terminal Decision

We prove Theorem 1. We start by considering LN , subject to a fixed total number of

discoveries D. We find LN(d, y | D) = cD − (c + 1)
∑

divi +
∑

vi. The last term does not

involve the decision. For fixed D the rest is minimized by setting di = 1 for the D largest vi.

In other words, for any D the optimal rule is of the type di = I(vi > t), where t is simply the

(n−D)-th order statistic of {v1, . . . , vn}. Thus we conclude that the global minimum must

be of the same form, and it only remains to find the globally optimal t. Straightforward

algebra shows that the global minimum is achieved for t∗ = c/(c + 1).

A similar argument holds under LR(d, y). We find

LR(d, y | D) = C1(D)− C2(D)
n∑

i=n−D+1

v(i) + C3(D)
∑

vi. (9)

with C1(D) = cD/(D + ε), C2(D) = c/(D + ε)+1/(n−D + ε), C3(D) = 1/(n−D+ ε), and

v(i) the i-th order statistic of vi. The global optimum is found by minimizing LR(d, y | D)

with respect to D to find the optimal D = D∗. Thus the optimal decision is di = (vi > t)

and t∗R(y) ≡ v(n−D∗).

Under L2N and L2R we need an additional argument. To minimize FNR subject to
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FDR ≤ α we write the Lagrangian function

fλ(d) = FNR− λ(α− FDR).

Using Lagrangian relaxation (Fisher, 1985) we find a weight λ∗ ≥ 0 such that the mini-

mization of fλ∗(d) provides an approximate solution to the original constrained optimization

problem. (The solution is only approximate because of the discrete nature of the decision

space.) But fλ∗ = LR with c = λ∗. Thus the solution must have the same form as described

above. The only difference is that the implied coefficient c, itself, is a complicated function

of the data. Knowing the structure of the solution we can solve the decision problem by

finding the cutoff t2R(y) = min{s : FDR(s, y) ≤ α}. A similar argument holds for L2N ,

with t2N(y) = min{s : FD(s, y) ≤ α}. Note that the optimal cutoff t∗ in all three new loss

functions is now a function of the data. We will write t∗L(yJ) for the optimal cutoff under

loss L given data yJ .

Appendix 2: Asymptotic FNR

We now prove Theorem 2, assuming a model with the same structure as in Section 4. The

specific distributional assumptions, including the Gamma sampling distribution for (Xij, Yij)

and the Gamma prior for (θ0i, θ1i), are not critical. We start the argument by establishing

an asymptotic approximation for P (zj = 1|yJ). We will then use this result to argue that for

a large J the rejection region has to necessarily include some genes with zero or a small level

of true differential expression. This is true under all three loss functions, L2R, L2N and LN .

Thus the non-rejection region includes only small levels of true differential expression. We

exploit this fact to approximate FNR by an integral that can be recognized as an expression

of the order of
√

log J/J . The integral approximation is valid only if a large number of genes

are in the non-rejection region, allowing us to approximate the sum in the definition of FNR

by an integral. We conclude the argument by showing that this is the case under all three

loss functions, for a sufficiently large J .

We start with an asymptotic result for the posterior probability of differential expression.

Let η = (a, a0, p) denote the hyperparameters, and let yi = {Xij, Yij, j = 1, . . . , J} denote
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the data for gene i. As the number n of genes is very large, we have, for each gene:

P (zi = 1|y) =

∫
P (zi = 1|yi, η)dp(η|yi) = P (zi = 1|yi, η̂)(1 + OP (n−1/2))

= P (zi = 1|yi, η)(1 + OP (n−1/2)), (10)

where η̂ is the maximum likelihood estimator, and η are the true hyperparameters. Here

Xn = OP (nk) for a sequence of random variables Xn is defined as

lim
M→∞

{
lim sup

n
P [Xn/n

k > M ]

}
= 0

Moreover, for each gene i, the posterior probability of differential expression given η is

P (zi = 1|yi, η) =
p p(yi|zi = 1, η)

p p(yi|zi = 1, η) + (1− p) p(yi|zi = 0, η)

Classical Laplace expansions imply that

P (zi = 1|yi, η) =
1

1 + cie−J(θ̂0i−θ̂1i)2τi/2
√

J
(11)

ci, τi = OP (1) as J goes to infinity. The constant ci includes the ratio (1 − p)/p. Under

suitable regularity conditions this result is uniform in (θ0i, θ1i, η) over compact sets. In the

non-compact case, some conditions on the tails of the priors need to be added. (See, for

example, Guihenneuc and Rousseau, 2002.) Therefore, when |θ0i−θ1i| is large p(zi = 1|yi, η)

goes to 1 at an exponential rate and thus P (zi = 1|yi) is very close to 1 (the error being

essentially of the order n−1).

We now use (11) to study the asymptotic behavior of the terminal decision. In particular,

we consider FDR, FD, FNR and FN. Let v(1) ≤ · · · ≤ v(N) be the ordered posterior

probabilities vi = P (zi = 1|y) and recall that FDR(t, y) =
∑

i(1 − vi) I(vi ≥ t)/D, where

D =
∑

i I(vi ≥ t) is the number of discoveries. We will use N =
∑

I(vi < t), FP =
∑

I(vi >

t)I(zi = 0), n1 =
∑

I(zi = 1) and n0 = n − n1 to denote the number of negatives, false

positives, and differentially expressed and non-differentially expressed genes, respectively.

We will use AN , AFP, A1, and A0 to denote the corresponding sets of genes. The above

expansions show that the ordering of vi is asymptotically linked to the ordering of |θ̂0i− θ̂1i|,
with vi monotone, increasing in |θ̂0i − θ̂1i|, with asymptotically

vi ≈ 1− ci

√
J exp[−J(θ̂0i − θ̂1i)

2τi/2].
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The false discovery rate FDR(t, y) as a function of t is a step function taking values in

{1−v(n), ..., 1− (v(k) + ...+v(n))/(n−k+1), ..., 1− (v(1) + ...+v(n))/n}. Similarly, FD(t, y)

is a step function with values {1 − v(n), ..., 1 − v(1) + ... + 1 − v(n))}. Both are monotone,

decreasing in t. For a large J , the earlier discussion shows that any gene with

|θ̂0i − θ̂1i| > C
√

log J/
√

J (12)

has a posterior probability of vi ≥ 1 − 1/
√

J , when C is large enough, uniformly in θ0i, θ1i

belonging to some compact set, and with a large probability. We denote with

S = {i : |θ̂0i − θ̂1i| < C
√

log J/
√

J}

the set of genes with small |θ̂0i − θ̂1i| that violate (12).

We now show that under all three losses, only genes with small |θ̂0i − θ̂1i| are classified

as non-differentially expressed, i.e., AN ⊆ S.

Under LN the argument is straightforward. For all genes satisfying (12) the posterior

probability vi ≈ 1− 1/
√

J is beyond tN = c/(1− c) for a sufficiently large J . Thus all genes

in AN satisfy |θ̂0i − θ̂1i| < C
√

log J/J .

To prove the claim under L2R we show that the opposite would violate the constraint on

FDR. Assume that (12) holds for all i ∈ AD. Then

FDR = 1− (v(n−D+1) + ... + v(n))/D ≤ 1/
√

J.

which is not enough to reach the set level α bound required for L2R. Thus the rejection region

AD has to necessarily include some genes that violate (12). Together with the monotonicity

of |θ̂0i − θ̂1i| as a function of vi this proves the claim.

Finally, to show the same for L2N , consider (12) with an even larger C. If C2 >

1/τi[log n− log(α/2)], then 1− v(i) ≤ α/(2n) for all genes that satisfy (12) with such C. If

only such genes are considered in the rejection region then

1− v(k) + ... + 1− v(N) ≤ α/2,

which is not enough to reach the desired bound FN = α under L2N .

We now use (11) and the fact that all negatives have small |θ̂0i− θ̂1i| to establish a bound

on FNR.

FNR(t∗, y) =
1

N

N∑
j=1

v(j) =
1

N

N∑
j=1

1

1 + cj

√
Je−J(θ̂0j−θ̂1j)2τj/2(1 + OP (n−1/2)

,
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where cj =
√

τj/
√

2π with τj = i(θ0j)i(θ1j)/(i(θ0j)+i(θ1j)) and i(θ) is the Fisher information

associated with the conditional model of Xi (or Yi) given θ, η, when η is fixed.

If N is large then the sum can be approximated by an integral, with respect to the

distribution of v(j) or, equivalently, the distribution of (θ̂0j, θ̂1j). We split the integral into two

parts. With probability w0 we have θ0i = θ1i ≡ θi and with probability w1 we have θ0i 6= θ1i.

Based on the earlier observation that we only fail to reject the comparison in the case of

small estimated differences, we can condition the latter term on |θ̂0i − θ̂1i| < C
√

log J/
√

J .

Let
√

J(θ̂0i − θ̂1i)
√

τj =
√

J(θj0 − θj1)
√

τj + ξj, where ξj is a standard Gaussian random

variable. Let ΘS = {(θ1, θ0) : |θ1 − θ0| < C
√

log J/
√

J} Then,

FNR(y, t2R) ≈ w0

∫
ξ

∫
θ

1

1 +
√

i(θ)/
√

2π(1− p)/pe−ξ2/2
√

J
dp(ξ)dp(θ)

+ w1

∫
ξ

∫
ΘS

1

1 + c(θ0, θ1)
√

J e−ξ2/2e−J(θ1−θ0)2τ(θ0,θ1)/2
dp(ξ)dp(θ0, θ1).

Simple calculations imply that the above quantities are of the order
√

log J/J , when N is

large.

Moreover, FN = N FNR. We now prove that n/N = OP (1) with a high probability

under all three losses.

We start with the argument for L2R. Under the assumed sampling model n0 ≈ p ·n genes

satisfy θ0j = θ1j. If N/n → 0, then a large proportion of genes satisfying θ0j = θ1j would

have posterior probabilities vj > t2R. Recall that AFP is the set of false positives. This would

imply that

FDR ≥ 1

n

∑
i∈AFP

(1− vi)

=
1

n

∑
i∈AFP

cj

√
Je−J(θ̂0i−θ̂1i)

2τj/2

1 + cj

√
Je−J(θ̂0i−θ̂1i)2τj/2

(1 + OP (n−1/2))

≥ p

2

∫
θ

∫
ξ

√
Jc(θ)e−ξ2/2

1 +
√

Jc(θ)e−ξ2/2
dξdp(θ)(1 + OP (n−1/2),

when n is large enough, with a high probability. The last inequality is true since under the

assumption N/n → 0 eventually more than N/2 ≈ np/2 genes would be in AFP . As J goes

to infinity, the above term goes to p/2. This is a contradiction if α < p/2, and we thus

conclude that n/N = OP (1).

Under L2N we use an analogous argument for FD. The right-hand side in the first two
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(in-)equalities above remains unchanged, except for removing the leading 1/n factor. We

conclude that FD ≥ np/2 and thus have a contradiction for α < np/2.

Finally, under LN , tN = c/(c + 1), so vj ≤ tN ⇔

1 ≤ c cje
−J(θ̂0i−θ̂1i)

2τj/2
√

J(1 + OP (n−1/2).

The number of genes vj ≤ tN is large with a high probability. Indeed, if θ0i = θ1i,

P
[
1 > c cje

−J(θ̂0i−θ̂1i)
2τj/2

√
J
]

= O(J−1/2)

by Chebychev’s inequality. Recall that FP is the number of genes satisfying θ0i = θ1i and

vi > tN . Then, FP is a binomial random variable Bin(n0, pJ), with pJ = OP (J−1/2) and

where n0 is the number of genes with θ0i = θ1i. Thus with a probability of 1 − e−c1
√

J , for

some positive constant c1, n1 ≤ c2n, with c2 < 1.
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