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Summary. We consider the problem of combining inference in related nonparametric Bayes
models. Analogous to parametric hierarchical models, the hierarchical extension formalizes
borrowing strength across the related sub-models. In the nonparametric context, modelling
is complicated by the fact that the random quantities over which we define the hierarchy are
infinite dimensional. We discuss a formal definition of such a hierarchical model. The ap-
proach includes a regression at the level of the nonparametric model. For the special case of
Dirichlet process mixtures, we develop a Markov chain Monte Carlo scheme to allow efficient
implementation of full posterior inference in the given model.

1. Introduction

Hierarchical models with nonparametric extensions at various levels of the hierarchy have
been defined and used successfully in the recent literature. MacEachern (1994), Escobar
(1994), and Escobar and West (1995) discuss computations in Dirichlet process (DP) mix-
ture models where a parametric prior in a hierarchical model is replaced by the nonparamet-
ric DP model. Bush and MacEachern (1996) use a DP prior as random effects distribution
in an ANOVA setup. Miiller and Rosner (1997) use similar DP mixture models to intro-
duce nonparametric population distributions for random effects in longitudinal data models.
West et al. (1994) consider normal hierarchical models with DP mixture priors for density
estimation. Quintana (1998) uses hierarchical models with DP priors to assess homogeneity
in contingency tables. A recent collection of related review papers can be found in Dey et al.
(1998).

In this paper we consider extension of such models to produce combined inference over

related nonparametric Bayes models, i.e., hierarchical models where each sub-model is of
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nonparametric type. A byproduct of this extension is the resulting meta-analysis over mod-
els, restricted to the case where the full datasets are available. The approach we introduce
is valid independently of the specific nonparametric model chosen for the individual sub-
models. However, the discussion of implementation details and the example are specific to

Dirichlet process mixtures of normals.

One solution to achieve combined inference over related nonparametric models is to link
separate nonparametric models at the level of the hyperparameters only, i.e., independent
sub-models conditional on hyperparameters. For example, the base measure in a Dirich-
let process prior for the i-th sub-model could include a regression on covariates specific to
the submodel. This construction is introduced in Cifarelli and Regazzini (1978) as mixture
of products of Dirichlet process. The model is used, for example, in Muliere and Petrone
(1993). They define dependent nonparametric models for a set of random distributions
{F;, x € X} by assuming marginally for each F, a Dirichlet process prior, and introducing
a regression in the base measures of these Dirichlet process priors. Similar models are dis-
cussed in Mira and Petrone (1996), Giudici et al. (2002) and Carota and Parmigiani (2002).
While straightforward, this strategy is strictly limited to learning about features that can be
represented by the hyperparameters. For example, consider mixtures of normal sub-models
where the hyperparameters are the number of terms in the mixture and mean and variance
of a hyperprior on the cluster locations. If we learn in the first study that observations are
clustered in a certain way, the only information that is formally shared with the analysis of
the other study is the number of terms and the overall location and variance as represented
by the hyperparameters. In other words, learning about specific features of the second
study, such as location of given terms in the mixture, is not improved by the information
available from the first study. Tomlinson and Escobar (1999) mitigate this constraint by
using a hyperparameter which itself is a random measure, i.e., a model with nonparametric
hyperprior. MacEachern (1999) discusses an alternative approach for dependent DP models
based on introducing correlations across the point masses in Sethuraman’s stick-breaking

construction (Sethuraman, 1994) of DP models.

Many applications that would naturally lead to nonparametric modelling include covari-
ates at the level of the nonparametric model. For example, consider a longitudinal model
for drug concentrations over time with a nonparametric prior for patient-specific random
effects. It is important that the model incorporates the dependence of the random effects
distribution on known patient-specific covariates, like treatment levels. One approach is dis-
cussed in Mallick and Walker (1997) who introduce regression in DP models. They propose
a model that includes a finite partition of the covariates space, and for each subset of the
partition they consider a different DP. Of course, this approach only works for finite categor-

ical covariates. Alternatively, a straightforward generic strategy for introducing regression
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in a nonparametric model is to include the covariates in the nonparametric distribution.
Consider a nonparametric model for an unknown distribution p(8), for example the random
effects distribution in a longitudinal data model, as mentioned above. To make the model
p(0) depend on covariates x, one could consider a joint distribution p(z,6). The implied
conditional distribution p(f|z) formalizes the desired density estimation on 6 as a function
of z. This approach is used, for example, in Mallet et al. (1988) and Miiller and Rosner
(1998). However, the approach can be criticized from a modelling perspective for using
the wrong likelihood. Including a joint distribution p(x, ) in the model implies a marginal
distribution p(z). Although z is fixed by design, the model introduces a factor p(z) in the
likelihood. In Section 3.3 we discuss a justification of this approach as correct posterior
inference under an alternative prior probability model.

Section 2 outlines an approach to combining inference over related nonparametric models.
In Section 2.2 we consider the specific case of a hierarchical model with DP mixtures as
nonparametric submodels. Section 3 discusses posterior simulation in the proposed model
using Markov chain Monte Carlo simulation. Section 4 shows an example of combined
inference over related Dirichlet process mixture models. Section 5 concludes with a final

discussion.

2. A Hierarchical Model over Related Studies

2.1.  Combining Nonparametric Models
Consider a generic Bayesian model consisting of likelihood y; ~ p(y;|H) and prior proba-
bility model H ~ p(H|n), with possible hyperparameters 7. The model is referred to as
nonparametric if H can not be indexed by finitely many parameters, i.e., p(H|n) is a prob-
ability measure on a function space. Although the term “nonparametric” for these models
is traditional, a possibly more appropriate terminology would be “massively parametric.”
In this paper we restrict the discussion to the case where H is a random probability mea-
sure. Typical examples are DP’s (Ferguson, 1973; Antoniak, 1974), Polya trees (Lavine,
1992, 1994), Gaussian processes (O’Hagan, 1992; Angers and Delampady, 1992), beta-Stacy
processes (Walker and Muliere, 1997), beta processes (Hjort, 1990), or extended gamma
processes (Dykstra and Laud, 1981). See Walker et al. (1999) for a recent review.

If we want to analyze several related studies, j = 1,...,J, we require a hierarchical
extension of the model. Let y; = (y;i, ¢ = 1,...,n;) denote the data vector in study j, so
that

y; ~p(y; | Hj),  Hj ~p(Hjln), (1)

j=1,...,Jand¢=1,...,n;. In the context of fully parametric inference, the use of hier-

archical models to “borrow strength” across different but related sub-models is a common
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theme in statistical modelling. But in the case of hierarchically linking related studies where
each sub-model p(y;;|H;) is a nonparametric model, the nonparametric nature of H; compli-
cates modelling. There are two exceptions when the model simplifies, as shown in Figure 1.
If the sub-models H; are independent given the hyperparameters, then the problem reduces
to analyzing J separate studies linked only by the finite dimensional hyperparameter vector.
At the other extreme, if the observations y;; can be considered exchangeable across studies,

then the problem reduces to estimating one random measure H (= Hy = ... = Hy). For

(a) Independent sub-models (b) Exchangeable subjects

Fig. 1. Combining data from related studies assuming independent sub-models (left panel), and
exchangeable subjects across studies (right panel). The desired level of borrowing strength across
the sub-models is in-between these two extremes. See also Figure 2.

many applications, the first case allows too little borrowing of strength across studies, and
the latter enforces too much borrowing by assuming essentially one population.

Instead, we consider a model which allows linking the sub-models at an intermediate
level. A graphical representation is given in Figure 2. The model includes a common
measure Fp, representing a baseline model which is common to all studies and random
probability measures F}; that characterize the idiosyncratic behavior in study j. The split
into a common effect and study-specific effects is akin to the setup of ANOVA models which

include a similar distinction between overall means and study-specific offsets. We assume
H]=€F0+(1—6)FJ ]21,,J, (2)

with random measures
Fj~p(Fjln), j=0,1,....J 3)

The weight €, 0 < € < 1, represents the level of borrowing strength across studies. A fraction
€ of the total mass is shared by all studies, and the rest (1 — €) remains specific to each
particular study. Thus, the data collected from each study contributes to the global learning
about Fy, but learning on Fj can be accomplished only through y;. By a slight abuse of
notation we will use H; and Fj to generically indicate the probability models, as well as to

denote the corresponding probability density functions.
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Fig. 2. Full hierarchical model. Equations (2) and (3) define a hierarchical model which assumes the
random measure H; in study j to be a mixture of the common measure Fp, shared by all studies,
and an idiosyncratic measure F; specific to each study.

As in any mixture model, one might wonder about identifiability of the model defined in
(2). Since we use proper prior distributions the posterior distributions are guaranteed to be
proper. Still, there might be practical concerns related to arbitrary rearrangements of the
mixture, throwing into question the interpretation of the terms as idiosyncratic and common
measures. Let M° denote model (1) — (3) and let w® = (e, Fy, Fi,...,Fy) denote a given
parametrization. Could we fit the data equally well with alternative parameterizations
defined by moving mass from the idiosyncratic measures F} into the common measure?
Or vice versa, by moving mass from the common measure into each of the idiosyncratic
measures?

The first concern is easily addressed. Consider, for example, the following reparametriza-
tion which moves a fraction o, 0 < a < (1 —¢€) of F; into the common measure: w* =
(e*, Fg, FY,..., F) with €* F§ = e Fo + a F1, € = €+ a, and F} = Fj. A change from w’
to w* changes the likelihood p(y;;|w) for all but the observations in study j = 1, leaving no
concern about identifiability.

The second type of reparameterization needs more discussion. As an (extreme) example
of moving mass from Fy to Fj; consider the alternative model M** defined by ¢** = 0.
Consider the specific reparametrization w** = (** = 0, Fg*, Fy™,..., F}*) with Fg* = F
and F}* = (1 — €) Fj + € Fy. The likelihood remains invariant under the change from w’
to w**, i.e., model M** can fit the data at least as well as M°. Still, unless the more
complex model M** provides a better fit to the data, the posterior distribution will put
higher probability on the simpler model M°. This is due to a general property of Bayesian
posterior inferences. Assuming equal fit to the data, posterior distributions typically favor

a more parsimonious model over a more complicated model. Jefferys and Berger (1992)
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interpret this as an automatic implementation of Ockham’s razor. A formal discussion
is easiest after marginalizing over the random measures Fj. Since this requires notation
introduced in section 3.2 we will revisit the issue at the end of that section. Also, see the
discussion there for a formal definition of model complexity, as well as the more general case
0<e™ <e.

2.2. A Hierarchical DP Mixture Model
In many applications nonparametric models are used to generalize traditional models with
fully parametric assumptions. For example, in Miiller and Rosner (1997) we replace a con-
ventional multivariate normal random effects distribution with a Dirichlet process (DP)
mixture of normal distributions. DP mixture models are attractive because of their com-
putational simplicity (MacEachern and Miiller, 1998). As we will show in Section 3 this
computational simplicity extends to our hierarchical formulation.

Let ¢m, s(z) denote a (multivariate) normal p.d.f. with moments (m, S), evaluated at
z, and let D(M,G,,) denote the DP with centering probability measure G, and weight
(total mass) parameter M. Typically the centering measure G, includes some unknown
hyperparameters n which are given a hyperprior p(n), detailed below. The DP mixture of
normal model defines a nonparametric model p(F;|n) as a mixture of normal distributions

with respect to a random mixing measure G; generated by a DP prior:

F](lnaMJ) = /SO[A,S(') dG](ll,), G] ~ ‘D(MjJG’VI)J .7 = Oala' JJ (4)

We build on (4) to define a hierarchical model for random distributions H;, j = 1,...,J
in J related studies. Using the structure introduced in (2) and assuming that the relevant

sampling model in each study is i.i.d. sampling from H;, we have

H; = €F0+(1—6)Fj i=1,...,J, (5)
i~ Hj(y;i). (6)

We refer to (4) — (6) as hierarchical DP mixture model. The sampling model could be more
general than (6) without changing much in the following discussion. In fact, the example in
Section 4 uses a sampling model where the H; play the role of a random effects distribution
in each sub-model.

Model (4) — (6) includes commonly used models as special cases. With J = 1 and
€ = 0 the model reduces to a Dirichlet process mixture model as used, for example, in
Kleinman and Ibrahim (1998). If € = 0 and the DP mixture of normals is replaced by a
single multivariate normal, y;; ~ N(u;,S) and p; ~ Gy, then the model becomes a one-way

ANOVA model with a normal sampling distribution and random effects distribution G,
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A DP prior with a small total mass parameter M approximates this special case. If (4)
is replaced by a finite mixture of normals then we obtain a flexible parametric alternative
model. Such models are explored in Lopes et al. (2003).

We choose the following hyperpriors on the various hyperparameters that are present in
our model. First, the centering probability measure G, (-) is chosen as a normal distribution
N(m, B) with moments n = (m, B). Let W(:|-,-) denote the Wishart distribution. We
assume a conjugate hyperprior p(n) = Qim,,a(m) - W[B™'|c, (cC)~'], with fixed hyperpa-
rameters myg, ¢, A, and C. Next, we choose conjugate-style hyperpriors for S and M;:
S™! ~WI[S7 g, (¢R)"'] and M; ~ T(ao, bo), where T'(-,-) is the Gamma distribution, and
R, ap, bp and q are fixed hyperparameters. Alternatively, S could be indexed with study j.

Finally, for the weight € we assume a prior distribution which allows for positive prior

probability on e =0 and € = 1:
p(€) = modo(€) + w161 (€) + (1 — mo — m1)Beta(e|ac, be), (7

where a¢,b. > 0, and 0 < 7, m; < 1 are fixed hyperparameters such that 0 < 7o +m < 1,
and 0, () is a point mass distribution at . The distribution in (7) assigns positive probability
to the two extreme models shown in Figure 1, represented by dg(e) and d;(€), but it also
allows all the intermediate combinations. We note here that mo and 7, are treated as fixed,

because little is gained by putting prior distributions on these quantities.

3. Posterior Simulation

3.1. Latent Variables and Indicators

We implement posterior and posterior predictive inference in the proposed model by Markov
chain Monte Carlo (MCMC) simulation. Posterior MCMC simulation for DP mixture mod-
els is developed, for example, in MacEachern and Miiller (1998) for models without the

additional hierarchy defined in (5), i.e.:

yi ~ / ons@:) dG(p), G ~D(G|M,Gy),

or, replacing the mixture by a latent variable p,;:

i=1,...,n. See Walker and Damien (1998), Neal (2000), and Green and Richardson (2001)
for alternative approaches.

Implementing posterior simulation in (8) we can marginalize over the unknown measure
G, and consider only the latent variables p;. Due to the discrete nature of G, some of the
p; can be identical. Denote by ¢ = {¢,, h =1,...,K}, K < n, the set of distinct p,’s.
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Implementation of the MCMC simulation for (8) proceeds by introducing latent indicator
variables which identify clusters of equal u;’s, say s; = h if and only if pu; = ¢,. A critical
step in the MCMC simulation is the resampling of these indicators. Conditional on the
configuration indicators s = (s;, 4 = 1,...,n), the conditional posterior of ¢, given s and

all other parameters is exactly the same as in a corresponding parametric model

y; ~ p(Yi|Pp), i€ {i:s =h},

with prior ¢, ~ G,,. Details are discussed in MacEachern and Miiller (1998).

Considering MCMC posterior simulation in model (4) — (6) we run into some good luck.
Although the hierarchical model (4) — (6) generalizes the basic DP mixture model (8) by
allowing for the additional hierarchy corresponding to the studies j = 1,...,J, the techni-
calities of the posterior MCMC simulation change little. The only changes are additional
indicators, say r;;, corresponding to the mixture (2) into common and idiosyncratic mea-
sure, and an additional constraint in resampling the configuration indicators s. Essentially
the constraint on s amounts to allowing only indicators corresponding to observations from
the same study to share the same cluster. For reference, we restate the complete model, (4)

- (5), with indicators (r;;) and latent variables (u;;) replacing mixtures at all levels

Yji ~ N(pji, S) with K~ Folhge) 3750 =0
Fi(py) ifru=1,
Pr(rj; =0) = ¢, and F; " D(M;,G,), 1 =0,...,J.

Implementing the MCMC simulation we proceed by marginalizing over the random mea-
sures F;. Paralleling the discussion of posterior inference in MacEachern and Miiller (1998),
as summarized above, some of the p;;’s are identical. Let ¢; = {¢;;,, h =1,..., K;} denote
the set of distinct values among the components of u; = {p;; : i =1,...,n; and rj; = 1}.
Similarly, let ¢ = {¢,, b = 1,..., Ko} denote the distinct values in py = {p;; : j =
1

ues in ¢; and ¢, respectively. We introduce indicators sj; with s;; = h if and only if

yo-rdy, i =1,...,n; and r;; = 0}. Here K; and Kj are the number of distinct val-
(mji = @j and 75, = 1) or (pj; = @oy, and 75 = 0). We will use (j4) and (jh) to refer
to patients and clusters with the given indices, respectively. Let njn = [{i : pj; = @1}
and nop = [{(ji) : mj; = @gp}| denote the number of observations allocated to cluster
(jh) and (Oh), respectively. Let n; = Y, njn, j = 1,...,J. Let nj, denote the number
of observations allocated to cluster (kh), excluding a given observation (ji), and similarly
for ngy, and n; . It will be clear from the context which (ji) is excluded. We will use p to
denote the vector of all p;;, and p~ for the same vector without a specific p;; component.

Also, v = (My,...,M;,S,n,¢€) will denote the vector of hyperparameters.
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Markov Chain Monte Carlo Simulation

We only describe here the steps of updating sj;, rj; and e. All other steps in the MCMC

remain unchanged as described in MacEachern and Miiller (1998) for model (8), above.

MCMC simulation proceeds as a Gibbs sampling scheme scanning over the complete con-
ditional distributions for s; (i = 1,...,n), ¢ (h = 1,...,K), M, and 5. The only non-

standard distribution is the conditional posterior for s;, which is modified as follows for
model (4) — (6) . Recall that we use F}; to denote probability densities (rather than distri-

bution functions).

()

(iii)

Resampling (1 ;,8i,7ji)- Let G*(@) < g¢,5(yji) Fo(¢) and let g* be the normalization
constant g* = [ ¢4 5(yji)dFo(¢) in G*. Define the probabilities

Tjh = CPg,,8(Yji) (L—€)ny, /(M +ny ), mf = cg* (1 —€) M;/(M; +nj),

Toh = CPe,,,8 Yji) €ng,/(Mo +ng ), and 75 = cg* € Mo/(Mo + ng ), where ¢ is the
appropriate constant to standardize the sum of all weights 7k, mok, 77, 7, to add up to

1.0. Let ¢* ~ G*(¢). To generate a draw (u;;, sji,75i) from the complete conditional
p(l‘l‘gza Sjis Tjilea v, ll/_ ’ y) set

(bjn,h,1), h=1,...,K; with probability m;p,
(dop, h,0), h=1,..., Ko with probability mop,
(Kji5 84is75i) = 9)
(¢*, K; +1,1) with probability 7}
(¢*, Ko +1,0) with probability «g.

Resampling e. We update € by generating from the complete conditional posterior
given the indicators r = (rj;, j = 1,...,J, i = 1,...,n;). Given r the weight € is
conditionally independent of all other parameters. Let B(a, b) denote the beta function
evaluated at (a,b). Let Ny = Y r; and Ny = n — Ny, and use I(A) to denote the

indicator function of event A. Then

B(ag, b7)

Bla..b,) Be(al, b))+

€ 7e

p(e|r) o< (1 — g — m1)

+ 7o I(NO = n) (50(6) + m I(Nl = n) (51(6). (10)
with a} = a. + Ny and b} = b, + V7.

All other parameters are resampled as described in MacEachern and Miiller (1998).

General conditions to ensure convergence of the proposed MCMC scheme are described

in Tierney (1994). In the context of the proposed algorithm, the only practically critical
condition is irreducibility of the chain. See MacEachern and Miiller (1998) for a detailed
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verification that the proposed algorithm meets the conditions of the results in Tierney
(1994).

The latent variables K and indicators sj; allow now to formalize the argument from
the end of Section 2.1 about how posterior inference in the proposed model implements
Ockham’s razor and favors the more parsimonious model. Paralleling the discussion of
models M° and M** at the end of Section 2.1 we define Mj, and M;; to denote two
models parametrized by latent variables (¢, Ko, Kj,s;:) and (¢, Kg* = 0, K™, s%7),
respectively. Model M7, is model M, marginalized with respect to the random measures
F;, and model Mj; is a special case corresponding to no common measure, i.e., € = 0.
Considering Kg* = 0, K;* = K; + Ko and @j; = ¢, for k = K; + h,h = 1,..., K we
find that Mj;; provides at least as good a fit to the data as model Mj§,. In fact, under
the described reparametrization p(y|@;, sji, K;) = p(y|®jr,s;i, K;*). But model M;;
is more complex than M7}, in the sense that the total number of terms in the mixtures,
summed across all random distributions, is ) K; + J Ky, as opposed to Y K; + Ky for
M3,. Jefferys and Berger (1992) show how posterior inference favors the simpler model
with fewer parameters unless the more complicated model provides a significantly better
fit to the data. They interpret this as an automatic implementation of Ockham’s razor in
posterior inference. This mechanism is due to the fact that under the more complicated
model prior probability mass has to be distributed over a wider range of the additional
parameters, implying a reduced marginal distribution.

Model M** represents the extreme case of moving all probability mass from the common
measure into the idiosyncratic measures by setting €** = 0. But the same argument holds
for 0 < €* < e. To add the remaining probability mass a@ = € — €** to the idiosyncratic
measures we need to include additional terms to each of the study specific mixtures. In
the context of identifiability considerations it is important to keep in mind that model (4)
— (6) includes a representation (and probability model) for Fy. In particular, this does not
constrain min;{Fj;(z)} to vanish, as would be the case in an alternative approach based
on deterministically defining Fy(x) o« min;j{F;(z)}. In any case we caution against over-
interpreting inference on the individual parameters in the model. The practically relevant

inference are the posterior predictive distributions for the observable outcomes.

3.3. Regression in the Nonparametric Model

We now extend the model to nonparametric regression, i.e., inclusion of covariates in (2)
and (3). To be specific, consider a density estimation problem, i.e., H; is an unknown

distribution and

yjiN 7 izl,...,Nj, (].].)



Related Nonparametric Bayesian Models 11

with the prior model (2) and (3) for H;. Assume now we have covariates x;; available and
want to allow the random distribution to depend on xj;. A straightforward approach to
include a regression on covariates is to extend the random measures Fj;(y) and H;(y) to
probability measures F;(x, y) and H;(x,y) on the joint space of responses y;; and covariates
xji. Let Hij(xz;;) = [ Hj(zj;,y)dy. The extended model implies a conditional probability
model

H;(yjilesi) = Hj(®ji,y50) [ Hj (i) (12)
which formalizes the desired regression. Although we define H; to include x, the likeli-
hood (12) is strictly limited to a probability measure H;(y|x) in y only. We use the joint
distribution H(x,y) solely to define a family of conditional distributions indexed by x, as
desired. Without any further changes in the probability model, posterior inference would be
significantly complicated by the need to evaluate the integrals in the denominator of (12).
We avoid this with the following modification to the prior. We replace the original prior
p(Fj|m), § =0,...,J, by what would be the posterior if z;; were sampled x;; ~ H;(x;;), in-
dependently. Denote with p(Fp, ..., Fy|x,€,n) the posterior conditional on &;; ~ H;(z;;),
under the original prior F; ~ p(F;j|n). We define a new prior probability model

p*(Fo,..., Fy| e,m) = p(Fo, ..., Fy|x,€em).

Together with the likelihood (12) this leads to a posterior distribution which is identical to
the posterior as if the pairs (;;,y;;) ~ H; were sampled independently, allowing easy and
efficient posterior simulation. Implementing posterior simulation we can proceed as if we

had independent samples (zj;,y;;) ~ H;.

4. Example: Combined Inference From Related Pharmocological Studies

4.1. Data

The methodology developed in this article was motivated by the analysis of data from
two studies carried out by the Cancer and Leukemia Group B (CALGB) (Lichtman et al.,
1993). CALGB 8881 was a phase I study that sought the highest dose of the anti-cancer
agent cyclophosphamide (CTX) one could give cancer patients every two weeks. Patients
also received the drug GM-CSF to help reduce the ill effects of CTX on the patients marrow.
The other study, CALGB 9160, built upon the experience gained in 8881 using the resulting
doses of CTX and GM-CSF, and investigated the effect of an additional drug, amifostine
(AMF). AMF had been shown in some studies to reduce some of the toxic side effects
of anticancer agents, such as CTX and radiation therapy (Spencer and Goa, 1995). The
objective of CALGB 9160 was to determine if adding AMF would reduce the hematologic
side effects of aggressive chemotherapy with CTX and GM-CSF. CALGB 9160 randomized
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patients to receive AMF or not, along with CTX (3 grams per square meter of body surface
area) and GM-CSF (5 micrograms per kilogram of body weight). The main study question
in CALGB 9160 concerned the effect of AMF on various measures of hematologic toxicity,
such as nadir (i.e., minimum) white blood cell (WBC) counts or days of granulocytopenia.
Since only 46 patients entered the randomized trial, we wished to use data already gathered

in the earlier study to help make inference in CALGB 9160 more precise.

In both studies, the main response was white blood cell count (WBC) for each patient
over time. In study 8881, we have data on I; = 52 patients. The other study includes
data on I, = 46 patients. We will use y;ix to denote the k-th blood count measurement
on the i-th patient in study j on day t;;, recorded on a log scale of thousands, i.e., yjir =
log(WBC/1000). In CALGB 8881 and 9160, we had a total of 674 and 706 observations,
respectively, with the number of observations for one patient varying between 2 and 19.

Figure 3 shows a few typical patients. In Miiller and Rosner (1998), we used a non-linear

LOG WBC
LOG WBC
LOG WBC

PAT. 6 STDY 1 PAT. 19 STDY 1 PAT. 25 STDY 1

LOG WBC
LOG WBC
LOG WBC

-
PAT. 41 STDY 1 PAT. 49 STDY 1 PAT. 16 STDY 2

DAY DAY DAY

Fig. 3. Some typical patients. The triangles are the observed WBC. The solid line is the posterior
fitted curve E[f;:(t)|y] as a function of ¢. The dotted lines indicate one posterior standard deviation
margins.
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regression model,
Yiik = Fii(tjie) + €jin, €jiw ~ N(0,07), (14)

to fit these profiles. Let 0j; = (21, 22ji, 23ji, T1ji, T2ji» Boji, B1ji) denote patient-specific
regression parameters, and let pjir = (72ji — tjir)/(T2ji — T1ji), and g;i(t) = z2; + 235i/(1 +
exp{—PBoji — B1ji(t — 12j:)}). We define

21ji if tjik < Tiji
Fii(in) = S pjinzrgi + (1= pjan) gji(r2s)  if 70 < tjan < T2ji (15)
g5i(tir) if 2y > o4,
for k =1,...,n4. The curve defined by (15) consists of a horizontal line up to t = 7y;;, a

logistic regression curve starting at ¢ = 7;;, and a straight line connecting these.

We complete the model by assuming a DP mixture model (4) and (5) for the random
effects 8;, including a hierarchical extension over the two studies j = 1,2. Let x;; =
(CTX, GM-CSF, AMF) denote the dose levels used for patient ¢ in study j. Proceeding as
in Section 3.3. we include a regression on z;; in the random effects model. The non-linear
regression (14) adds an additional level to the model, i.e., the random effects 8;; replace y ji
in (6). Conditional on 6
for the observed data y;;. The implementation requires an additional step in the MCMC

i, the non-linear regression (14) defines the sampling distribution
simulation to update the random effects vectors 6;;. See Miiller and Rosner (1997) for a

description of appropriate MCMC steps.

4.2. Results

Figure 4 shows posterior estimates of Fy, F; and F>. The initial base line z; (the first
element of the random effects vector @) was conditioned upon as z; = 2 to make posterior
predictive profiles comparable. The figures visualize the high dimensional distributions by
showing the corresponding log WBC profiles for a patient with covariates z* = (CTX =
3g/m?,GM-CSF = 5ug/kg, AMF = 0). Let f(t;8) denote the profile parameterized by the
random effects vector 6, evaluated at day ¢t. Figure 4a shows the quantiles for f(¢; 0) with
0 ~ Fy(B|lx = x*), i.e., the quantiles for the mean log WBC for a patient with covariates
x. Figures 4b and 4c show the same for the random effects distribution F; and Fy. Notice
how both idiosyncratic measures F; and F5 are more dispersed than the common measure
Fy. This can be attributed to the idiosyncratic measure F; accommodating outliers in
study j which do not occur in other studies. Posterior inference on e informs about the
proportion of the common measure in the mixture (2). The prior included positive point
masses mg = w1 = 0.1. Yet, a posteriori we find practically zero probability at the two

endpoints. We find marginal posterior summaries E(e | y) = 0.59, SD(e | y) = 0.05, and
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(a) F() (b) F1 (C) F2

Fig. 4. The common and idiosyncratic measures Fy, Fi and F». Consider a patient with covariates
x* = (CTX = 3g/m? GM-CSF = 5ug/kg, AMF = 0) and random effects vector generated from
F; (j = 0,1,2, respectively). Thatis @ ~ F;(0|x = x*). The three panels plot quantiles of f(t, 8)
against days t. The dark grey shade indicates the 25% and the 75% quantiles, the light grey shade
indicates the 10% and 90% quantiles. The central solid curve plots the median of f(t, 8) against day
t.

Pr(0.45 < € < .75 | y) = 1.00, indicating that neither a joint analysis of all data in one
population (e = 1), nor an analysis with all studies independent given the hyperparameters
(e = 0) is appropriate.

Of particular interest is the posterior predictive distribution for a patient from the pop-
ulation, i.e., for a new patient from a new study. Since the hierarchical model allows us
to learn about variation between studies, such inference is meaningfully possible. Figure 5
shows some aspects of such posterior predictive inference. The center and right panels of
Figure 5 allow us to infer that the addition of AMF does not appear to add further protec-
tion from the effect of CTX on a patient’s blood counts. The center panel shows that the
probability the patient’s WBCs will recover by day 14 to be at least 1,000 /uL is around
0.65 and is lower than the predictive probability of the same event for the same patient
without AMF (around 0.82 from the Figure). This difference in predictive probabilities of a
meaningful clinical event is greater than the posterior standard deviation, which is around
0.03. The right-hand panel of Figure 5 shows that the addition of AMF does not appear
to make any difference in the predicted number of days a patient’s WBCs are below 1,000
/pL. Thus, the conclusion is that including AMF to CTX and GM-CSF does not reduce the
toxic effects of these drugs on the WBCs of these or similar cancer patients receiving this
chemotherapy.

Using data from a single study only, inference as in Figure 5 is restricted to the sub-

populations from each of the respective studies. For comparison we implemented inference
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Fig. 5. Some features of the posterior predictive distribution for a patient from the population at large,
i.e., p(y;41,119)- The left panel shows the estimated WBC profiles for different levels of CTX as a
function of days. The center panel shows the probability of recovery beyond W BC = 1000 by day
14. The right panel plots the expected number of days below the critical level WBC = 1000 as a
function of the covariates CTX and AMF, keeping GM-CSF at 5ug/kg. For AMF=1, only CTX=3.0 is
shown (to avoid extrapolation beyond the range of the data). The point for (CTX = 3, AMF =1)is
overlaid with AMF=0. The vertical bars indicate one posterior standard deviation.

for study 9160 alone, using the same model, but without the additional mixture in (5), or,
equivalently, with e = 0. Posterior predictive inference (not shown) for a future patient from
the 9160 population looks similar as in Figure 5a (curve for CTX=3), except for a slightly
faster recovery, resulting in a reduced posterior predictive mean for the number of days with
WBC below 1,000/ uL. For AMF=0 we find a posterior predictive mean of 4 days with WBC
below 1,000/ L, and slightly below 4 days for AMF=1 (with the other treatments fixed at
the only dose used in 9160, CTX=3 g/m? and GM-CSF=5 pug/kg).

5. Discussion

We defined a framework for hierarchical meta-analysis over related nonparametric models.
This general scheme incorporates the ability to represent random measures as functions of
certain covariates of arbitrary type. Although the nature of the hierarchical extension is
independent of the specific nonparametric model, the discussion of implementation details
is necessarily constrained to a specific model. We chose the DP model. We showed how
posterior MCMC simulation in the hierarchical model adds only little additional computa-
tional difficulty compared to a non-hierarchical model. Essentially the only change is an
additional constraint when resampling the cluster indicators s;;.

Generalization of the proposed hierarchical extension to other non-parametric models

beyond the DP is possible. For any non-parametric prior based on similar stick-breaking
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representations as the DP we expect that the same construction and computation efficient
posterior simulation remains possible. Such models are proposed, for example, in Muliere
and Tardella (1998) and Ishwaran and James (2001). The general structure (2) and (3)
remains meaningful also for other, arbitrary non-parametric prior models for the unknown
distributions F;. Conditional on imputed indicators r;; that break the mixture (2) posterior
simulation always reduces to the case of the non-hierarchical model. But simulations would
typically require separate inference for each of the random distributions F}, conditional on
the indicators r;;. For example, the Polya tree model might be suitable for the described
generalization. However, we have not investigated details. A prominent feature of the DP
is the particularly simple form of the Polya urn description for the marginal distribution of
the observable data, marginalized with respect to the unknown measure F}. Availability of
such simplifications is not a necessary condition for the use of the hierarchical extensions
described here, beyond the fact that it simplies inference in the hierarchical model to the
same extent as it simplifies inference in the non-hierarchical context.

Another interesting generalization is related to inference on e. As is easily seen from
(10), posterior MCMC simulation only includes positive transition probability for a move to
€ = 0 or € = 1 if all data are allocated to common clusters (Ng = n) or all data are allocated
to study specific clusters (N1 = n), respectively. This suggests to consider additional moves
in the MCMC algorithm that make a common proposal for all r;;. We did not pursue
such extensions since in the motivating application the marginal posterior for € was clearly

bounded away from € = 0 and € = 1.
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