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Summary. We discuss inference for data with repeated measurements at

multiple levels. The motivating example are data with blood counts from can-

cer patients undergoing multiple cycles of chemotheraphy, with days nested

within cycles. Some inference questions relate to repeated measurements over

days within cycle, while other questions are concerned with the dependence

across cycles.

When the desired inference relates to both levels of repetition, it be-

comes important to reflect the data structure in the model. We develop a

semi-parametric Bayesian modeling approach, restricting attention to two

levels of repeated measurements. For the top level longitudinal sampling

model we use random effects to introduce the desired dependence across re-

peated measurements. We use a non-parametric prior for the random effects

1



distribution. Inference about dependence across second-level repetition is

implemented by the clustering implied in the non-parametric random effects

model. Practical use of the model requires that the posterior distribution on

the latent random effects be reasonably precise.

Key words: Bayesian nonparametrics; Dirichlet process; Hierarchical

model; Repeated measurement data



1. Introduction

We consider semiparametric Bayesian inference for data with repeated mea-

surements at multiple levels. The motivating data are blood count measure-

ments for chemotherapy patients over multiple courses of chemotherapy. In

earlier papers (Müller and Rosner, 1997; Müller et al., 2004), we considered

inference for the first course of chemotherapy only. Naturally, such data

do not allow inference about changes between cycles. In clinical practice,

however, cancer patients receive chemotherapy over multiple courses or cy-

cles of predetermined duration. These courses of therapy typically consist

of a period during which the patient receives active drug therapy, followed

by a no-drug period to allow the patient to recover for the next round of

chemotherapy. Often some aspect of the treatment protocol is intended to

mitigate deterioration of the patient’s performance across repeated treatment

cycles. Inference related to such aspects of the treatment involves a compar-

ison across cycles, which requires modeling of the entire data set, including

data from later cycles. In this extended data set, repeated measurements

occur at two levels. Each patient receives multiple cycles of chemotherapy,

and within each cycle, measurements are recorded over time. Another typi-

cal example of this data structure is drug concentration measurements over

repeated dosing studies of pharmacokinetics.

A standard parametric approach would base inference on conjugate dis-

tributions for the sampling model, hierarchical priors, and random effects

distributions. Bayesian inference for such multilevel hierarchical models is

reviewed, among many others, in Goldstein, Browne and Rasbash (2002)

who also discuss software for commonly used parametric models. Browne,
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Draper, Goldstein and Rasbash (2002) compare Bayesian and likelihood-

based methods. Heagerty and Zeger (2000) discuss likelihood-based inference

for marginal multilevel models. Marginal models regress the marginal means

of the outcome on covariates, rather than conditional means given random

effects. A recent comprehensive treatment of multilevel models appears in

Goldstein (2003).

The proposed semi-parametric Bayesian inference replaces traditional nor-

mal random effects distributions with nonparametric Bayesian models. Non-

parametric Bayesian random effects distributions in mixed-effects models

were first introduced in Bush and MacEachern (1996). Mukhopadhyay and

Gelfand (1997) construct a semiparametric Bayesian version of generalized

linear models. Applications to longitudinal data models are developed in

Kleinman and Ibrahim (1998a), Müller and Rosner (1997) and Walker and

Wakefield (1998), among many others. Ishwaran and Takahara (2002) ex-

tensively discuss Monte Carlo algorithms for similar semi-parametric longi-

tudinal data models. In particular, they propose clever variations of a se-

quential importance sampling method known as the Chinese restaurant pro-

cess. Kleinman and Ibrahim (1998b) extend the approach in Kleinman and

Ibrahim (1998a) to allow binary outcomes, using generalized linear models

for the top level likelihood. In each of these paper, the authors use variations

of Dirichlet process (DP) models to define flexible nonparametric models for

an unknown random effects distribution. The DP was introduced as a prior

probability model for random probability measures in Ferguson (1973) and

Antoniak (1974). See these papers for basic properties of the DP model. A

recent review of semiparametric Bayesian inference based on DP models ap-
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pears in Müller and Quintana (2004). Related non-Bayesian semi-parametric

approaches for longitudinal data are discussed, among others, in Lin and Car-

roll (2001a) and Lin and Carroll (2001b). These approaches use generalized

estimating equations to implement estimation in semiparametric longitudinal

data models.

The main novelty in the proposed model is the construction of a nonpara-

metric model for a high dimensional random effects distribution for multilevel

repeated measurement data. The proposed approach avoids parameteriza-

tion of the high dimensional dependence structure. We achieve this by using

a mixture of nonparametric models for lower dimensional subvectors. In the

application the lower dimensional subvector is the cycle-specific random ef-

fects vector θij for cycle j and patient i, nested within a higher dimensional

patient-specific random effects vector θi = (θij, j = 1, . . . , ni). The mix-

ture model allows us to learn about dependence without having to define

a specific parametric structure in a way that is analogous to modeling a

multivariate distribution as a mixture of independent kernels. Even if the

kernels are independent, the mixture allows us to model essentially arbitrary

dependence.

The rest of this article is organized as follows. In section 2, we introduce

the proposed sampling model. In section 3, we focus on the next level of

the hierarchy by proposing suitable models to represent and allow learning

about dependence at the second level of the hierarchy. Section 4 discusses

implementation of posterior simulation in the proposed model. Section 5

reports inference for the application that motivated this discussion. A final

discussion section concludes the article.
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2. First Level Repeated Measurement Model

In our semi-parametric Bayesian model representing repeated measurements

at different levels of a hierarchy, the model hierarchy follows the structure

of the data. The key elements of the proposed approach are as follows. We

consider two nested levels of measurement units, with each level giving rise to

a repeated measurement structure. Assume data yijk are recorded at times

k, k = 1, . . . , nij, for units j, j = 1, . . . , ni, nested within higher-level units

i, i = 1, . . . , n. We will refer to the experimental units i as “subjects” and

to experimental units j as “cycles” to simplify the following discussion and

remind us of the motivating application. Figure 1 shows the overall structure.

We start by modeling dependence of the repeated measurements within

a cycle, yij = (yijk, k = 1, . . . , nij). We assume p(yij | θij, η) to be a

nonlinear regression parametrized by cycle-specific random effects θij. Here

and throughout the following discussion, η are hyperparameters common

across subjects i and cycles j. Figure 2 shows typical examples of continuous

outcomes yijk, measured over multiple cycles, with repeated measurements

within each cycle.

We define dependence within each cycle by assuming that observations

arise according to some underlying mean function plus independent residuals

yijk = f(tijk; θij) + eijk. (1)

Here f is a nonlinear regression with parameters θij, and eijk are assumed

i.i.d. N(0, σ2) normal errors. Marginalizing with respect to θij, model (1)

defines a dependent probability model for yij. This use of random effects to

introduce dependence in models for repeated measurement data is common
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practice. The choice of f(·; θ) is problem-specific. In the implementation

reported later, we use a piecewise linear-linear-logistic function. In the ab-

sence of more specific information, we suggest the use of generic smoothing

functions, such as spline functions (Denison et al., 2002).

3. Second-Level Repeated Measurement Model

3.1 A Semi-parametric Random Effects Model

We introduce a dependent random effects distribution on θi = (θi1, . . . , θini
)

to induce dependence across cycles. We will proceed with the most gen-

eral approach, leaving the nature of the dependence unconstrained. We

achieve this by considering a non-parametric prior for the joint distribution

p(θi1, . . . , θini
).

We first introduce a parametric model, constructed to be comparable to

the non-parametric model, to clarify structure, and for later reference. Let

η = (m, B, S, σ2) denote a set of hyperparameters. We use i, j and k to index

patients i = 1, . . . , n, cycles j = 1, . . . , ni and observations k = 1, . . . , nij.

Cycle effects: p(µj | η) = N(m, B)

Random effects: p(θij | µ, η) = N(µj, S),

Data: p(yij | θij, η) =
∏

k p(yijk | θij, σ
2),

(2)

We assume independence across cycles at all levels. This implies that also

posterior inference on θij and posterior predictive inference is independent

across cycles. We could modify (2) to include a dependent prior p(µ1, µ2, . . . |

η) to allow for dependence. However, even for moderate dimension of θij

this is not practical. Instead, we proceed with a semi-parametric extension

that implements learning about dependence through essentially a mixture of
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independent models as in (2).

We generalize the random effects distribution for θi = (θi1, . . . , θini
) to

a mixture of normal model. Let N(x; m, S) indicate a normal distributed

random variable x with moments (m, S). We assume

p(θi | G, S) =

∫ ∏
j

N(θij; µij, S) dG(µi), (3)

with a non-parametric prior on the mixing measure G for the latent normal

means µi = (µi1, . . . , µini
). As usual in mixture models, posterior inference

proceeds with an equivalent hierarchical model:

θij ∼ N(µij, S) and µi ∼ G. (4)

Substituting a common value µi = µ0 across all patients i, i.e., a point mass

G(µ) = I(µ = µ0), shows the correspondence with the parametric model.

In Section 3.2 we will introduce a prior for a discrete random measure G.

Denote with µo
h the point masses of G. Implicit in the model for G will be an

independent N(m, B) prior for the subvectors µo
hj corresponding to cycles,

with independence across h and j. In other words, we generalize (2) by a

mixture of independent models. The mixture allows learning about depen-

dence in much the same way as a kernel density estimate with independent

bivariate kernels can be used to estimate a dependent bivariate distribution.

3.2 The Random Probability Measure G

The probability model for G is the main mechanism for learning about

dependence across cycles. We use a Dirichlet process (DP) prior. We write

DP (M, G?) for a DP model with base measure G? and total mass parameter

6



M . We complete model (1) and (4) with

G ∼ DP (M, G?) (5)

See, for example, MacEachern and Müller (2000) for a review of DP mixture

models as in (4).

Besides technical convenience and computational simplicity, the main rea-

son for our choice is the nature of the predictive inference that is implied by

the DP model. Assume patients i = 1, . . . , n have been observed. The prior

predictive p(θn+1 | θ1, . . . , θn) for patient n+1 is of the following type. With

some probability, θn+1 is similar to one of the previously recorded patients.

And with the remaining probability, θn+1 is generated from a baseline distri-

bution G? defined below. The notion of “similarity”is formalized by assuming

a positive prior probability for a tie of the latent variables µi. Let k ≤ n

denote the number of unique values among µ1, . . . , µn and denote such values

by µ∗1, . . . , µ
∗
k. Let mh, h = 1, . . . , k, denote the number of latent variables

µi equal to µ∗h, and let wh = mh/(M + n) and wk+1 = M/(M + n). The DP

prior on G implies

p(µn+1 | µ1, . . . , µn) =


µn+1 = µ∗h, with prob. wh(m1, . . . ,mk), h = 1, . . . , k

G? with prob. wk+1(m1, . . . ,mk).

(6)

The predictive distribution for µn+1 is a mixture of the empirical distribution

of the already observed values and the base measure G?. The predictive rule

(6) is attractive in many applications. For example, consider the application

to the multi-cycle hematologic counts. The model implies that with some

probability the response for the new patient replicates one the previous pa-
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tient responses (up to residual variation), and with the remaining probability

the response is generated from an underlying base measure G?.

4. Posterior Inference

4.1 Base Measure, Kernel and Regression

For the base measure G? we use the same factorization as in (3),

G?(µi) =

ni∏
j=1

p(µij | η) =
∏

N(µij; m, B) (7)

The advantage of this choice of base measure is that hyperparameters η

that define G? only need to be defined for the random vector µij instead

of the higher dimensional vector µi. Using a base measure with conditional

independence across cycles, any inference about dependence across cycles

for a future patient arises from the data-driven clustering of the imputed µi

vectors. Clustering over locations allows modeling dependence in much the

same way as a mixture of bivariate standard normals kernel can approximate

any bivariate distribution, with arbitrary variance-covariance matrix, in a

bivariate kernel density estimate.

As usual in DP mixture models, posterior inference proceeds in the marginal

model (6), after analytically integrating out the random measure G. Choos-

ing a conjugate base measure G? and kernel p(θij | µij, η), such as the conju-

gate normal kernel and base measure used in (4) and (7), further facilitates

posterior simulation. See section 4.2 for details.

A minor modification of the model allows us to include cycle-specific

covariates. Let xij denote a vector of covariates for cycle j of patient i. This

could, for example, include dose of a treatment in cycle j. A straightforward

way to include a regression on xij is to extend the probability model on θij to
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a probability model on θ̃ij ≡ (xij, θij). The implied conditional distribution

p(θij | xij) formalizes the desired density estimation for θ as a function of x.

This approach is used, for example, in Mallet et al. (1988) and Müller and

Rosner (1997).

4.2 Posterior MCMC

Posterior simulation in the proposed model is straightforward by Markov

chain Monte Carlo simulation (MCMC). See, for example, MacEachern and

Müller (2000), Neal (2000), or Jain and Neal (2004) for an explanation of

MCMC posterior simulation for DP mixture models.

We briefly explain the main steps in each iteration of the MCMC. An

important feature of the model is the conditional independence of the θij

across cycles j given µi and η. This allows us to consider one cycle at a

time when updating θij in the Gibbs sampler. Updating θij, conditional on

currently imputed values for µi reduces to the problem of posterior simulation

in a parametric, non-linear regression with sampling model (1) and prior (4).

See the discussion in Section 5.1 for a specific example.

Next, consider updating µi conditional on currently imputed values for

θi, hyperparameters η and {µ`; ` 6= i}. We use notation similar to (6), with

an additional superindex − indicating the exclusion of the i-th element, as

follows. First, re-order the indices of µ∗h, such that µi is equal to the last of

the unique values, i.e., µi = µ∗k. Let {µ∗h, h = 1, . . . , k−} denote the set of

unique values among {µ`, ` 6= i}, and let m−
h = |{` : µ` = µ∗h, ` 6= i}|. From

this we can find the complete conditional posterior distribution for µi. Let
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Q0 =
∫

p(yi | θ) dG?(θ) and q0 ∝ p(yi | θ) G?(θ).

p(µi | . . .) =


I(µi = µ∗h) w.pr. ∝ m−

h p(yi | µ∗h)

q0(µi) w.pr. ∝ M Q0,

h = 1, . . . , k−. Exploiting the conjugate nature of the base measure G? and

the kernel p(θij | µij, η), we can simplify one step further. We can analytically

marginalize with respect to µi, conditional only on the configuration of ties

among the µi. Define indicators si, i = 1, . . . , n, with si = h if µi = µ∗h and

let Γ−h = {` : s` = h, ` 6= i} denote the set of indices with common value

µi = µ∗h. Also let s− = (s`; ` 6= i) and y− = (y`; ` 6= i). Then we can replace

sampling p(µi | . . .) by sampling from

p(si | s−, y−, yi, η) =
k−∑
h=1

I(si = h) m−
h Qh + I(si = k− + 1) M Q0,

with Qh =
∫

p(yi | µi = µ∗h) dp(µ∗h | y`, ` ∈ Γ−h , η). This step critically

improves mixing of the Markov chain simulation (MacEachern, 1994).

As usual in DP mixture models, we include a transition probability to

update µ∗h, conditional on currently imputed values of all other parameters.

As before, {µ∗1, . . . , µ∗k} are the unique values among {µi, i = 1, . . . , n}.

Let µ∗hj denote the subvector of µ∗h corresponding to the j-th cycle. For

resampling µ∗h, we condition on s (now again without excluding µi) and find

p(µ∗hj | s, θ, η) ∝ G?(µ∗hj)
∏

i∈Γh
p(θij | µ∗hj).

5. Modeling Multiple Cycle Hematologic Data

5.1 Data and Model

Modeling patient profiles (e.g., blood counts, drug concentrations, etc.)

over multiple treatment cycles requires a hierarchical extension of a basic
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one-cycle model. Model (1), (4), (5) and (7) provides such a generaliza-

tion. Several important inference questions can only be addressed in the

context of a joint probability model across multiple cycles. For example, in

a typical chemotherapy regimen, some aspects of the proposed treatment are

aimed at mitigating deterioration of the patient’s overall performance over

the course of the treatment. Immunotherapy, growth factors, or other treat-

ments might be considered to ensure reconstitution of blood cell counts after

each chemotherapy cycle.

We analyze data from a phase I clinical trial with cancer patients carried

out by the Cancer and Leukemia Group B (CALGB), a cooperative group of

university hospitals funded by the U.S. National Cancer Institute to conduct

studies relating to cancer therapy. The trial, CALGB 8881, was conducted to

determine the highest dose of the anti-cancer agent cyclophosphamide (CTX)

one can safely deliver every two weeks in an outpatient setting (Lichtman

et al., 1993). The drug is known to cause a drop in white blood cell counts

(WBC). Therefore, patients also received GM-CSF, a colony stimulating fac-

tor given to spur regrowth of blood cells (i.e., for hematologic support). The

protocol required fairly extensive monitoring of patient blood counts during

treatment cycles. The number of measurements per cycle varied between 4

and 18, with an average of 13. The investigators treated cohorts of patients

at different doses of the agents. Six patients each were treated at the fol-

lowing combinations (CTX, GM-CSF) of CTX (in g/m2) and GM-CSF (in

µg/kg): (1.5, 10), (3.0, 2.5), (3.0, 5.0), (3.0, 10.0) and (6.0, 5.0). Cohorts of

12 and 10 patients, respectively, were treated at dose combinations of (4.5,

5.0) and (4.5, 10.0). Hematologic toxicity was the primary endpoint.
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In Müller and Rosner (1997) and Müller et al. (2004), we reported anal-

yses restricted to data from the first treatment cycle. However, the study

data include responses over several cycles for many patients, allowing us to

address questions related to changes over cycles. We use the model proposed

in Sections 2 and 3 to analyze the full data. The data are WBC in thousands,

on a logarithmic scale, yijk = log(WBC/1000), recorded for patient i, cycle

j, on day tijk. The times tijk are known, and reported as days within cycle.

We use a non-linear regression to set up p(yij | θij, η). For each patient and

cycle, the response yij = (yij1, . . . , yijnij
) follows a typical “bath tub” pat-

tern, starting with an initial base line, followed by a sudden drop in WBC at

the beginning of chemotherapy, and eventually a slow S-shaped recovery. In

Müller and Rosner (1997) we studied inference for one cycle alone, using a

non-linear regression (1) in the form of a piecewise linear and logistic curve.

The mean function f(t; θ) is parameterized by a vector of random effects

θ = (z1, z2, z3, τ1, τ2, β1):

f(t; θ) =


z1 t < τ1

rz1 + (1− r)g(θ, τ2) τ1 ≤ t < τ2

g(θ, t) t ≥ τ2

(8)

where r = (τ2 − t)/(τ2 − τ1) and g(θ, t) = z2 + z3/[1 + exp{2.0 − β1(t −

τ2)}]. The intercept in the logistic regression was fixed at 2.0 after finding

in a preliminary data analysis that a variable intercept did not significantly

improve the fit. This conclusion is based on comparing the posterior fitted

curves E(f(·; θij) | data) with the observed responses. We did not carry out

a formal test of fit.

We use model (8) and assume θij ∼ N(µij, S), independently across pa-
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tients i and cycles j. Dependence across cycles is introduced by the nonpara-

metric prior µi ∼ G. Specifying the SSM prior for G, we use the predictive

rules corresponding to the DP prior, i.e., G ∼ DP (M, G?).

We introduce two modifications to the general model to make it suitable

for the application. First, we allow a different residual variance for each

cycle, i.e, we use eijk ∼ N(0, σij) for the non-linear regression in (1). Second,

we add a constraint to the kernel in (3). Let (τ1ij, τ2ij) denote the two

elements of θij corresponding to the change points τ1 and τ2 in (8). We

use p(θij | µi, η) ∝ N(µij, S) I(τ1ij < τ2ij).

Finally, we include a regression on covariates xij. We use the bivariate

covariate of the treatment doses of CTX and GM-CSF in cycle j, patient i.

Both doses are centered and scaled to zero mean and standard deviation 1.0

using the empirical mean and standard deviation across the n = 52 patients.

Conditioning on xij, the mixture of normals for θ̃ij = (xij, θij) implies a

locally weighted mixture of linear regressions. Compare with Section 4.1.

5.2 Hyperpriors

We complete the model with prior specifications for the hyperparame-

ters η. For the residual variance σ2
ij we assume σ−2

ij ∼ Gamma(a/2, ab/2),

parametrized such that E(σ−2
ij ) = 1/b, with a = 10 and b = 0.01. Let

diag(x) denote a diagonal matrix with diagonal elements x. For the covari-

ance matrix of the normal kernel in (3), we use S−1 ∼ W (q, R−1/q) with

q = 25 degrees of freedom and R = diag(0.01, 0.01, 0.1, 0.1, 0.1, 0.01, 1, 1).

The elements of θij are arranged such that the first two elements corre-

spond to the covariate xij and the third through eighth elements corre-
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spond to the parameters in the non-linear regression (8), z1, z2, z3, τ1, τ2 and

β1. The base measure G? of the DP prior is assumed multivariate normal

G?(µij) = N(m, B) with a conjugate normal and inverse Wishart hyperprior

on the moments. That is, m ∼ N(d,D) and B−1 ∼ W (c, C−1/c) with c = 25

and C = diag(1, 1, 1, 1, 1, .1, 1, 1), D = I8, and the hyperprior mean is fixed

as the average of single patient maximum likelihood estimates (m.l.e.). Let

θ̂i1 denote the m.l.e. for patient i. We use d = 1/n
∑

θ̂i1. Finally, the total

mass parameter is assumed M ∼ Gamma(5, 1).

5.3 Posterior MCMC Simulation

We implemented posterior MCMC simulation to carry out inference in

model (1), (4), (5) and (7), using the described prior and hyperprior choices.

The parameters σ2
ij, S, B,m are updated by draws from their complete con-

ditional posterior distributions. All are standard probability models that

allow efficient random variate generation. Updating the latent variables

µi, i = 1, . . . , n and the total mass parameter M proceeds as described in

MacEachern and Müller (2000). Finally, consider updating θi. Conditional

on µi, inference in the model is unchanged from the single-cycle model. Up-

dating the random effects parameters θij in a posterior MCMC simulation

reduces to a nonlinear regression defined by the sampling model (8) and

the normal prior θij ∼ N(µij, S). In particular, for the coefficients in θij

corresponding to the random effects parameters z1, z2 and z3, the complete

conditional posterior is available in closed form as the posterior in a normal

linear regression model. We use a Metropolis-Hastings random walk proposal

to update the elements of θij corresponding to τ1 and τ2. If the proposed val-
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ues violate the order constraint τ1 < τ2, we evaluate the prior probability as

zero and reject the proposal.

As starting values for θij, we used maximum likelihood estimates based

on yij, substituting average values when too few responses were available

for a given cycle. We then ran 200,000 iterations of the described MCMC,

discarding the first 100,000 as initial transient, and saving imputed values

after every 50-th iteration.

We considered imputed values of the 6-dimensional random effects vec-

tors θij for all cycles for the four patients shown in Figure 2 to verify con-

vergence. We used BOA (Smith, 2005) to evaluate convergence diagnos-

tics, and chose the diagnostic proposed in Geweke (1992), using default

parameters in BOA. We evaluated the convergence diagnostics for a total

number of 60 tracked parameters. The summary of the 60 diagnostics is

(min., first quartile, mean, third quart., max.) = (−1.94,−0.75, 0.01, 0.60, 1.92).

5.4 Results

Posterior inference is summarized in Figures 3 through 5. Let H(θi) =∫
p(θi | µi, η) dG(µi) denote the nonparametric mixture model for the ran-

dom effects distribution. Also, we use Y to denote all observed data. Note

that the posterior expectation E(H | Y ) is identical to the posterior predic-

tive p(θn+1 | Y ) for a new subject: p(θn+1 | Y ) =
∫

p(θn+1 | H, Y ) dp(H |

Y ) =
∫

H(θn+1) dp(H | Y ). The high dimensional nature of θij makes it im-

practical to show the estimated random effects distribution itself. Instead we

show the implied WBC profile as a relevant summary. Figure 3 shows pos-

terior predictive WBC counts for a future patient, arranged by dose xij and
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cycle j. Each panel shows posterior predictive inference for a different dose of

CTX and GM-CSF, assuming a constant dose across all cycles. Within each

panel, three curves show posterior predictive mean responses for cycles j = 1

through j = 3. Each curve shows E(yn+1,jk | Y ), plotted against tn+1,jk.

Together, the three curves summarize what was learned about the change of

θij across cycles. Note how the curve for the third cycle (j = 3) deteriorates

by failing to achieve the recovery to baseline WBC. Comparing the predicted

WBC profiles for high versus low dose of GM-CSF for the same level of CTX

confirms that the growth factor worked as intended by the clinicians. The

added GM-CSF improves the recovery to baseline for later cycles.

Figure 4a summarizes an important feature of G. Let p14 denote the

probability of WBC above a critical threshold of 1000 on day 14, i.e., p14 =

p(Yn+1,jk > log 1000 | Y ) for tn+1,jk = 14 (we modeled log WBC). The figure

plots p14 against cycle, arranged by treatment level xn+1 (assuming constant

treatment level across all cycles and denoting the common value by xn+1).

For each cycle j and treatment level the lines show the marginal posterior

predictive probability of a WBC beyond 1000 by day 14. At low to mod-

erate levels of the chemotherapy agent CTX, treatment with high level of

the growth factor stimulating factor GM-CSF stops the otherwise expected

deterioration across cycles. Even for high CTX, the additional treatment

with GM-CSF still mitigates the decline over cycles. Figure 4b plots the

posterior predictive minimum WBC (in log 1000) by cycle within doses of

the two drugs. Short vertical line segments in both panels indicate point-

wise posterior predictive standard deviations. The large posterior predictive

uncertainties realistically reflect the range of observed responses in the data.
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Compare with Figure 5(b). The numerical uncertainty of the Monte Carlo

average is negligible.

Figure 5ab shows another summary of the estimated random effects model

H(θi), across cycles, for fixed doses, CTX= 3g/m2 and GM-CSF= 5µg/kg.

We select two clinically relevant summaries, the nadir WBC (fnadir) and

the number of days that WBC is below a critical threshold of 1000 (Tlo), to

visualize the high dimensional distributions. Both summaries are evaluated

for each cycle. For each summary statistic, we show the joint distribution

for cycles 1 and 2. The bivariate distributions are shown by plotting 500

random draws. One can recognize distinct clusters in the joint distribution.

Figure 5c shows results for the parametric model (2). All hyperparameters

were chosen identical as for the semi-parametric model. The parametric

model shrinks the random effects to the mean of the estimated unimodal

random effects distribution. The shown summaries are highly non-linear

functions of the parameters, making it difficult to interpret the shrinkage

beyond the fact that the estimated random effects distribution under the

parametric model is unimodal and is significantly more peaked. We carried

out similar comparisons (not shown) for Figures 2 and 3. The fitted profiles

shown in Figure 2 remain almost unchanged under the parametric model.

The predictive inference shown in Figure 3, however, changes substantially.

The change in Figure 5c relative to Figure 5b shows summaries.

Finally, we carried out sensitivity analyses to investigate the robustness

of the reported results with respect to changes in the prior assumptions.

Results are summarized in Table 1. The columns of Table 1 report the

probability of white blood cell count above a critical threshold in cycle 3,
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labeled P (y14 > 0), the change in this probability from cycle 2 to 3 (∆P ),

and predicted nadir count (FNADIR) in the third cycle, arranged by three

different doses of GM-CSF, fixing CTX at 4.5 g/m2. Reported summaries

in Table 1 are with respect to the posterior predictive distribution for a

future patient. The three horizontal blocks of the table report changes in

the three main layers of the hierarchical model. The first three rows report

inference for different choices of the prior expectation E(σ2
ij) for the residual

variances in (1). The next three lines report inference under different choices

of the hyperprior on S. Recall from Section 5.2 that we use a Wishart

hyperprior S−1 ∼ W (q, R−1/q). The rows labeled r = 0.5 and r = 2.0

rescale the hyperparameter R by 0.5 and 2.0, respectively. The final set of

four lines reports inference for different choices of the total mass parameter

M , using fixed values of M = 1, 5 and 10. The row marked with 5∗ reports

inference under the Gamma(5, 1) hyperprior with E(M) = 5 reported in

Section 5.2. The rows marked with E(σ2
ij) = 0.01, M = 5∗ and r = 1.0 are

identical. These are the choices reported in Section 5.2. Under this wide

range of reasonable hyperprior parameters, we find the reported features of

the posterior inference to be reasonably robust.

6. Conclusion

We have introduced semiparametric Bayesian inference for multi-level re-

peated measurement data. The nonparametric nature of the model are the

random effects distribution for the first level random effects and the proba-

bility model for the joint distribution of random effects across second level

repetitions.
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The main limitation of the proposed approach is the computation-intensive

implementation. Important directions of extensions for the proposed model

are to different data formats, for example repeated binary data, and to a more

structured model for the dependence across cycles. In the proposed model,

dependence across cycles is essentially learned by clustering of the imputed

random effects vectors for the observed patients. The approach works well

for continuous responses with a non-linear regression model (1), assuming

the residual variance is small enough to leave little posterior uncertainty for

the θij. The model is not appropriate for less informative data, for exam-

ple binary data. Finally, the main reasons for choosing the DP prior were

computational ease and the nature of the predictive rule (6). Both apply for

a wider class of models known as species sampling models (Pitman, 1996;

Ishwaran and James, 2003). Such models could be substituted for the DP

model, with only minimal changes in the implementation.
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Table 1

Important inference summaries for low, medium and high choices of three

hyperprior parameters. The columns report three important summaries

related to Figure 4. See the text for details. The three horizontal blocks

report inference when changing hyperprior parameters related to the

nonlinear regression sampling model (first block, E(σ2)), the prior on the

random effects (marked with r), and the nonparametric prior (M). See the

text for details.

P (y14 > 0) ∆P (y14 > 0) FNADIR

dose GM-CSF

2.5 5.0 10.0 2.5 5.0 10.0 2.5 5.0 10.0

E(σ2)

0.01 0.60 0.81 0.97 0.02 −0.07 −0.017 −1.7 −1.3 0.00

0.10 0.64 0.72 0.90 0.00 −0.27 −0.040 −1.6 −1.4 −0.54

1.00 0.62 0.58 0.97 0.04 −0.36 0.000 −1.5 −1.7 −0.34

r

0.5 0.62 0.72 0.87 −0.10 0.14 0.090 −1.7 −1.1 −0.19

1.0 0.60 0.81 0.97 0.02 −0.07 −0.017 −1.7 −1.3 0.00

2.0 0.84 0.81 0.99 −0.12 −0.12 0.010 −1.6 −1.7 −0.37

M

1 0.58 0.78 0.97 −0.09 −0.21 −0.010 −1.7 −1.4 −0.33

5 0.59 0.74 0.97 −0.08 −0.25 −0.010 −1.7 −1.5 −0.46

5∗ 0.60 0.81 0.97 0.02 −0.07 −0.017 −1.7 −1.3 0.00

10 0.56 0.68 0.98 −0.11 −0.30 −0.010 −1.6 −1.3 −0.40

23



Figure Legends

Figure 1. Model structure. Circles indicate random variables. Arrows

indicate conditional dependence. The dashed box and the solid lines (without

arrows) show how µi is partitioned into subvectors. The sampling model

p(yijk | θij), the random effects model p(θij, j = 1, . . . , ni | G) and the

nonparametric prior p(G | η) are defined in (1), (3) and (5), respectively.

Figure 2. Repeated measurements over time (DAY) and cycles. Each panel

shows data for one patient. Within each panel, the curves labeled 1, 2, and

3 show profiles for the first, second and third cycle of chemotherapy (only

two cycles are recorded for patients 15 and 17). The curves show posterior

estimated fitted profiles. The observed data are indicated by “1”,”2” or “3”

for cycles 1,2 and 3, respectively.

Figure 3. Prediction for future patients treated at different levels of CTX and

GM-CSF. For each patient we show the predicted response over the first three

cycles as solid, dashed and dotted lines, respectively. CTX levels are 1.5, 3.0

and 4.5 g/m2(labeled as 1,3 and 4 in the figure). GM-CSF doses are 2.5, 5

and 10 µg/kg(labeled as 3,5 and 10). Inference is conditional on a baseline

of 2.0. Posterior predictive standard deviations are approximately 0.6.
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Figure 4. Clinically relevant summaries of the inference across cycles: prob-

ability of WBC > 1000 on day 14 (left panel) and estimated nadir WBC

count (right panel). The left panel shows the posterior probability of WBC

above 1000 on day 14, plotted by treatment and cycle. The right panel shows

the minimum WBC (in log 1000) plotted by treatment and cycle. Reported

CTX doses are in g/m2and GM-CSF doses are in µg/kg. The vertical error

bars show plus/minus 1/2 pointwise posterior predictive standard deviation.

We added a small horizontal offset to each line to avoid overlap.

Figure 5. Estimated H(θ). We show the bivariate marginals for cycle 1 and

2 for two relevant summaries of θ, for doses CTX=3 g/m2 and GM-CSF=5

µg/kg. Panel (a) shows the estimated distribution of Tlo, the number of days

that WBC is below 1000, for the first two cycles. Panel (b) shows the same

for the minimum WBC (in log 1000). Panel (c) shows the same inference

as Panel (b) for the parametric model. The distributions are represented by

scatterplots of 500 simulated draws. For the integer valued variable Tlo we

added additional noise to the draws to visualize multiple draws at the same

integer pairs. For comparison, the 45 degree line is shown (dashed line).
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i  CTX   GM 
1  1.5  10.0
2  3.0   2.5
3  3.0   5.0
4  3.0  10.0
5  4.5   5.0
6  4.5  10.0

(a) P (y14 > 0 | Y ) (b) Minimum WBC

Figure 4.
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cycle 1 and 2 for cycle 1 and 2 parametric model (2)
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