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Summary. We propose a probability model for random partitions in the presence

of covariates. In other words, we develop a model-based clustering algorithm that

exploits available covariates. The motivating application is predicting time to pro-

gression for patients in a breast cancer trial. We proceed by reporting a weighted

average of the responses of clusters of earlier patients. The weights should be

determined by the similarity of the new patient’s covariate with the covariates of

patients in each cluster. We achieve the desired inference by defining a random

partition model that includes a regression on covariates. Patients with similar co-

variates are a priori more likely to be clustered together. Posterior predictive infer-

ence in this model formalizes the desired prediction.

We build on product partition models (PPM). We define an extension of the PPM

to include a regression on covariates by including in the cohesion function a new

factor that increases the probability of experimental units with similar covariates

to be included in the same cluster. We discuss implementations suitable for any

combination of continuous, categorical, count and ordinal covariates.



1. Introduction

We develop a probability model for clustering with covariates, that is, a proba-

bility model for partitioning a set of experimental units, where the probability

of any particular partition is allowed to depend on covariates. The motivating

application is inference in a clinical trial. The outcome is time to progression

for breast cancer patients. The covariates include treatment dose, initial tumor

burden, an indicator for menopause, and more. We wish to define a probability

model for clustering patients with the specific feature that patients with equal

or similar covariates should be a priori more likely to co-cluster than others.

Let i = 1, . . . , n, index experimental units, and let ρn = {S1, . . . , Skn
} denote

a partition of the n experimental units into kn subsets Sj . Let xi and yi denote

the covariates and response reported for the i-th unit. Let xn = (x1, . . . , xn) and

yn = (y1, . . . , yn) denote the entire set of recorded covariates and response data,

and let x∗j = (xi, i ∈ Sj) and y∗j = (yi, i ∈ Sj) denote covariates and response

data arranged by clusters. Sometimes it is convenient to introduce cluster mem-

bership indicators ei ∈ {1, . . . , k} with ei = j if i ∈ Sj , and use (k, e1, . . . , en)

to describe the partition. We call a probability model p(ρn) a clustering model,

excluding in particular purely constructive definitions of clustering as a deter-

ministic algorithm (without reference to probability models). Many clustering

models include, implicitly or explicitly, a sampling model p(y | ρ). Probability

models p(ρn) and inference for clustering have been extensively discussed over

the past few years (see Quintana, 2006, for a recent review). In this paper we

are interested in adding a regression to replace p(ρn) with p(ρn | xn).

We focus on the product partition models (PPM). The PPM (Hartigan, 1990;

Barry and Hartigan, 1993) constructs p(ρn) by introducing cohesion functions

c(A) ≥ 0 for A ⊂ {1, . . . , n} that measure how tightly grouped the elements in

A are thought to be, and defines a probability model for a partition ρn and data
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yn as

p(ρn) ∝
kn∏
j=1

c(Sj) and p(yn | ρn) =
kn∏
j=1

pj(y?j ) (1)

Model (1) is conjugate since the posterior p(ρn | yn) is again in the same product

form.

Alternatively, the species sampling model (SSM) (Pitman, 1996; Ishwaran

and James, 2003) defines an exchangeable probability model p(ρn) that de-

pends on ρn only indirectly through the cardinality of the partitioning subsets,

p(ρn) = p(|S1|, . . . , |Sk|). The SSM can be alternatively characterized by a se-

quence of predictive probability functions (PPF) that describe how individuals

are sequentially assigned to either already formed clusters or to start new ones.

The choice of the PPF is not arbitrary. One has to make sure that a sequence of

random variables that are sampled by iteratively applying the PPF is exchange-

able. The popular Dirichlet process (DP) model (Ferguson, 1973; Antoniak,

1974) is a special case of a SSM. Moreover, the marginal distribution that a DP

induces on partitions is also a PPM with cohesions c(Sj) = M×(|Sj |−1)! (Quin-

tana and Iglesias, 2003; Dahl, 2003). Here M denotes the total mass parameter

of the DP prior.

Model based clustering (Banfield and Raftery, 1993; Dasgupta and Raftery,

1998; Fraley and Raftery, 2002) implicitly defines a probability model on clus-

tering by assuming a mixture model p(yi | η, k) =
∑k
j=1 τj pj(yi | θj), where

η = (θ1, . . . , θk, τ1, . . . , τk) are the parameters of a size k mixture model. To-

gether with a prior p(k) on k and p(θ, τ | k), the mixture implicitly defines a

probability model on clustering. Consider the equivalent hierarchical model

p(yi | ei = j, k, η) = pj(yi | θj) and Pr(ei = j | k, η) = τj . (2)

The implied posterior distribution on (e1, . . . , en) and k defines a probability

model on ρn. Richardson and Green (1997) develop posterior simulation strate-
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gies for mixtures of normal models. Green and Richardson (1999) discuss the

relationship to DP mixture models.

Especially in the context of spatial data, a popular clustering model is based

on Voronoi tessellations (Green and Sibson, 1978; Okabe et al., 2000; Kim et al.,

2005). For a review see, for example, Denison et al. (2002). Although not

usually considered as a probability model on clustering, it can be defined as

such by means of the following construction. We include it in this brief review of

clustering models because of its similarity to the model proposed in this paper.

Assume xi are spatial coordinates for observation i. Let d(x1, x2) denote a

distance measure, for example Euclidean distance in R2. Clusters are defined

with latent cluster centers Tj , j = 1, . . . , k, by setting ei = arg minj d(xi, Tj).

That is, a partition is defined by allocating each observation to the cluster whose

center Tj is closest to xi. Conditional on T , cluster allocation is deterministic.

Marginalizing with respect to a prior on T we could define a probability model

p(ρn | k).

In this paper we build on the PPM (1) to define a covariate-dependent ran-

dom partition model by augmenting the PPM with an additional factor that

induces the desired dependence on the covariates. We refer to the additional

factor as similarity function. Focusing on continuous covariates a similar ap-

proach building on PPMs is being proposed in current work by Park and Dun-

son (2007). Their approach starts with a PPM for the covariates, and uses the

posterior random partition given the covariates as the prior model for inference

with the response data. Shahbaba and Neal (2007) introduce a related model for

categorical outcomes, i.e., classification. They include the covariates as part of

an augmented response vector. This leads to a similar covariate-dependent ran-

dom partition model. We discuss more details of these two and other alternative

approaches in Section 5 where we also carry out a small Monte Carlo study for
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an empirical comparison.

In Section 2 we state the proposed model and considerations in choosing

the similarity function. In Section 3 we show that the computational effort of

posterior simulation remains essentially unchanged from PPM models without

covariates. In Section 4 we propose specific choices of the similarity function

for common data formats. Section 5 reviews some alternative approaches, and

we summarize a small Monte Carlo study to compare some of these approaches.

In Section 6 we show a simulation study and a data analysis example. In the

context of the simulation study we contrast the proposed approach to an often

used ad-hoc implementation of including the covariates in an augmented response

vector.

2. The PPMx Model: Clustering with Covariates

We build on the PPM (1), modifying the cohesion function c(Sj) with an addi-

tional factor that achieves the desired regression. Recall that x∗j = (xi, i ∈ Sj)

denotes all covariates for units in the j-th cluster. Let g(x∗j ) denote a non-

negative function of x∗j that formalizes similarity of the xi with larger values

g(x∗j ) for sets of covariates that are judged to be similar. We define the model

p(ρn | x) ∝
kn∏
j=1

g(x∗j ) · c(Sj) (3)

with the normalization constant gn(xn) =
∑
ρn

∏kn

j=1 g(x∗j )c(Sj). By a slight

abuse of notation we include x behind the conditioning bar even when x is not a

random variable. We will later discuss specific choices for the similarity function

g. As a default choice we propose to define g(·) as the marginal probability in

an auxiliary probability model q, even if xi are not considered random,

g(x?j ) ≡
∫ ∏

i∈Sj

q(xi | ξj) q(ξj)dξj . (4)
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We use the probability model q(·) to define the desired similarity function g(x?j ).

There is no notion of the xi being random variables. But the use of a probabil-

ity density q(·) for the construction of g(·) is convenient since it allows for easy

calculus. The correlation that is induced by the cluster-specific parameters ξj

in (4) leads to higher values of g(x?j ) for tightly clustered, similar xi, as desired.

More importantly, we show below that under some minimal assumptions a sim-

ilarity function g(·) necessarily is of the form (4). The function (4) satisfies the

following two properties that are desirable for a similarity function in (3). First,

we require symmetry with respect to permutations of the sample indices i. The

probability model must not depend on the order of introducing the experimental

units. This implies that the similarity function g(·) must be symmetric in its

arguments. Second, we require that the similarity function scales across sample

size, in the sense that
∫
g(x?) =

∫
g(x?, x) dx. In words, the similarity of any

cluster is the average of any augmented cluster.

Under these two requirements (4) is not only technically convenient. It is the

only possible similarity function that satisfies these two constraints.

Proposition 1: Assume that (i) a similarity function g(x?) satisfies the two

constraints; (ii) g(x?j ) integrates over the covariate space,
∫
g(x?j )dx

?
j <∞. Then

g(x?j ) is proportional to the marginal distribution on x?j under a hierarchical

auxiliary model (4).

The result follows from De Finetti’s representation theorem for exchangeable

probability measures, applied to a normalized version of q(·). See, for example,

Bernardo and Smith (1994, chapter 4.3). The representation theorem applies

for an infinite sequence of variables that are subject to the symmetry constraint.

The result establishes that all similarity functions that satisfy the symmetry

constraint are of the form (4).

The definition of the similarity function with the auxiliary model q(·) also
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implies another important property. The random partition model (3) is coherent

across sample sizes. The model for the first n experimental units follows from

the model for (n + 1) observations by appropriate marginalization. Without

covariates we would simply require p(ρn) =
∑
en+1

p(ρn+1), with the summation

defined over all possible values of en+1. With covariates we consider the following

condition.

Corollary: Assume that the similarity function is defined by means of an auxil-

iary model, as in (4). The covariate dependent PPM (3) is coherent across sam-

ple sizes as formalized by the following relationship of p(ρn | xn) and p(ρn+1 |

xn, xn+1):

p(ρn | xn) =
∑
en+1

∫
p(ρn+1 | xn, xn+1) q(xn+1 | xn) dxn+1, (5)

for the probability model q(xn+1 | xn) ∝ gn+1(xn+1)/gn(xn).

We complete the random partition model (3) with a sampling model that

defines independence across clusters and exchangeability within each cluster.

We include cluster-specific parameters θj and common hyperparameters η. Let

θ = (θ1, . . . , θkn).

p(yn | ρn, θ, η, xn) =
kn∏
j=1

∏
i∈Sj

p(yi | xi, θj , η) and p(θ | η) =
∏
j

p(θj | η).

(6)

We refer to (3) together with (1) as PPM with covariates, and write PPMx for

short. The resulting model extends PPMs of the type (1) while keeping the

product structure. Note that the sampling model p(yi | xi, θj , η) in (6) can

include a regression of the response data on the covariate xi. For example,

Shahbaba and Neal (2007) includes a logistic regression for yi on xi, in addition

to a covariate-dependent partition mode p(ρn | xn). Similarly, cluster-specific

covariates wj could be included by replacing p(θj | η) by p(θj | η, wj).
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3. Posterior Inference

3.1. Markov Chain Monte Carlo Posterior Simulation

A practical advantage of the proposed default choice for g(x∗j ) is that it greatly

simplifies posterior simulation. In words, posterior inference in (3) and (6) is

identical to the posterior inference that we would obtain if xi were part of the

random response vector yi. The opposite is not true. Not every model with

augmented response vector is equivalent to a PPMx model.

Formally, define an auxiliary model q(·) by replacing (6) with

q(yn, xn | ρn, θ, η) =
∏
j

∏
i∈Sj

p(yi | xi, θj , η) q(xi | ξj) and q(θ, ξ | η) =
∏
j

p(θj | η)q(ξj)

(7)

and replace the covariate-dependent prior p(ρn | xn) by the PPM q(ρn) ∝∏
c(Sj). We continue to use q(·) for the auxiliary probability model that is

introduced as a computational device only, and p(·) for the proposed inference

model. The posterior distribution q(ρn | yn, xn) under the auxiliary model is

identical to p(ρn | yn, xn) under the proposed model. An important caveat is that

ξj and θj must be a priori independent. In particular the prior on θj and q(ξj)

must not include common hyperparameters. If we had p(θj | η) and q(ξj | η)

depend on a common hyperparameter η, then the posterior distribution under

the auxiliary model (7) would differ from the posterior under the original model.

Let q(xn | η) =
∑
ρn

∏
j

∫
q(x?j | ξj) dq(ξj | η). The two posterior distributions

would differ by a factor q(xn | η). The implication on the desired inference can

be substantial. See the results in Section 6.1 for an example and more discussion.

However, the restriction that θj and ξj be independent is natural. The function

g(x∗j ) defines similarity of the experimental units in one cluster and is chosen by

the user. There is no notion of learning about the similarity.

8



3.2. Predictive Inference

A minor complication arises with posterior predictive inference, i.e., reporting

p(yn+1 | yn, xn, xn+1). Using x̃ = xn+1, ỹ = yn+1 and ẽ = en+1 to simplify

notation, we find p(ỹ | x̃, xn, yn) =
∫
p(ỹ | x̃, ρn+1, y

n) dp(ρn+1 | x̃, yn, xn). The

integral is simply a sum over all configurations ρn+1. But it is not immediately

recognizable as a posterior integral with respect to p(ρn | xn, yn). This can easily

be overcome by an importance sampling re-weighting step. Let g(∅) = c(∅) ≡ 1.

The prior on ρn+1 = (ρn, ẽ) can be written as

p(ẽ = `, ρn | x̃, xn) ∝
∏
j 6=`

c(Sj)g(x∗j ) c(S` ∪ {n+ 1})g(x∗` , x̃) =

p(ρn | xn)
g(x∗` , x̃)
g(x∗` )

c(S` ∪ {n+ 1})
c(S`)

Let q`(x̃ | x∗` ) ≡ g(x∗` , x̃)/g(x∗` ). The posterior predictive distribution becomes

p(ỹ | x̃, yn, xn) ∝
∫ kn+1∑

`=1

p(ỹ | x̃, y∗` , x∗` , ẽ = `) q`(x̃ | x∗` )
c(S` ∪ {n+ 1})

c(S`)
p(ρn | yn, xn) dρn. (8)

The first factor reduces to p(ỹ | y∗` , ẽ = `) when (6) does not include a regression

on xi in the sampling model. Sampling from (8) is implemented on top of

posterior simulation for ρn ∼ p(ρn | yn). For each imputed ρn, generate ẽ = `

with probabilities proportional to

w` = q`(x̃ | x∗` )
c(S` ∪ {n+ 1})

c(S`)
,

and generate ỹ from p(ỹ | y∗` , ẽ = `), weighted with w`. In the special case

` = kn + 1 we get wkn+1 = g(x̃)c({n+ 1}).

3.3. Reporting Posterior Inference on Clusters

Reporting posterior inference for random partition models is complicated by

problems related to the label switching problem. See, Jasra et al. (2005) for
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a recent summary and review of the literature. Usually the focus of inference

in semi-parametric mixture models like (6) is on density estimation and pre-

diction, rather than inference for specific clusters and parameter estimation.

Predictive inference is not subject to the label switching problem, as the pos-

terior predictive distribution marginalizes over all possible partitions. However,

in some examples we want to highlight the choice of the clusters. We briefly

comment on the implementation of such inference. We use an approach that we

found particularly meaningful to report inference about the regression p(ρn | xn).

We report inference stratified by kn, the number of clusters. For given kn we

first find a set of kn indices I = (i1, . . . , ik) with high posterior probability of

the corresponding cluster indicators being distinct, i.e., Pr(DI | y) is high for

DI = {ei 6= ej for i 6= j and i, j ∈ I}. To avoid computational complications,

we do not insist on finding the kn-tuple with the highest posterior probability.

We then use i1, . . . , ik as anchors to define cluster labels by restricting posterior

simulations to kn clusters with the units ij in distinct clusters. Post-processing

MCMC output, this is easily done by discarding all imputed parameter vectors

that do not satisfy the constraint. We re-label clusters, indexing the cluster that

contains unit ij as cluster j. Now it is meaningful to report posterior inference

on specific clusters. The proposed post-processing is similar to the pivotal re-

ordering suggested in Marin and Robert (2007, chapter 6.4). An alternative loss

function based method to formalize inference on partitions is discussed in Lau

and Green (2007).

The outlined approach to cluster identification can be considerably improved.

Several recently proposed methods allow efficient inference about the number of

clusters. Marin and Robert (2008) propose a clever method for evaluating the

marginal p(k | y) for general mixture models. The approach is based on treating

the additional randomness that is introduced by the label switching problem as
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an ancillary statistic, and reporting a Rao-Blackwellized estimate by averaging

over all possible permutations. McCullagh and Yang (2008) discuss identification

of clusters under a specific parametric model, the Dirichlet clustering model. The

approach could be used to identify a reasonable choice for kn.

4. Similarity Functions

Continuous covariates: For continuous covariates we suggest as a default

choice for g(x∗j ) the marginal distribution of x∗j under a normal sampling model.

Let N(x; m,V ) denote a normal model for the random variable x, with moments

m and V , and let Ga(x; a, b) denote a Gamma distributed random variable

with mean a/b. We use q(x∗j | ξj) =
∏
i∈Sj

N(xi; mj , vj), with a conjugate

prior for ξj = (mj , vj) as p(ξj) = N(mj ; m,B) · Ga(v−1
j ; ν, S0), with fixed

m,B, ν, S0. The main reason for this choice is operational simplicity. A simplified

version uses fixed vj ≡ v. The resulting function g(x?j ) is the joint density of

a correlated multivariate t-distribution, with location parameter m and scaling

matrix B/(vI+B). The fixed variance v specifies how strong we weigh similarity

of the x. In implementations we used v = c1Ŝ, where Ŝ is the empirical variance

of the covariate, and c1 = 0.5 is a scaling factor that specifies over what range

we consider values of this covariate as similar. The choice between fixed v versus

variable vj should reflect prior judgement on the variability of clusters. Variable

vj allows for some clusters to include a wider range of x values than others.

Finally, a sufficiently vague prior for mj is important to ensure that the similarity

is appropriately quantified even for a group of covariate values in the extreme

areas of the covariate space. In our implementation we used B = c2Ŝ with

c2 = 10.
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Categorical covariates: When constructing a cohesion function for categor-

ical covariates, a default choice is based on a Dirichlet prior. Assume xi is a

categorical covariate, xi ∈ {1, . . . , C}. To define g(x∗j ), let q(xi = c | ξj) = ξjc

denote the probability mass function. Together with a conjugate Dirichlet

prior, q(ξj) = Dir(α1, . . . , αC) we define the similarity function as a Dirichlet-

categorical probability

g(x∗j ) =
∫ ∏

i∈Sj

ξj,xi
dq(ξj) =

∫ C∏
c=1

ξ
njc

jc dq(ξj), (9)

with njc =
∑
i∈Sj

I(xi = c). This is a Dirichlet-multinomial model without the

multinomial coefficient. For binary covariates the similarity function becomes a

Beta-Binomial probability without the Binomial coefficient. The choice of the

hyperparameters α needs some care. To facilitate the formation of clusters that

are characterized by the categorical covariates we recommend Dirichlet hyper-

parameters αc < 1. For example, for C = 2, the bimodal nature of a Beta

distribution with such parameters assigns high probability to binomial success

probabilities ξj1 close to 0 or 1. Similarly, the Dirichlet distribution with pa-

rameters αc < 1 favors clusters corresponding to specific levels of the covariate.

Ordinal covariates: A convenient specification of g(·) for ordinal covariates is

an ordinal probit model. The model can be defined by means of latent variables

and cutoffs. Assume an ordinal covariate x with C categories. Following Johnson

and Albert (1999), consider a latent trait Z and cutoffs −∞ = γ0 < γ1 ≤ γ2 ≤

· · · ≤ γC−1 < γC =∞, so that x = c if and only if γc−1 < Z ≤ γc. We use fixed

cutoff values γc = c−1, c = 1, . . . , C−1, and a normally distributed latent trait,

Zi ∼ N(mj , vj). Let Φc(mj , vj) = Pr(γc−1 < Z ≤ γc | mj , vj) denote the normal

quantiles and let ξj = (mj , vj) denote the cluster-specific moments of the latent

score. We define q(xi | ei = j, ξj) = Φc(mj , vj). The definition of the similarity

function is completed with q(ξj) as a normal-inverse gamma distribution as for
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the continuous covariates. We have

q(x∗j ) =
∫ C∏

c=1

Φncj
c (mj , vj) N(mj ; m,B) Ga(v−1

j ; ν, S0) dmjdvj ,

where ncj =
∑
i∈Sj

I{xi = c}.

Count covariates: Finally, to define g(·) for count-type covariates, we use a

mixture of Poisson distributions

g(x∗j ) =
1∏

i∈Sj
xi!

∫
ξ

P
i∈Sj

xi

j exp(−ξj |Sj |) dq(ξj). (10)

With a conjugate gamma prior, q(ξj) = Ga(ξj ; a, b), the similarity function g(x∗j )

allows easy analytic evaluation. As a default, we suggest choosing a = 1 and

a/b = cŜ, where Ŝ is the empirical variance of the covariate, and a/b is the

expectation of the gamma prior.

The main advantage of the proposed similarity functions is computational

simplicity of posterior inference. A minor limitation is the fact that the pro-

posed default similarity functions, in addition to the desired dependence of the

random partition model on covariates also include a dependence on the cluster

size nj = |Sj |. From a modeling perspective this is undesirable. The mechanism

to define size dependence should be the underlying PPM and the cohesion func-

tions c(Sj) in (3). However, we argue that the additional cluster size penalty

that is introduced through g(·) can be ignored in comparison to, for example, the

cohesion function c(Sj) = M(nj − 1)! that is implied by the popular DP prior.

The DP prior is biased towards one large cluster and lots of small clusters. This

strong a priori preference for large clusters is not desirable for most applications.

Thus the additional penalty could be considered a conservative correction in the

desired direction.

Proposition 2: The similarity function introduces an additional cluster size

penalty in model (3). Consider the case of constant covariates, xi ≡ x, and
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let nj denote the size of cluster j. The default choices of g(x?j ) for contin-

uous, categorical and count covariates introduce a penalty for large nj , with

limnj→∞ g(x?j ) = 0. But the rate of decrease is ignorable compared to the cohe-

sion c(Sj). Let f(nj) be such that limnj→∞ g(x?j )/f(nj) ≥M with 0 < M <∞.

For continuous covariates the rate is f(nj) = (2π)−
nj
2 V −

nj−1
2 (r+nj)

1
2 with r =

V/B. For categorical covariates it is f(nj) = (A + nj)A−αx , with A =
∑
c αc.

For count covariates it is f(nj) = C−
nj
2 (α+ njx)

1
2 with C = 2πx exp(1/6x).

Proof: see appendix. 2

Another important concern besides the dependence of g(·) on nj is the de-

pendence on q(ξj) in the auxiliary model in (4). In particular, we focus on the

dependence on possible hyperparameters φ that index q(ξj). We write q(ξj | φ)

when we want to highlight the use of such (fixed) hyperparameters. The auxiliary

models q(·) for all proposed default similarity functions include such hyperpa-

rameters. Model (3) and (4) implies conditional cluster membership probabilities

p(en+1 = j | xn+1, x
n, ρn) ∝ c(Sj ∪ {n+ 1})

c(Sj)
g(x?j , xn+1)
g(x?j )︸ ︷︷ ︸

≡qj(xn+1|x?
j ,φ)

(11)

j = 1, . . . , kn, with the convention g(∅) = c(∅) = 1. The cluster membership

probabilities (11) are asymptotically independent of φ. Noting that qj(xn+1 |

x?j , φ) can be written as a posterior predictive distribution in the auxiliary model,

the statement follows from the asymptotic agreement of posterior predictive

distributions.

Proposition 3: Consider any two similarity functions gh(x?j ), h = 1, 2, based

on an auxiliary model (4) with different probability models qh(ξj), h = 1, 2,

but the same model q(xi | ξj). For example, qh(ξj) = q(ξj | φh). Assume

that both auxiliary models satisfy the regularity conditions of Schervish (1995,

Section 7.4.2) and assume q(xi | ξ) ≤ K is bounded. Let qhj (xn+1 | x?j ) denote
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the un-normalized cluster membership probability in equation (11) under qh(ξj).

Then

lim
nj→∞

q1
j (xn+1 | x?j )− q2

j (xn+1 | x?j ) = 0 (12)

The limit is a.s. under i.i.d. sampling from q(xi | ξ0).

See the appendix for a straightforward proof making use of asymptotic pos-

terior normality only. The statement is about asymptotic cluster membership

probabilities for a future unit only and should not be over-interpreted. The

marginal probability for a set of elements forming a cluster does depend on

hyperparameters. An example are the expressions for g(x?j ) in the proof of

proposition 2.

5. Alternative Approaches and Comparison

5.1. Other Approaches

We propose the PPMx model as a principled approach to defining covariate-

dependent random partition models. The proposed model class includes some

recently proposed alternatives as special cases, even when these models were not

motivated as a modification of the PPM.

Park and Dunson (2007) consider the special case of continuous covariates.

They define the desired covariate-dependent random partition model as the pos-

terior random partition under a PPM model for the covariates xi, i.e., (1) with

covariates xi replacing the response data yi. The posterior p(ρn | xn) is used

to define the prior for the random partition ρn. In other words, they proceed

with an augmented response vector (xi, yi), carefully separating the prior for

parameters related to the x and y sub-vectors, as in (7). See Section 3.1 for a

discussion of the need to separate prior parameters related to x and y.

Another recently proposed approach is Shahbaba and Neal (2007). They use

a logistic regression for a categorical response variable on covariates together with
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a random partition of the samples, with cluster-specific regression parameters

in each partitioning subset. The random partition is defined by a DP prior

and includes the covariates as part of the response vector. The proposed model

can be written as (7) with p(yi | xi, θj , η) specified as a logistic regression with

cluster-specific parameters θj , and q(xi | ξj) as a normal model with moments

ξj = (µj ,Σj). The cohesion functions c(Sj) are defined by a DP prior.

Another popular class of models that implements similar covariate-dependent

clustering are hierarchical mixtures of experts (HME) and related models. HME

models were introduced in Jordan and Jacobs (1994). Bayesian posterior infer-

ence is discussed in Bishop and Svensén (2003). An implementation for binary

outcomes is developed in Wood et al. (2008). We refer the reader to McLachlan

and Peel (2000) for a review of mixture of experts models. We consider a specific

instance of the HME model that we will use for an empirical comparison in Sec-

tion 5.2. The model is expressed as a finite mixture of normal linear regressions,

with mixture weights that themselves depend on the available covariates as well:

p(yi; η) =
K∑
j=1

wij(xi; αj)N(yi; θTj xi, σ
2
i ). (13)

Here η = (θ1, . . . , θK , σ
2
1 , . . . , σ

2
K , α1, . . . , αK) is the full vector of parameters.

The size K of the mixture is pre-specified. The covariate vector xi includes a 1

for an intercept term. The weights 0 ≤ wij ≤ 1 are defined as wij ∝ exp(αTj xi).

For identifiability we assume α1 ≡ 0. The model specification is completed by

assuming θj ∼ N(µθ, Vθ), αj ∼ N(µα, Vα), σ−2
j ∼ Ga(a0, a1), and prior inde-

pendence of all parameters. The HME formulation defines a highly flexible class

of parametric models. But there are some important limitations. The depen-

dence of cluster membership probabilities on the covariates is strictly limited to

the assumed parametric form of wij(·). For example, unless an interaction of

two covariates is included in wij(·) no amount of data will allow clusters that are

specific to interactions of covariates. Second, the number of mixture components
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K is assumed known. Ad-hoc fixes are possible, such as choosing a very large

K, or introducing a hyperprior on K. One could then use the marginal posterior

p(K | y) to guide the choice of a fixed K.

Similar to the HME, clusterwise regression models also define mixture mod-

els with separate regression functions within each of K subpopulations (DeSarbo

and Cron, 1988). Posterior inference for such models and extensions to gener-

alized linear models is summarized in Lenk and DeSarbo (2000). These models

are similar to HME models but without the covariate dependent weights.

Dahl (2008) recently proposed another interesting approach to covariate-

dependent random clustering. Let e = (e1, . . . , en) and let e−i denote the vector

of cluster membership indicators without the i-th element. Let p(en+1 = j |

e), j = 1, . . . , kn + 1 denote the conditional prior probabilities for the cluster

membership indicators. For the random clustering implied by the DP prior,

G ∼ DP (M,G?), these conditional probabilities are known as the Polya urn. Let

k− denote the number of distinct elements in e−i, S−j = {h : eh = j and h 6= i}

and n−j = |S−j |. The Polya urn specifies p(ei = j | e−i) = n−j /(n − 1 + M)

for j = 1, . . . , k−, and M/(n − 1 + M) for j = k− + 1. Dahl (2008) defines

the desired covariate-dependent random partition model by modifying the Polya

urn. Assume covariates xi are available and it is desired to modify p(e) such that

any two units with similar covariates should have increased prior probability for

co-clustering. Assume dih = d(xi, xh) can be interpreted as a distance of xi and

xh. Let d? = maxi<h dih and define hi(Sj) = c
∑
h∈Sj

(d? − dih) with c chosen

to achieve
∑kn

j=1 hi(Sj) = n. Dahl (2008) defines the modified Polya urn

p(ei = j | e−i, xn) ∝


hi(S−j ) j = 1, . . . , k

M j = k + 1.
(14)

This set of transition probabilities define an ergodic Markov chain. Thus it

implicitly defines a joint probability distribution on e that is informed by the
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relative distances dij as desired.

5.2. Comparison of Competing Approaches

We set up a Monte Carlo study to compare the performance of the proposed

PPMx model in comparison with three of the described alternative approaches:

(i) the HME model (13); (ii) the approach of Dahl (2008); and (iii) the model

in Park and Dunson (2007).

We set up a simulation study with 3 covariates x1 ∈ R and x2 ∈ {0, 1},

x3 ∈ {0, 1}. The simulation truth is chosen to mimic the example in Section 6.2.

Think of x2 as an indicator for high dose (HI), x3 as an indicator for ER positive

tumors (ER+), and x1 as tumor size (TS), with −1, 0 and 1 representing small,

medium and large size. There is a strong interaction of x2 and x3 with longest

survival for (x2, x3) = (1, 1), and a sizeable main effect for x1.

Figure 1 shows the simulation truth. The figure plots the distribution of

the univariate response yi arranged by x1 ∈ {−1, 0, 1} (the three distributions

shown in each panel) and the four combinations of (x2, x3) (one panel for each

combination). Note the interaction of x1 and x2, visible by comparing the effects

of x1 (top left versus bottom left panels) and x2 (top left versus top right) with

the combined effect of (x1, x2) (top left versus bottom right panel). We simulated

M = 100 data sets of size n = 200 using the described sampling model. The

simulated data included all covariate combinations shown in Figure 1 except

for (x1, x2, x3) = (1, 0, 0) and (1, 1, 0). Simulation also included intermediate

values of the continuous variable x1. The M = 100 data sets were generated

by resampling one big set of N = 1000 simulated data points. The big data set

and the expectations E(Y | x1, x2, x3) under the simulation truth are available

at http://odin.mdacc.tmc.edu/∼pm/.

We compare the proposed PPMx model and the alternative approaches (i)
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Fig. 1. Simulation truth p.d.f. for the outcome variable for different combinations of the

three covariates.

through (iii). As criterion we use the root mean squared error (RMSE) in es-

timating E(y | x1, x2, x3) for the 12 combinations of the covariates (x1, x2, x3)

shown in Figure 1. We evaluated MSE by averaging squared errors over M = 100

repeat simulations. Table 1 summarizes the results. Rows (x1, x2, x3) = (1, 0, 0)

and (1, 1, 0) report covariate combinations that were not included in the data set.

Results are thus based on extrapolation. The PPMx model performs well for

these extrapolation problems. The last three rows correspond to the right lower

panel in Figure 1. Performance for these scenarios reflects the adaptation of the

model to extreme interaction effects. The HME performs surprisingly well. The

PPMx reports reasonable MSE. Overall there is no clear winner in the compar-

19



Table 1. Root MSE for estimating E(y | x1, x2, x3) for 12 combinations of (x1, x2, x3)

and the four competing models. Models (i) through (iii) and the proposed model are

indicated as HME, DAHL, P&D and PPMx, respectively. Covariate combinations that

require extrapolation beyond the range of the data are indicated by ?.

RMSE

x1 x2 x3 PPMx P&D DAHL HME

-1 0 0 7.9 2.7 8.6 13.0

0 0 0 3.9 15.0 4.6 8.3

1 0 0 2.8 21.5 8.7 8.7 ?

-1 1 0 5.4 2.3 6.2 5.7

0 1 0 4.6 15.5 7.9 5.5

1 1 0 4.0 21.0 12.6 5.3 ?

-1 0 1 6.1 1.8 9.5 7.5

0 0 1 4.2 7.0 2.4 3.5

1 0 1 4.5 17.4 8.2 4.9

-1 1 1 9.5 12.1 12.2 6.5

0 1 1 8.3 8.7 10.2 5.4

1 1 1 6.2 2.4 4.8 3.8
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ison. In any case we caution against over-interpreting the results for this one

example. The main conclusion is that all four approaches are reasonably com-

parable, and a caveat about extrapolation in the approach by Park and Dunson

(2007). The choice of approach should depend on the inference goal. The HME

is perfectly appropriate if the main objective is flexible regression. If available

information about similarities is naturally expressed by pairwise distances dij ,

and the main focus is predictive inference, then the approach by Dahl (2008)

is attractive. A limitation of the latter two approaches is the lack of specific

inference on the random partition. Inference on cluster membership indicators

can be reported. But under the HME cluster membership is strictly limited to

the functional form of w(·; αj). Under Dahl (2008), although a model is implied

by the set of conditional distributions (14), there is in general no clearly iden-

tified prior probability model for ρn. The approach of Park and Dunson (2007)

is reasonable if the DP prior is chosen for the underlying PPM, the covariates

are continuous and the covariates can be considered random variables. The pro-

posed PPMx is attractive when the set of covariates includes a mix of different

data formats, and if there is specific prior information of how important different

covariates should be for the judgement of similarity.

6. Examples

6.1. Simulation Study

We set up a simulation study with a 6-dimensional response yi, and a continuous

covariate xi, and for n = 47 data points (yi, xi), i = 1, . . . , n. The simulation

is set up to mimic responses of blood counts over time for patients undergoing

chemo-immunotherapy. Each data point corresponds to one patient. The six

responses for each patient could be, for example, outcomes at six key time points

over the course of one cycle of the therapy. The covariate is a treatment dose.
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Fig. 2. Simulation example. Data (left panel) and simulation truth for the mean response

E(yi | xi) as a function of the covariate xi (right panel).

In the simulation study we sampled xi from 5 possible values, xi ∈ {3, 4, 5, 6, 7}.

Although we only include 5 distinct values in the simulation, we define xi as a

continuous covariate. The reason is the nature of xi as a continuous dose in the

motivating application. For each value of x we defined a different mean vector.

Figure 2 (right panel) shows the 5 distinct mean vectors for the 6-dimensional

response (plotted against days T ). The bullets indicate the six responses. Adding

a 6-dimensional normal residual we generated the data shown in Figure 2 (left

panel).

We then implemented the PPMx model for covariate-dependent clustering

to define a random partition model with a regression on the covariate xi. Let

N(x;m, s) indicate a normal distribution for the random variable x, with mo-

ments (m, s), let W (V ; ν, S) denote a Wishart prior for a random matrix V with

scalar parameter ν and matrix parameter S, and let Ga(s; a, b) denote a gamma

distribution with mean a/b. Let θj = (µj , Vj). We used a multivariate normal
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model p(yi | θj) = N(µj , Vj), with a conditionally conjugate prior for θj , i.e.,

p(θj) = N(µj ; my, By)W (V −1
j ; sy, S−1

y ). Let diag(x) denote a diagonal matrix

with x on the diagonal. The model is completed with conjugate hyperpriors for

Sy, Sy ∼ W (q,R/q) with q = 50 and R = diag(0.25, . . . , 0.25). Let x and Ŝ

denote the empirical mean and covariance matrix of the 6-dimensional response.

The hyperparameters for the sampling model are fixed as my = x, By = 4 · Ŝ

and sy = 50. The similarity function is a normal kernel. We use

g(x?j ) =
∫ ∏

i∈Sj

N(xi; mj , v) N(mj ; m,B) dmj

The hyperparameters m,B, S0 are fixed. As cohesion function c(·) in (3) we use

c(Sj) = M(nj − 1)!, i.e. the random clustering model implied by a DP prior.

Hyperparameters for the similarity function are m = 5, and B = 0.1, and we

assume a Ga(1, 1) hyperprior for the total mass parameter M .

Figure 3 summarizes posterior inference by the posterior predictive distri-

bution for yn+1 arranged by xn+1. The marginal posterior distribution for

the number of clusters assigns posterior probabilities p(k = 3 | data) = 76%,

p(k = 4 | data) = 20% and p(k = 5 | data) = 3%. We used the procedure

described at the end of section 3 to report cluster-specific summaries. Condi-

tional on k = 3, the three clusters are characterized by xi = 3.4(0.2) for the

first cluster, xi = 5(0) for the 2nd cluster and xi = 7(0) for the third cluster

(posterior means and standard deviations of xi assigned to each cluster). The

average cluster sizes are 24, 11 and 11.

For comparison, the right panel of the same figure shows posterior predictive

inference in a model using a PPM prior on clustering, without the use of co-

variates. In this case, the inference is by construction the same for all covariate

values.

A technically convenient ad-hoc solution to include covariates in a sampling

model is to proceed as if the covariates were part of the response vector. This
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Fig. 3. Simulation example. Estimated mean response under the proposed covariate

regression (left panel) and without (right panel).

approach is used, for example in Mallet et al. (1988) or Müller et al. (2004).

Doing so introduces an additional factor in the likelihood. Let y generically

denote the response, x the covariate, and θ the model parameters. Treating the

covariate as part of the response vector is equivalent to replacing the sampling

model p(y | x, θ) by p(y | x, θ) · p(x | θ). Equivalently, one can interpret the

additional factor p(x | θ) as part of the prior. The reported posterior inference is

as if we had changed the prior model from the original p(θ) to p̃(θ) ∝ p(θ)p(x | θ).

Wong et al. (2003) use this interpretation for a similar construction in the context

of prior probability models for a positive definite matrix. Compare with the

discussion in Section 3.1. Note that in p(y | x, θ) · p(x | θ) the parameters of the

original sampling model p(y | ·) and p(x | ·) are not necessarily separated. In

the example below they share the parameter Sy.

The implied modification of the prior probability model could be less in-

nocuous than what it seems. We implemented inference under the PPM prior

model (1), without covariates, and a sampling model as before, but now for an
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Fig. 4. Prediction for ỹ arranged by x̃ for the covariate response model with the additional

factors p(xn
j | θj , η) in the prior.

extended response vector augmented by the covariate xi. We assume a multi-

variate normal sampling model p(yi, xi | θj) = N(µj , Vj), with a conditionally

conjugate prior for θj , i.e., p(θj) = N(µj ; my, By)W (V −1
j ; s, S−1

y ). As before

the model is completed with a conjugate hyperpriors for Sy. The hyperparam-

eters are chosen exactly as before. The additional 7-th row and column of the

prior means for By are all zero except for the (7,7) diagonal element which we fix

at v to match the moments in the auxiliary model q(·) from before. Similarly,

we fix my7 = m. We refer to the model as augmented response model. Let

p(x?j | Sy) denote the marginal distribution of x?j under the augmented response

model. The augmented response model differs from the PPMx by an additional

factor
∏
j p(x

?
j | Sy) in the augmented response model. The parameter Sy plays

the role of η in the general discussion in 3.1. Figure 4 shows inference under

this modified model. In this example, the augmented response model leads to

a much reduced size of the partition. With posterior probability 97% the par-
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tition includes only one cluster, p(n1 = 47 | data) = 0.97. This in turn leads

to essentially a simple linear regression implied by the dominating multivariate

normal p(xi, yi | θ1), as clearly seen in Figure 4. In contrast, under the proposed

PPMx model the size of the largest cluster is estimated between 16 and 26 (not

shown). The augmented response model could be modified to better match the

simulation truth. This could be achieved, for example, by fixing the hyperpa-

rameters in a way that avoids correlation of the first 6 and the last dimension of

µj . The resulting model would have exactly the format of (3).

We thus do not consider the principled way of introducing the covariates

in the PPM to be the main feature of the PPMx. Rather, we argue that the

proposed model greatly simplifies the inclusion of covariates including a variety

of data formats. It would be unnecessarily difficult to attempt the construction

of a joint model for continuous responses and categorical, binary and continuous

covariates. We argue that it is far easier to focus on a modification of the cohesion

function and that this does not imply restricting the scope of the proposed

models. This is illustrated in the following data analysis example.

6.2. A Survival Model with Patient Baseline Covariates

We consider data from a high-dose chemotherapy treatment of women with

breast cancer. The data for this particular study have been discussed in Rosner

(2005) and come from Cancer and Leukemia Group B (CALGB) Study 9082.

It consists of measurements taken from 763 randomized patients, available as

of October 1998 (enrollment had occurred between January 1991 to May 1998).

The response of interest is the survival time, defined as the time until death from

any cause, relapse, or diagnosis with a second malignancy. There are two treat-

ments, one involving a low dose of the anti-cancer drugs, and the other consisting

of aggressively high dose chemotherapy. The high-dose patients were given con-
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siderable regenerative blood-cell supportive care (including marrow transplan-

tation) to help decreasing the impact of opportunistic infections rising from the

severely-affected immune system. The number of observed failures was 361, with

176 under high dose and 185 under low dose chemotherapy.

The dataset also includes information on the following covariates for each

patient: a treatment indicator defined as 1 if a high-dose was administered and

0 otherwise (HI); age in years at baseline (AGE); the number of positive lymph

nodes found at diagnosis (POS) (the more the worse the prognosis, i.e. the more

likely the cancer has spread); tumor size in millimeters (TS), a one-dimensional

measurement; an indicator of whether the tumor is positive for the estrogen

or progesterone receptor (ER+) (patients who were positive also received the

drug tamoxifen and are expected to have better risk) and an indicator of the

woman’s menopausal status, defined as 1 if she is either perimenopausal or post-

menopausal or 0 otherwise (MENO). Two of these six covariates are continuous

(AGE, TS), three are binary (ER+, MENO, HI) and one is a count (POS).

First we carried out inference in a model using the indicator for high-dose

as the only covariate, i.e, xi = HI. We implemented model (6) with a simi-

larity function for the binary covariate based on the beta-binomial model (9).

We used α = (0.1, 0.1) to favor clusters with homogeneous dose assignment.

Conditional on an assumed partition ρn we use a normal sampling model p(yi |

θj) = N(µj , Vj), with a conjugate normal-inverse gamma prior p(θj | η) =

N(µj | my, By) Ga(V −1
j | s/2, sSy/2) and hyperprior my ∼ N(am, Am), Sy ∼

Ga(q, q/R). Here η = (am, Am, By, q, R) are fixed hyperparameters. We use

am = m̂, the sample average of yi, Am = 100, By = 1002, s = q = 4, and

R = 100. The cohesion functions were chosen as before with c(Sj) = M(nj−1)!,

matching the PPM implied by the DP prior. We include a Ga(1, 1) hyperprior

for the total mass parameter M .
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Fig. 5. Survival example: Estimated survival function (left panel) and hazard (center

panel), arranged by x ∈ {HI,LO}. The grey shades show point-wise one posterior pre-

dictive standard deviation uncertainty. The right panel shows the data for comparison

(Kaplan-Meier curve by dose).

Figure 5 shows inference summaries. The posterior distribution p(kn | data)

for the number of clusters is shown in Figure 6. The three largest clusters contain

28%, 23%, and 14% of the experimental units.

Next we extended the covariate vector to include all six covariates. Denote

by xi = (xi1, . . . , xi6) the 6-dimensional covariate vector. We implement random

clustering with regression on covariates as in model (6). The similarity function

is defined as

g(x∗j ) =
6∏
`=1

g`(x∗j`). (15)

The multiplicative nature of (15) implies that there are no interactions of co-

variates in the prior probability model p(ρn | xn). A posteriori interactions are

possible and likely.

For each covariate we follow the suggestion in Section 4 to define a factor

g`(·) of the similarity function, using hyperparameters specified as follows. The

similarity function for the three binary covariates is defined as in (9) with α =
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Fig. 6. Survival example: Posterior for the number of clusters k (left panel), and

proportion of patients with high dose (%HI) and average progression free survival (PFS)

by cluster. The size (area) of the bullets is proportional to the average cluster size.

(0.1, 0.1) for HI, and α = (0.5, 0.5) for ER+, and MENO. The two continuous

covariates AGE and TS were standardized to sample mean 0 and unit standard

deviation. The similarity functions were specified as described in section 4, with

fixed s = 0.25, m = 0 and B = 1. Finally, for the count covariate POS we

used the similarity function (10) with (a, b) = (1.5, 0.1). The sampling model is

unchanged from before.

We assume that censoring times are independent of the event times and

all parameters in the model. Posterior predictive survival curves for various

covariate combinations are shown in Figure 7. In the figure, “baseline” refers to

HI = 0, tumor size 38mm (the empirical median), ER = 0, Meno = 0, average

age (44 years), and POS = 15 (empirical mean). Other survival curves are

labeled to indicate how the covariates change from baseline, with TS− indicating

tumor size 26mm (the empirical first quartile), TS+ indicating tumor size 50mm

(third quartile), HI referring to high-dose chemotherapy, and ER+ indicating
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positive estrogen or progesterone receptor status. The inference suggests that

treated patients with tumor size below the empirical median and that were

positive for estrogen or progesterone receptor have almost uniformly highest

predicted survival curves than any other combination of covariates.

Figure 8 summarizes features of the posterior clustering. Interestingly, clus-

ters are typically highly correlated to the postmenopausal status, as seen in the

right panel. The high-dose indicator is also seen to be positively correlated to

the progression-free survival (PFS).

7. Conclusion

We have proposed a novel model for random partitions with a regression on

covariates. The model builds on the popular PPM random partition models by

introducing an additional factor to modify the cohesion function. We refer to the

additional factor as similarity function. It increases the prior probability that

experimental units with similar covariates are co-clustered. We provide default

choices of the similarity function for popular data formats.

The main features of the model are the possibility to include additional prior

information related to the covariates, the principled nature of the model con-

struction, and a computationally efficient implementation.

Among the limitations of the proposed method is an implicit penalty for

the cluster size that is implied by the similarity function. Consider all equal

covariates xi ≡ x. The value of the similarity functions proposed in section 4

decreases across cluster size. This limitation could be mitigated by allowing an

additional factor c?(|Sj |) in (6) to compensate the size penalty implicit in the

similarity function.

The programs are available as a function in the R package PPMx at

http://odin.mdacc.tmc.edu/∼pm/prog.html The function PPMx(.) imple-
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Fig. 7. Survival example: Posterior predictive survival function S(t | x) ≡ p(yn+1 >

t | xn+1 = x, data), arranged by x. The “baseline” case refers to all continuous and

count covariates equal to the empirical mean, and all binary covariates equal 0. The

legend indicates TS− and TS+ for tumor size equal 26mm and 50mm (first and third

empirical quartile), HI for HI = 1 and ER+ for ER = 1. The legend is sorted by the

survival probability at 5 years, indicated by a thin vertical line.
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ments the proposed covariate dependent random partition model for an arbi-

trary combination of continuous, categorical, binary and count covariates, using

a mixture of normal sampling model for yi.

Acknowledgment

Research was partially supported by NIH under grant 1R01CA75981, by FONDE-

CYT under grant 1060729 and the Laboratorio de Análisis Estocástico PBCT-
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Appendix

Proof of Proposition 2

For simplicity we drop the j index in nj , x?j etc., relying on the context to prevent

ambiguity. Let 1 denote a (n× 1) vector of all ones. For continuous covariates,
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evaluation of the g(x?) gives

g(x?) = (2π)−
n
2 [(V + nB)V n−1]−

1
2 exp

{
−1

2
(x−m)2 1

V
1′
(
I − J B

V + nB

)
1
}

which after some further simplification becomes
(

2πV
n−1

n

)−n
2

(ρ + n)
1
2 M(n)

with limn→∞M(n) = M , 0 < M < ∞. For categorical covariates, Stirling’s

approximation and some further simplifications gives

g(x?) =
Γ(A)∏
Γ(αc)

∏
Γ(αc)

Γ(αx+n)
Γ(αx)

Γ(A+ n)
≥ 1
A+ nA−αx

M(n).

Similarly, for count covariates we find

g(x?) =
(

1
x!

)n
ba

Γ(a)
Γ(a) + nx

(b+ n)a+nx
≥ (2πx)−

n
2 e−

n
12x (α+ nx)

1
2 ·M(n).

Proof of Proposition 3

The ratio gh(x?j , xn+1)/gh(x?j ) defines the conditional probability qhj (xn+1 | x?j )

under i.i.d. sampling in the auxiliary model, and thus qhj (xn+1 | x?j ) =
∫
q(xn+1 |

ξj) qh(ξj | x?j ) dξj .

The result follows from asymptotic normality of qh(ξj | x?j ), as nj → ∞.

Let ξ̂j denote the m.l.e. for ξj based on nj observations in cluster j. Let

LL′ = [−I(ξ̂j)]−1 denote a Choleski decomposition of the negative inverse of

the observed Fisher information matrix (Schervish, 1995, equation 7.88), and let

ψn = L(ξj − ξ̂j). Theorem 7.89 of Schervish (1995) implies for any ε > 0 and

any compact subset B of the parameter space:

lim
nj→∞

Pξj0

(
sup
ψn∈B

|q1(ψn | x?j )− q2(ψn | x?j )| > ε

)
︸ ︷︷ ︸

πn

= 0.

The limit is in the cluster size nj . The probability is under an assumed true

sampling model q(xi | ξoj ), and the supremum is over B.
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Consider a sequence of reparametrizations of q(xi | ξj) to q(xi | ψn). Let

BM = {ξj : |ξoj − ξj | < M} be an increasing sequence of compact sets, and

recall the definition of πn = Pξo
j
(supB . . . > ε). Then

lim
n

∫
q(xn+1 | ξj)

(
q2(ξj | x?j )− q1(ξj | x?j )

)
dξj ≤ lim

M
lim
n
εK(1−πn)+πnK = εK,

for any ε > 0.
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Mallet, A., Mentré, F., Gilles, J., Kelman, A., Thomson, A., S.M., Bryson

and Whiting, B. (1988) Handling covariates in population pharmacokinetics

with an application to gentamicin. Biomedical Measurement Informatics and

Control, 2, 138–146.

Marin, J.-M. and Robert, C. (2008) Approximating the marginal likelihood in

mixture models. Bulletin of the Indian Chapter of ISBA, to appear.

Marin, J.-M. and Robert, C. P. (2007) Bayesian Core. A Practical Approach to

Computational Bayesian Statistics. New York: Springer-Verlag.

McCullagh, P. and Yang, J. (2008) How many clusters? Bayesian Analysis, 03,

101 – 120.

McLachlan, G. and Peel, D. (2000) Finite mixture models. Wiley Series in Prob-

ability and Statistics: Applied Probability and Statistics. Wiley-Interscience,

New York.

36



Müller, P., Quintana, F. and Rosner, G. (2004) A method for combining inference

across related nonparametric Bayesian models. J. R. Stat. Soc. Ser. B Stat.

Methodol., 66, 735–749.

Okabe, A., Boots, B., Sugihara, K. and Chiu, S. N. (2000) Spatial tessellations:

concepts and applications of Voronoi diagrams. Wiley Series in Probability

and Statistics. Chichester: John Wiley & Sons Ltd., second edn. With a

foreword by D. G. Kendall.

Park, J.-H. and Dunson, D. (2007) Bayesian generalized product partition mod-

els. Tech. rep., Duke University.

Pitman, J. (1996) Some Developments of the Blackwell-MacQueen Urn Scheme.

In Statistics, Probability and Game Theory. Papers in Honor of David Black-

well (eds. T. S. Ferguson, L. S. Shapeley and J. B. MacQueen), 245–268.

Haywar, California: IMS Lecture Notes - Monograph Series.

Quintana, F. A. (2006) A predictive view of Bayesian clustering. Journal of

Statistical Planning and Inference, 136, 2407–2429.

Quintana, F. A. and Iglesias, P. L. (2003) Bayesian Clustering and Product

Partition Models. Journal of The Royal Statistical Society Series B, 65, 557–

574.

Richardson, S. and Green, P. J. (1997) On Bayesian analysis of mixtures with

an unknown number of components (with discussion). Journal of the Royal

Statistical Society, Series B, 59, 731–792.

Rosner, G. L. (2005) Bayesian monitoring of clinical trials with failure-time

endpoints. Biometrics, 61, 239–245.

Shahbaba, B. and Neal, R. M. (2007) Nonlinear Models Using Dirichlet Process

Mixtures. Tech. rep., University of Toronto.

37



Wong, F., Carter, C. K. and Kohn, R. (2003) Efficient estimation of covariance

selection models. Biometrika, 90, 809–830.

Wood, S. A., Kohn, R., Cottet, R., Jiang, W. and Tanner, M. (2008) Locally

Adaptive Nonparametric Binary Regression. Journal of Computational and

Graphical Statistics, 17, 352–372.

38


