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Summary. We discuss a method for combining different but related longitudinal studies to im-

prove predictive precision. The motivation is to borrow strength across clinical studies in which

the same measurements are collected at different frequencies. Key features of the data are

heterogeneous populations and an unbalanced design across three studies of interest. The

first two studies (CALGB 8881 and 9160) are phase I studies with very detailed observations

on a relatively small number of patients. The third study (CALGB 8541) is a large phase III

study with over 1500 enrolled patients, but with relatively few measurements made on each

patient. Patients receive different doses of several drugs in the studies, with the phase III study

containing significantly less toxic treatments. Thus, the main challenges for the analysis are

to accommodate heterogeneous population distributions and to formalize borrowing strength

across the studies and across the different treatment levels. We describe a hierarchical exten-

sion over suitable semiparametric longitudinal data models to achieve the inferential goal. A

nonparametric random effects model accommodates the heterogeneity of the patient popula-

tion. A hierarchical extension allows borrowing strength across different studies and different

levels of treatment by introducing dependence across these nonparametric random effects dis-

tributions. Dependence is introduced by building an ANOVA-like structure over the random

effects distributions for different studies and treatment combinations. Model structure and pa-

rameter interpretation are similar to standard ANOVA models. Instead of the unknown normal

means as in standard ANOVA models, however, the basic objects of inference are random

distributions, namely the unknown population distributions under each study. The analysis is

based on a mixture of Dirichlet process (MDP) model as the underlying semiparametric model.
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1. Introduction

Studies on novel therapeutic drugs progress from early toxicity studies (called phase I)

through small studies examining activity (phase II), ending with large, randomized clinical

trials comparing new treatments to placebo or current standard therapy (phase III). Phase

I studies enroll a small number of patients and monitor them very closely to ensure the

patients’ safety and to learn about the drug’s pharmacokinetics. In contrast, the later

phase III studies involve large numbers of patients and are often conducted as multi-center

randomized clinical trials. The complexity of organizing such a large scale study prevents

one from obtaining as detailed information on individual patients as was obtained in the

earlier phase I studies. In this paper we propose a hierarchical semiparametric Bayesian

population model that allows us to combine the relative strengths of the early phase studies

with many measurements on few patients and the phase III study with few measurements

on many patients.

In the motivating example, the clinical outcome of interest is myelosuppression, a com-

mon side effect of anticancer drug therapy. Myelosuppression is a profound lowering of a

person’s bone marrow activity leading to a reduction in the number of platelets, red blood

cells, and white blood cells in the blood. White blood cells are an important component in

the human immune system, and severly lowered white blood cell counts (WBCs) put the

patient at risk of possibly fatal infection. Inference about myelosuppression is complicated

by heterogeneity in the effect of anticancer therapy among patients. For example, some

patients can tolerate standard doses of the drugs, while other patients experience more side

effects. Furthermore, there are different ways that people report the extent of myelosup-

pression, such as the nadir count or the number of days the patient’s WBCs are below some

threshold value. If one could model the entire longitudinal profile of a patient’s WBCs over

time, one could provide inference for any desired summary of interest. Unfortunately, the

WBCs are often not measured frequently enough to allow one to model the profiles without

imposing constraints. Without being able to model the outcome of interest with adequate

precision, one cannot hope to achieve a meaningful inference concerning the effect of therapy

among the patient population. One possible way to improve the precision of the inference

is to borrow strength from the more detailed information collected as part of some smaller

clinical studies. The modeling framework should include informative priors to accomodate

information about the different nature of the patient populations.

In this report, we are concerned with inference about myelosuppression from a large

multi-center randomized clinical trial in which the focus was on clinical efficacy and not

on frequent measurement of WBCs. This trial, taken by itself, cannot provide us with

the detailed longitudinal model of a patient’s WBC needed for inference. To develop the
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longitudinal model, we turn to two earlier studies in which a small number of patients were

examined intensively. The complementary information in the two types of study allows us to

both develop a longitudinal model for a patient’s WBC and assess the impact of treatment

on a large number of patients.

The general problem that we address here is how to combine the information in quali-

tatively different studies to make effective inference. The tool that we use is a hierarchical

Bayesian population model, which is ideally suited to analyze a collection of studies in a co-

herent fashion. The Bayesian model allows us to pass along both the qualitative form of the

longitudinal model and the information about the parameters in the model, conveyed by the

prior distribution and likelihood. This last information is essential, since the parameters in

the longitudinal model are only weakly identifiable from the data in the in the multi-center

trial. To implement the analysis, we set up a hierarchical model with submodels for each

study and with a non-exchangeable prior probability model that reflects the different nature

of the early phase and phase III studies.

Besides the hierarchical modeling, a second important element of the proposed model is

the use of a semiparametric population model. In our analysis, we have found a need to

move beyond the traditional parametric hierarchical models, as there is known population

heterogeneity that cannot be described in a simple parametric model. An additional compli-

cation arises from the fact that drugs and doses are not all the same in the three studies we

analyze. This heterogeneity between studies and within studies is a common feature of many

biomedical data and an important theme in population models. Bayesian nonparametric

methods have been proposed for population models to accomodate population heterogene-

ity and to relax distributional assumptions and restrictive models. Without the additional

hierarchical structure across related studies, such approaches have been discussed in Klein-

man and Ibrahim (1998b,a), Müller and Rosner (1997), Walker and Wakefield (1998), and

Tomlinson and Escobar (1999), among others. All use variations of Dirichlet process (DP)

models to define flexible nonparametric models for an unknown random effects distribution.

DP models are by far the most widely used nonparametric Bayesian model, mainly because

of computational simplicity and because computational complexity of posterior simulation

in DP models is essentially dimension independent, allowing consideration of possibly high

dimensional random effects distributions. See, for example, Ferguson (1973) or Antoniak

(1974) for basic properties of the DP model. A random measure G generated by a DP is

almost surely discrete. In many applications this discreteness is inappropriate. DP mixture

models avoid the discreteness by defining a random measure F as a mixture of some con-

tinuous kernel f(x|µ) with respect to a discrete DP measure G, i.e., F (·) =
∫

f(·|µ) dG(µ).

Such models are known as DP mixtures (MDP) (Escobar, 1988; MacEachern, 1994; Escobar

and West, 1995). See Walker et al. (1999) for a recent review of nonparametric Bayesian
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methods in general. The use of semiparametric longitudinal models for repeated measure-

ment data when patient heterogeneity is a concern is a common theme also in non-Bayesian

modeling. Recent examples are Davidian and Gallant (1993), Zhang et al. (1998), Brumback

and Rice (1998), and Rice and Wu (2001). See Davidian and Giltinan (1995) for a review.

Joint inference for several related population studies, as needed for the case study dis-

cussed in this article, requires that one tie together both modeling strategies: hierarchical

models and nonparametric inference. While hierarchical extensions are standard modeling

practice in the context of traditional parametric models, such extensions are rarely used

with nonparametric models. The main reason is that the infinite dimensional nature of the

parameters complicates the definition of hierarchical model extensions. Early developments

appear in Cifarelli and Regazzini (1978), who propose an approach based on introducing the

hierarchy on the prior parameters for the nonparametric submodels. They use DP submod-

els and define a joint distribution across all submodels by assuming a regression for some

(finite dimensional) prior parameters of the DP models. More recently, the same strategy

is used, among others, in Mira and Petrone (1996), Giudici et al. (2003), and Carota and

Parmigiani (2002). In this article we pursue an alternative approach. We use one under-

lying DP model and define nonparametric random effects distributions for each submodels

by considering DP mixture models with different mixture kernels for each submodel. The

resulting structure can alternatively be described as a DP mixture of ANOVA models, since

the mixture kernels differ by an ANOVA-like decomposition of the means across factor lev-

els. A description of a wider class of DP mixture of ANOVA models, including a discussion

of other application areas and theoretical issues, appears in De Iorio et al. (2004).

We give a detailed description of the data in the next section. Section 3 describes the

nonlinear model for WBC over time and the MDP prior for the patient-specific random

effects distributions. The hierarchical extension of the model is presented in Section 4.

Results of our hierarchical model data analysis are discussed in Section 5. We conclude

with a short discussion.

The discussion of the non-parametric model features is restricted to two subsections, 3.2

and 4.3. A reader with a primary interest in the joint data analysis for related longitudinal

studies might consider skipping these sections at first reading. Without subsections 3.2 and

4.3 the paper still provides a complete discussion of an appropriate hierarchical random

effects model.

2. Data

The Cancer and Leukemia Group B (CALGB), a cooperative group of university hospitals

funded by the U.S. National Cancer Institute to conduct studies relating to cancer therapy,
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carried out a large randomized study, CALGB 8541 (Wood et al., 1994). A large number of

hospitals and clinics participated in the study of the three chemotherapeutic regimens of the

drugs cyclophosphamide (CTX), doxorubicin, and 5-fluorouracil. This clinical trial enrolled

and randomized 1572 women with breast cancer to evaluate and compare the clinical benefits

of three different treatment regimens for women with stage II, non-metastatic breast cancer

after surgery. The three treatment arms contained the same three drugs but differed in

dose and dose intensity. A side effect of the three drugs used in this phase III study (CTX,

doxorubicin, and 5-fluorouracil) is to lower a patient’s WBC, leaving the patient with a

compromised immune system and at risk of serious infection. Not all patients react to these

drugs the same way, however, and knowing what contributes to this heterogeneity may help

the medical oncologists individualize therapy. Therefore, it would be helpful to learn about

the change in the WBCs over time for women treated with this three-drug regimen.

In the clinical trial, the women received their chemotherapy every four weeks. The most

dose-intense regimen caused the most myelosuppression, and we focus attention on this

group of 513 women and analyze their WBCs during the first cycle (28 days) of treatment.

The trial protocol prescribed four 28-day cycles with CTX at 600 mg/m2, doxorubicin at

60 mg/m2, and 5-Flurouracil at 600 mg/m2. CTX and Doxorubincin were given on day

1, and 5-Fluorouracil was given on days 1 and 8 of each cycle. Because of the logistic

difficulties associated with drawing blood from the many patients at the many clinics and

hospitals that participated in the study, this phase III clinical trial required collecting blood

count measurements only once a week. In the data, there are between 1 and 4 WBC

measurements per patient, with an average of 3 measurements per patient. Blood count

measurements occurred at roughly the same time for each patient, relative to the start

of therapy (i.e., days 1, 8, 15, 22). There are too few data points with which to fit a

model having much precision for interpolating between blood sample times to estimate, for

example, nadir WBCs or other measures of myelosuppression.

We introduce information on the time course of WBCs in response to anticancer drug

therapy to strengthen the inference. This information comes from data collected on individ-

uals who participated in two related earlier phase studies. These studies (CALGB 8881 and

CALGB 9160) collected WBCs three or four times a week for each patient, with between 4

and 25 repeated measurements per patient during their first course of therapy. We borrow

strength from these studies to make more precise inference on the change in blood counts

over time in the phase III breast cancer clinical trial.

CALGB 8881 was a phase I study carried out by the Cancer and Leukemia Group B

(CALGB) to determine the highest dose of the anti-cancer agent CTX one can safely deliver

every two weeks in an outpatient setting (Lichtman et al., 1993). The drug is known to cause

a drop in WBCs. Therefore, patients also received GM-CSF, a colony stimulating factor
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given to spur regrowth of blood cells (i.e., for hematologic support). The protocol required

fairly extensive monitoring of patient blood counts during treatment cycles. The number of

measurements per patient varies between 4 and 18, with an average of 13. The investigators

treated cohorts of patients at different doses of the agents. Six patients each were treated at

the following combinations (CTX, GM-CSF) of CTX (in g/m2) and GM-CSF (in µg/kg):

(1.5, 10), (3.0, 2.5), (3.0, 5.0), (3.0, 10.0) and (6.0, 5.0). Cohorts of 12 and 10 patients,

respectively, were treated at dose combinations of (4.5, 5.0) and (4.5, 10.0). Hematologic

toxicity was the primary endpoint.

CALGB 9160 built upon the experience gained in study 8881 and used the doses of

CTX and GM-CSF considered practical after completion of 8881 (Budman et al., 1998).

The goal of 9160 was to evaluate the ability of the drug amifostine to lessen the toxic

effects of relatively high-dose CTX, since amifostine had been shown in some studies to

reduce some of the toxic side effects of radiation therapy (Spencer and Goa, 1995) and

cancer chemotherapy. CALGB 9160 randomized 46 patients to receive amifostine or not,

along with CTX (3 g/m2) and GM-CSF (5 µg/kg). Since the addition of amifostine did

not appear to provide added benefit or detriment, we will not consider amifostine in our

subsequent analyses, choosing instead to combine the two randomized groups of patients.

The number of measurements per patient varies between 10 and 25, with an average of 15.

Figures 1 and 2 show some typical patients from the three studies. Note the disparate

sampling frequencies for the three studies. The sparse data in study 8541 alone would not

allow one detailed inference about the hematologic profiles. The mean curves shown in the

figures are the posterior estimated mean log WBC profiles for these patients using the model

proposed in the next section of this paper.

3. The Longitudinal Data Model

3.1. A Random Effects Model

We first describe a nonlinear empirical model for characterizing WBCs over time for one

study. Also, for the moment we ignore regression on different treatment levels xi. Introduc-

ing a regression on covariates will be straightforward in the extended probability model for

multiple studies.

Let yij denote the response of patient i on (known) day tij . For each patient, the response

yi = (yi1, . . . , yini
) follows a typical “bath tub” pattern, starting with an initial base line,

followed by a sudden drop in WBC at the beginning of chemotherapy, and eventually a slow

S-shaped recovery. In Müller and Rosner (1997) we studied inference for 8881 alone. We

use a non-linear regression in the form of a piecewise linear and logistic curve to model the
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typical profile:

yij ∼ N
[

f(θi, tij), σ
2
]

. (1)

The mean function f(θ, t) is parameterized by a vector of random effects

θ = (z1, z2, z3, τ1, τ2, β1):

f(θ, t) =















z1 t < τ1

rz1 + (1 − r)g(θ, τ2) τ1 ≤ t < τ2

g(θ, t) t ≥ τ2

(2)

where r = (τ2 − t)/(τ2 − τ1) and g(θ, t) = z2 + z3/{1 + exp[2.0− β1(t− τ2)]}. The intercept

in the logistic regression was fixed at 2.0 after finding in a preliminary data analysis that a

variable intercept did not significantly improve the fit.

The non-linear regression (2) fixes the sampling distribution of the observable data con-

ditional on a random effects vector θi. In the next level of the hierarchy we assume a prior

probability model H(θi), that is, a random effects distribution. A traditional and technically

convenient choice is a multivariate normal random effects model

H(θi) = N(µ, S). (3)

The remaining discussion, except for subsections 3.2 and 4.3 could be based on this model.

All of of the desired inference and the further model extensions to multiple studies and

study-specific covariates can be formalized in the context of (3). In fact, we will introduce

all extensions first in the context of this simple multivariate normal model. Thus, if a reader

were not primarily interested in the semi-parametric aspect of the inference, subsections 3.2

and 4.3 could be skipped at first reading.

3.2. A Non-parametric Random Effects Model

Several considerations lead us to work with a generalization of the multivariate normal

random effects distribution (3). The random effects distribution needs to accommodate the

heterogeneity in the population and allow for outliers, clustering and over-dispersion. At the

same time, the model should not be overly complex and should still allow computationally

efficient implementation of full posterior inference. Ideally the model should be a natural

generalization of a traditional multivariate normal random effects distribution. Based on

these considerations, we use a mixture of normals model. Let N(x; m, S) denote a multivari-

ate normal distribution for the random variable x with moments (m, S), and let δ(x) denote

a point mass at x. We assume the prior model H(θi) =
∑

wh N(θi; µh, S). This distribution

can be interpreted as a mixture with respect to the mixing measure G =
∑

∞

h=1
wh δ(µh):

H(θi) =

∫

N(θi; µ, S) dG(µ). (4)
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We complete the model with with a nonparametric prior on the unknown mixing measure

G =
∑

∞

h=1
wh δ(µh),

G ∼ DP(M, Go). (5)

Here DP(M, Go) denotes a Dirichlet process (DP) model (Ferguson, 1973; Antoniak, 1974).

The DP is a probability model on distributions. It requires two parameters, a scalar precision

parameter M , and a mean measure Go = E(G). One of the key properties of the DP is the

discreteness of a random measure G ∼ DP(·). Above, we have implicitly made use of this by

writing G as a sum of point masses. Sethuraman (1994) shows that a random distribution

G ∼ DP(M, Go) can be constructively defined as follows (“stick breaking”).

wh
∏

i<h(1 − wi)

iid
∼ Be(1, M) and µh

iid
∼ Go, h = 1, 2, . . . . (6)

The weights wh, conditional on wi, i < h, are generated by rescaled Beta distributions.

The point masses µh are an i.i.d. sample from the base measure. The stick breaking

representation (6) will be used to introduce the hierarchical extension in the next section.

Longitudinal data models with semiparametric, DP mixture random effects distributions

have been used in Müller and Rosner (1997) and Kleinman and Ibrahim (1998a). Similar

mixture models as in (4) and (5) with a DP prior on the mixture parameters have been

successfully used in many recent applications. See, for example, Escobar and West (1998)

or MacEachern and Müller (2000) for a review of related models.

4. Hierarchical Extension

4.1. Multiple Studies

Equations (1) – (5) define a model for inference in one study. Joint analysis of all three

studies requires a hierarchical extension across studies. Denote with yki = (ykij , j =

1, . . . , nki) the responses of patient i in study k. We define a probability model for yki,

i = 1, . . . , Ik, using equations (1) and (3) with an additional subscript k in θki and Hk. This

includes a random effects distribution Hk for study k, i.e., θki ∼ Hk. Recall that θki is a

6-dimensional random effects vector of parameters in the non-linear regression (2).

A natural extension of (3) to multiple studies is as a multivariate ANOVA model

with study specific factors. Let d1 = (1, 1, 0), d2 = (1, 0, 1) and d3 = (1, 0, 0). Let

A = [m, ST1, ST2] denote a (6 × 3) matrix. Here m, ST1 and ST2 denote the columns

in A. We replace (3) by

θki ∼ N(Adk, S), (7)

i.e., Hk = N(Adk, S). The columns in A are interpreted as an overall mean effect vector m

and study-specific offset vectors STk. We add an identifiability constraint ST3 ≡ 0 for an
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effect (not included in A) for the large study CALGB 8541. We fix ST3 for convenience,

since it is the largest data set.

An important aspect of model (7) is the opportunity to introduce prior information

about the different nature of the three studies. This is implemented as an informative prior

F o(m, ST1, ST2) for the ANOVA effects. For example, the third study, CALGB 8541, calls

for a much lower dose of the anticancer agents than the earlier phase studies 8881 and 9160.

Let a denote the (18 × 1) column vector defined by stacking the columns of A. We define

F o as F o(a) = N(ao, C) and complete the model with a hyperprior

ao ∼ N(α, I), S−1 ∼ p(S−1) and C ∼ p(C) (8)

using standard conditionally conjugate priors for S and C. See Section 5 for the specific

choices in our implementation. Let αST1 denote the subvector of the hypermean α corre-

sponding to the ST1 column of the ANOVA matrix A, and analogously for αST2, etc. By

fixing nonzero αST1 and αST2 we define a prior probability model with non-zero expected

study-specific offsets. This allows us to explicitly include prior information about the lower

toxicity of the treatment in the third study.

4.2. Treatment Covariates

So far, we have only defined a one-way ANOVA over the three studies. Generalizing the

model to include covariates is straightforward. One adds appropriate columns to the matrix

A of ANOVA effects. In particular, we use this opportunity to include a regression on

treatment levels within study 8881. Considering all treatments as categorical, this requires

that we add one main effect for each possible treatment level. In study 8881, there were

seven treatment groups spread across three levels of GM-CSF and four levels of CTX,

as described in Lichtman et al. (1993) and summarized in Section 2. We excluded the

lowest level of GM-CSF from the analysis, since only one cohort of 6 patients was studied

under this level of GM-CSF, simplifying the analysis. We extend the matrix A of ANOVA

effects to A = [m, ST1, ST2, CTX1, CTX3, CTX4, GM2] to include additional columns for

each treatment level, with CTX1 corresponding to the 1st level of CTX, GM2 corresponding

to high GM-CSF, ST1 for a patient in study 1, and ST2 for a patient in study 2. Main effects

CTX2, GM1 and ST3 are set to zero to ensure identifiability. Recall that the random effects

vectors θki are 6-dimensional. Thus all main effects ST2, etc., are 6-dimensional column

vectors and A is a (6 × q) matrix of ANOVA effects with q = 7 here. The design vector

dki now becomes patient specific, defined to select the appropriate effects from matrix A

for patient i in study k. Besides a higher dimension for A and redefined design vectors dki,

model (7) remains unchanged.
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4.3. Dependent Non-parametric Random Effects Distributions

We first consider the extension of the non-parametric random effects model (4) and (5) to

multiple studies. This requires a joint probability model for the non-parametric random

effects distributions (4) defined for each study, k = 1, 2 and 3. Let Hk(θ) =
∑

wh N(µkh, S)

denote the random effects distribution under study k. In anticipation of the following

discussion, we add a study-specific index k only for the point masses µkh but not for the

weights wh. We want to define this extension in such a way that the marginal model for Hk

remains unchanged. We achieve this by replacing (7) by a mixture of ANOVA model.

θki ∼

∫

N(θki; Adk, S) dF (A) =

∞
∑

h=1

wh N(Ah dk, S), (9)

with F =
∑

wh δ(Ah) generated from a DP, F ∼ DP(M, F o). The prior F o defined in (8)

becomes the base measure in the DP prior. The hyperprior on S and C remains unchanged.

An additional hyperprior p(M) is added to complete the model.

The interpretation of the columns in A remain unchanged as overall mean effect m and

study-specific offsets STk. Recognizing (9) as a mixture model extension of a standard

ANOVA model highlights the model structure. Model (9) is a nonparametric mixture of

ANOVA models, using a DP prior for the unknown mixing measure. Consider the follow-

ing construction to see that the joint model (9) leaves the marginal distribution for Hk

unchanged. Let Go(θ) denote the random distribution defined by drawing Ah ∼ F o and

setting µkh = Ah dk. The implied marginal distribution for Hk remains a DP mixture of

normals as before, with DP base measure Go, as in (4) and (5).

Extension to treatment covariates is straightforward by adding additional columns in

Ah, paralleling the discussion in 4.2. As a mixture of ANOVA models, (9) inherits structure

and modeling tools from standard ANOVA models. The design can be further extended to

include interactions, nested effects, etc., as desired. Order constraints among effects can be

introduced when appropriate. Contrasts and hypotheses related to equality of effects can

be explored on the basis of the full posterior distribution.

5. Implementation and Results

Model (9) is a DP mixture model. Posterior simulation in such models is well understood.

Specific algorithms for posterior Markov chain Monte Carlo (MCMC) simulation are given,

for example, in Neal (2000) or MacEachern and Müller (1998). We implemented posterior

simulation for the data described in Section 2. Let B ∼ Wish(ν, B0) denote a Wishart

distributed random matrix B with ν degrees of freedom and parameterized such that E(B) =

νB0. Let IG(a, b) denote an inverse Gamma distribution with parameters (a, b). We assume

S−1 ∼ Wish(ν0, Φ0/ν0), σ2 ∼ IG(aσ/2, bσ/2), and M ∼ Ga(0.05, 0.05). We use ν0 = 12,
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aσ = 4.25, bσ = 1.25 and Φ−1 = S0, the empirical variance-covariance matrix of the

maximum likelihood estimates for θki, computed separately for each patient. We make one

more simplifying assumption. We take z1, the initial base line in (2) out of the ANOVA

model to reduce the dimension of the A matrix. Let z1ki denote the z1 element for patient

i in study k, and let θki denote the vector of the remaining 5 random effects. We replace

the normal kernel in (9) by

N

[(

z1ki

θki

)

;

(

2

Adki

)

, S

]

,

For the study-specific offsets in the base measure, we assume αST1 = (−2.5, 2.0,−3,−7, 0.3)

and αST2 = αST1. See the discussion after (8) for a definition of the study-specific offsets.

The offsets were chosen based on the informed prior judgment of a clinician who was asked

about likely nadir levels, delay in the initial decline of WBC, and day and rate of recovery.

The clinician is familiar with the treatments, but does not know about the CALGB studies

or the data.

Figures 3 and 4a show some elements of the posterior estimated distribution of the

ANOVA parameters, i.e., p(F |y) in (9). Since F is high dimensional, we plot appropriate

summaries only. The summaries relate to particular factor levels. Specifically, let Fd de-

note the random distribution of the ANOVA effects selected by a design vector d, and let

dm = (1, 0, 0, . . . , 0) and dST2 = (0, 0, 0, 1, 0, . . . , 0) denote the design vectors that select

only m, only ST2, etc. Consider the random distributions Fdm, FdST2, etc. These are

still 6-dimensional distributions, requiring further simplification to allow illustration. We

choose the following problem-specific graphical representation. We show a distribution Fd

indirectly by plotting the implied non-linear regression. Formally, let f(θ, t) denote the

non-linear regression given in (2). We compute the posterior quantiles for f(θ, t) implied

by Fd(θ) and plot them against t. In other words, the figures show pointwise posterior

quantiles corresponding to the indicated ANOVA effect.

The two panels in Figure 5 show posterior predictive mean profiles for a new patient

from study 2 and 3, respectively. The figures includes pointwise 95% predictive intervals.

The method allows for differential posterior uncertainty across factor levels, as seen in the

figure. Despite the fact that there are few WBCs for patients in study 3, one can make

predictions about the time course of a future patient’s WBCs.

All inference is based on posterior and posterior predictive simulation. Thus it is pos-

sible to report posterior, or posterior predictive, probabilities for any event of interest. In

particular, we can find the posterior predictive distribution for any function of the predicted

WBC profile for a new patient. For example, we can predict the nadir WBC, a commonly

used measure of the degree of myelosuppression, for a future patient in any of the studies.

Figure 6 shows the predictive distribution for the nadir WBC for a future patient across the
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3 studies. For the first study, we predict the profile of a patient who will receive 3.0 gm/m2

CTX and 5 µg/kg GM-CSF. There is more variability in the nadir prediction for study

3, compared to the other 2, but the nadirs are generally higher in study 3, reflecting the

fact that the treatment is less toxic than in the other studies. The relatively low predictive

uncertainty displayed in the figure may be an artifact of the compression to lower values

predicted for the nadirs in studies 1 and 2, since the WBCs must be non-negative. One

can produce similar figures and statistics for other summary measures of a future patient’s

profile for inference.

Finally, Figure 4b compares posterior predictive mean profiles for a future patient in

study 3 under the proposed model versus inference using data from study 3 only. We used

identical prior assumptions in both analyses. Without incorporating the information from

the earlier studies, prediction is much more uncertain about the time of the nadir count and

the start of the recovery, as would be expected for inference conditional on the sparse phase

III data only. In contrast, the predicted WBC profile based on the hierarchical model is more

consistent with what one would expect to see for patients receiving anticancer chemotherapy

and has reasonable predictive precision. The implications for clinically important summaries

of the profiles are significant. For example, consider the number of days that the mean WBC

is below a critical level of WBC= 1000. Under the hierarchical model we find an estimated

posterior mean of 5.15. In contrast, using data from study 3 only we find a posterior mean

of 1.04. The large difference is due to the fact that the relatively few observations under

study 3 do not allow precise inference about the day of recovery.

The effect of a treatment regimen can be described directly, as in Figures 3 through 6, or

it can be described in comparison to the effect of another treatment regimen. For example,

consider the four different levels of CTX in study 1. One can show the posterior distribution

of the difference, relative to CTX equal 3.0 g/m2, in the number of days that WBC is

below 1000. These posterior distributions can be estimated as histograms corresponding

to imputed differences evaluated during the MCMC posterior simulation, and allow one

to assess the change in risk to the patient at a higher or lower dose. Since the study of

interest, CALGB 8541, uses only one treatment combination we did not implement this in

the example.

6. Discussion

We have discussed a modeling technique for combining nonparametric inference across re-

lated studies. More generally, we view this as a model for arrays of random distributions.

We use the DP model as marginal model for each of the random distributions of the sub-

models. The submodels are embedded in one large joint model that takes the form of a
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DP mixture of ANOVA models. It contains the marginal submodels through multiplying

by the appropriate design vector. We exploit this model to define inference across related,

non-exchangeable studies. We focused on applications combining early phase studies with

frequent measurements on few patients with another study having many patients but with

fewer measurements per patient.

An important feature of our model is its ability to allow for the different doses, different

dose intensities, and even different drugs appearing in the three studies. We capture infor-

mation about these differences in our prior distribution, behavior that would be difficult to

mimic with a classical analysis of the data.

Although our models are tailored to the particular cancer therapy case study we discuss

here, the approach is valid in any application in which one combines disparate studies,

especially studies that differ in how extensively they examine groups of “experimental units.”

Such situations routinely arise in drug development and other areas of biomiedical research.

The same feature also arises in a much wider variety of contexts in which the data are often

described as having been collected at different resolutions by design. An application where

we see particular value to these models is population studies of pharmacokinetics. Such

studies would benefit from the ability to combine information across disparate populations,

within which different levels of data collection have taken place. The larger sample sizes

afforded by appropriately combining studies would provide better opportunities to discover

differences that can be explained by patient characteristics, including genetics, concurrent

medications (drug-drug interactions), age, etc. Similarly, the question posed by limited-

sampling methods would be rephrased as a search for the best small set of sampling times

to use in conjunction with existing data rather than the best set of sampling times to use in

isolation from existing data. There are many other specific problems that will benefit from

these models.

A limitation of the model is the need to use a conjugate base measure and mixing

kernel (the normal mixing kernel in (9)). Models with non-conjugate base measure and

mixing kernel could still be estimated using one of the approaches for non-conjugate DP

mixture models discussed in Neal (2000), MacEachern and Müller (1998) or Walker and

Damien (1998). The high dimensional nature of the ANOVA effects matrix, however, is

likely to complicate computations. In the current implementation, we rely on conjugacy.

An interesting alternative characterization of the probability model is as a special case of

the dependent DP (DDP) introduced in MacEachern (1999). We develop this perspective

in De Iorio et al. (2004).
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Fig. 1. Some selected patients from studies 1 (CALGB 8881) and 2 (CALBG 9160). The crosses

indicate the data. The curves are posterior fits under model (1) and (2), with the mixture of ANOVA

prior model from Section 4.3. Note the heterogeneity across patients, with some patients showing no

decline, slower recovery, delayed recovery, etc.
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Fig. 2. Some selected patients from study 3 (CALGB 8541). The crosses indicate the data. The

curves are posterior fits under model (1) and (2), with the mixture of ANOVA prior model from Section

4.3.
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Fig. 3. Study 1: Posterior estimated distributions corresponding to the ANOVA effects m + ST1

(right lower corner), CTX1 (top left), . . . , CTX3 (top right), GM2 (left bottom). The figure shows the

pointwise posterior quantiles (2.5% and 97.5%, i.e., 95% highest posterior density intervals) of the

non-linear regression curve f(θ, t) corresponding to the indicated ANOVA effect. For example, the

random effects distribution for a patient with (CTX = 4.5, GM = 5, ST = 1) is defined as the

convolution of the random effects distribution for m, for ST1, CTX3 and GM1. The figure summarizes

these 6-dimensional distributions by showing the corresponding mean profiles. See the text for more

discussion.
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Fig. 4. Study 3: Posterior estimated mean profile for a future patient from study 3. Figure (a)

shows the pointwise posterior quantiles of the non-linear regression curve f(θ, t) corresponding to the

ANOVA effect m (=m+ST3, since ST3 = 0). See the text for a formal explanation. The dased curves

show pointwise 95% highest posterior density intervals. The right panel (b) compares inference under

the hierarchical model (solid line) with inference using study 3 data only (dashed line). The dotted

curves show pointwise 95% highest posterior density intervals.
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Fig. 5. Posterior predictive mean profiles and 95% predictive uncertainty for new patients in study 2

(left panel) and study 3 (right panel).
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Fig. 6. Posterior predictive distribution of nadir WBCs for a future patient in studies 1, 2 and 3,

respectively (in absolute counts). The future patient for study 1 is assumed to be treated at 3.0

gm/m2 CTX and 5 µg/kg GM-CSF.
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