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Abstract

We review Bayesian sample size arguments for microarray experiments,
focusing on a decision theoretic approach. We start by introducing a
choice based on minimizing expected loss as theoretical ideal. Practical
limitations of this approach quickly lead us to consider a compromise so-
lution that combines this idealized solution with a sensitivity argument.
The finally proposed approach relies on conditional expected loss, condi-
tional on an assumed true level of differential expression to be discovered.
The expression for expected loss can be interpreted as a version of power,
thus providing for ease of interpretation and communication.

29.1 Introduction

We discuss approaches for a Bayesian sample size argument in microar-
ray experiments. As is the case for most sample size calculations in clin-
ical trials and other biomedical applications the nature of the sample
size calculation is to provide the investigator with decision support, and
allow an informed sample size choice, rather than providing a black-box
method to deliver an optimal sample size.

Several classical approaches for microarray sample size choices have
been proposed in the recent literature. Pan et al. (2002) develop a tradi-
tional power argument, using a finite mixture of normal sampling model
for difference scores in a group comparison microarray experiment. Zien
et al. (2002) propose to plot ROC-type curves to show achievable combi-
nations of false-negative and false-positive rates. Mukherjee et al. (2003)
use a machine learning perspective. They consider a parametric learn-
ing curve for the empirical error rate as a function of the sample size,
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and proceed to estimate the unknown parameters in the learning curve.
Lee and Whitmore (2002) set up an ANOVA model, and reduce the
sample size choice to a traditional power analysis in the ANOVA model.
Bickel (2003) proposes an approach based on a formal loss function with
terms corresponding to a payoff for correct discoveries and a penalty for
false discoveries. The loss function is equivalent to the loss L introduced
below.

An interesting sequential approach is developed in Fu et al. (2005).
After each microarray, or batch of arrays, they compute the posterior
predictive probability of mis-classification for the next sample. Sampling
continues until this probability achieves some pre-specified threshold.

In Müller et al. (2004) we develop a Bayesian decision theoretic ap-
proach to sample size selection for group comparison microarray experi-
ments. We assume that each array reports expression for n genes. Also,
we assume that the sample size choice is about multiple arrays with in-
dependent biologic samples recorded on each array (excluding, among
others, technical repeats based on the same biologic sample).

Main Features of the Proposed Approach. Before introducing the
formal setup and approach we provide a brief summary of the results
discussed in more detail later. This will help to motivate and focus the
following formal discussion. Let J denote the sample size, i.e., the num-
ber of microarrays that we recommend to be carried out. In a decision
theoretic approach, we define a criterion for the sample size recommen-
dation by stating how much a specific sample size would be worth for
a hypothetical outcome y of the experiment, and an assumed hypothet-
ical truth, i.e., true values of all relevant parameters θ. This function
of decision, data and parameters is known as the utility function. Al-
ternatively, flipping signs we get the loss function. Of course, at the
time of the sample size selection the future data y is not known, and
the parameters θ will never be known. One can argue (DeGroot, 1970;
Robert, 2001) that a rational decision maker should then choose a sam-
ple size based on expected loss, taking the expectation with respect to
the relevant probability distribution on parameters and future data. The
relevant distribution is the posterior predictive distribution conditional
on any data available at the time of making the decision. In the absence
of any data this is the prior predictive distribution. Some complications
arise when the nature of the decision is sequential. See below.

Figure 29.1 shows expected loss for a microarray sample size selection.
The loss function is L(J, y, θ) = FD+ cFN−k ·J , where FD denotes the
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Fig. 29.1. Expected loss as a function of sample size J for a two-group com-
parison microarray experiment. Evaluating the expectation involves a large
scale Monte Carlo simulation. See the text for details. The dots show re-
alized losses for simulated experiments. The solid line plots an estimate of
expected loss based on a parametric fit of the dots. The dashed line shows
the same using a spline fit. Sample size J is plotted on a logarithmic scale.
Note the relatively flat nature of the expected loss, rendering a sample size
recommendation difficult.

number of false positives (truly not differentially expressed genes that
are flagged), and FN the number of false negatives (truly differentially
expressed genes that are not discovered). See Section 29.2.1 for a formal
definition of FD and FN. The function includes two trade-off parameters,
c and k. See the following sections for more details about the choice of
the loss function, the nature of the expectation, including complications
that arise from a sequential decision setup, details of the probability
model, and the Monte Carlo simulation used to evaluate expected loss.
The relatively flat nature of the expected loss hinders a decisive sample
size recommendation based on expected loss alone. To be of practical
use, the minimum is too sensitive to technical, arbitrary choices of details
in the loss function and probability model. We will therefore proceed
with a closer look at important features of the expected loss function. In
particular, we will consider expected loss conditional on an assumed true
level of differential expression for one gene, marginalizing with respect to
future data and all other parameters as before. This adds an additional
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dimension to the plot in Figure 29.1. Let ρi denote the assumed true
level of differential expression for gene i. We assume that ρi is defined
such that ρi = 0 is interpreted as non-differential expression, and ρi > 0
as differential expression. We consider expected loss as a function of J

and ρi. Focusing on only the change in expected utility across J and ρi,
and dropping the deterministic sampling cost k · J , we argue that the
plot can be interpreted as a variation of power. Details are discussed in
the next section. See Figure 29.2 for an example.

The rest of this chapter is organized as follows. In Section 29.2 we
cast sample size choice as a decision problem. In 29.2.1 we argue that
sample size choice should be considered as a sequential decision problem.
Solving the sequential decision problem we start in Section 29.2.2 with
the terminal decision of selecting a list of differentially expressed genes,
and proceed in 29.2.3 to address the sample size problem. In Section
29.3 we develop a Monte Carlo scheme to evaluate expected losses. In
Section 29.4 we introduce a specific probability model. Section 29.5
discusses the use of pilot data. Finally, section 29.6 demonstrates the
proposed approach in an example.

29.2 Optimal Sample Size as a Decision Problem

A decision problem is specified by a set of possible actions d ∈ D; a
set of relevant unknown quantities, typically parameters θ and data y; a
probability model pd(θ, y); and a loss function L(d, y, θ) that formalizes
the relative preferences over decisions for assumed hypothetical values
of y and θ. The probability model for data and parameters can depend
on the decision d. See, for example, Berger (1993) for a general descrip-
tion. In the application to microarray sample size choice the decision d

includes the sample size J , the data y are the gene expressions that will
be recorded in the J microarray experiments, and θ typically includes
indicators for true differential expression for each of the n genes under
the biologic conditions of interest.

The optimal decision is the action d∗ that minimizes the loss in ex-
pectation, d∗ = arg minE{L(d, θ, y)}. The expectation is with respect
to the relevant probability model. In so-called non-sequential problems,
the relevant probability model is pd(θ, y). In general, the calculation of
expected utility might involve more steps. As we will argue, this is the
case for the sample size problem.
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29.2.1 The Decision Problem

Approaching sample size choice as a decision problem it is important to
recognize the sequential nature of the decision. In words, optimal sample
size is always defined in the context of the intended inference or decision
that will be carried out eventually, once all data is collected (terminal
decision). Different inference goals might lead to different sample size
recommendations. We therefore need to consider the entire sequence
of (i) the sample size decision, (ii) the observation of gene expressions
for the chosen number of arrays, and (iii) the terminal decision about
differentially expressed genes. Let J denote the sample size choice, let n

denote the number of genes that are recorded on each of the J arrays, let
yJ = (y1, . . . , yJ) denote the data for J arrays, and let δ = (δ1, . . . , δn)
denote the terminal decision, with δi = 1 if gene i is reported as dif-
ferentially expressed, and δi = 0 otherwise. The problem involves two
decisions, d = (J, δ). The terminal decision δ is made after observing
the data. We thus condition on yJ , and the expected loss integral is only
with respect to the unknown parameters θ. In contrast, the sample size
is chosen before observing the data. We thus marginalize with respect
to both, data y and parameters θ, substituting the optimal terminal de-
cision δ∗. Decision problems with such multi-step structure are known
as sequential decision problems. The optimal decision δ∗ is defined as
before, with the expected loss taken w.r.t. the posterior distribution,
δ∗(yJ) = arg min

∫
L(d, θ, y)dp(θ | yJ). We include an argument yJ in

the notation for δ∗ to highlight the dependence on the observed data.
The optimal sample size choice is defined by

J∗ = arg min
∫

L(δ∗(yJ), θ) dpd(θ, yJ). (29.1)

The conditions for J∗ and δ∗(yJ) define an ideal solution, following
from first principles about rational decision making (Robert, 2001). In
practice, several compromises are made when implementing Bayesian
optimal design.

An attractive feature of the proposed approach is that the nature
of the optimal decision does not depend on details of the probability
model. The only required assumption is that the probability model
include indicators ri ∈ {0, 1} for true differential expression of gene i.
Except for this minimal assumption, we can discuss the optimal decision
before defining a specific probability model, requiring only a loss function
to complete the formal description of the decision problem.

We define a loss function that defines a tradeoff of false negative and
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false rejection counts. Let FN =
∑

i(1 − δi) ri denote the number of
false negatives, and let FD =

∑
i δi(1 − ri) denote the false rejections

(discoveries). The counts FN and FD are functions of the parameters ri

and the data yJ , implicitly through δi(yJ). We use the loss function

L(J, δ, θ, yJ) = FD + cFN.

The loss function does not include a term representing sampling cost.
See the discussion below, when we consider the optimal decision sample
size choice.

29.2.2 The Terminal Decision δ∗

The decision about the optimal sample size in any experiment is always
relative to the intended data analysis after carrying out the experiment.
This is formalized in the definition (29.1) by requiring to plug in the
optimal rule δ∗ about reporting genes as differentially expressed. It is
therefore natural to first discuss δ∗ before we consider the original sample
size question.

Let ri = Pr(ri = 1 | yJ) denote the marginal posterior probability of
gene being differentially expressed. It can be easily shown (Müller et al.,
2004) that under L the optimal decision δ∗i is of the form

δ∗i (yJ) = I(ri > t),

i.e., flag all genes with marginal posterior probability of differential ex-
pression beyond a certain threshold. The threshold is t = c/(c + 1).
The optimal rule is very intuitive and similar to a popularly used meth-
ods to control (frequentist) expected false discovery rate (Benjamini and
Hochberg, 1995; Storey, 2003), with the critical difference that the rule
is defined as a cutoff for marginal probabilities instead of nominal p-
values. See also Genovese and Wasserman (2003) for more discussion of
Bayesian variations of the Benjamini and Hochberg rule.

29.2.3 Sample Size Choice

We now use the optimal decision δ∗ to substitute in definition (29.1).
First we note that L(J, δ, θ, yJ) does not include any sampling cost. To
define an optimal sample size J∗ we could add a deterministic sampling
cost, say kJ . However, the choice of the tradeoff k is problematic. We
therefore prefer to use a goal programming approach, plotting expected
loss as a function of J , and allowing the investigator to make an informed
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choice by, for example, selecting the minimum sample size to achieve
expected loss below a certain target.

Doing so we run into an additional complication. Let L(J) denote the
expected loss

L(J) =
∫

L(δ∗(yJ), θ) dpd(θ, yJ). (29.2)

For relevant sample sizes the expected loss L(J) is far too flat to allow
a conclusive sample size choice. In fact, in Müller et al. (2004) we
show that the prior expectation of FN, plugging in the optimal rule δ∗,
decreases asymptotically as OP (

√
log J/J).

The flat nature of the expected loss surface is a typical feature for
decision problems in many applications. A common solution to address
this problem is to consider sensitivity analysis of the expected loss with
respect to some relevant features of the probability model. In particular,
we assume that for each gene the probability model includes a parameter
ρi ≥ 0 that can be interpreted as level of differential expression, with
ρi = 0 for non-differentially expressed genes. Assuming a gene with true
ρi > 0, we explore the change in expected loss as a function of ρi and J .
In other words, we consider the integral (29.2), but conditioning on an
assumed true value for ρi, instead of including it in the integration. As-
suming a large number of genes, fixing one ρi leaves the inference for all
other genes approximately unchanged, impacting the loss function only
when the i-th gene is (wrongly) not flagged as differentially expressed
and adds to FN. Thus, for ρi > 0, the only effected term in the loss
function is the i-th term in the definition of FN, i.e., (1− δi) ri. We are
lead to consider

βi(J, ρi) ≡ Pr(δi = 0 | yJ , ρi) = Pr(ri > t | yJ , ρi) (29.3)

The probability includes the marginalizations over all other genes, and
the application of the optimal terminal rule δ∗. Assuming that the
probability model is exchangeable over genes, we can drop the index
from βi. The expression 1 − β(J, ρ) has a convenient interpretation as
power, albeit marginalizing over all unknowns except for ρi. We refer to
β(J, ρ) as predictive power.

29.3 Monte Carlo Evaluation of Predictive Power

Evaluation of β(J, ρ) is most conveniently carried out by Monte Carlo
simulation. Let J0 and J1 denote minimum and maximum sample sizes
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under consideration. We first describe the algorithm in words. Simulate
many, say M , possible experiments (θm, ym

J1
), m = 1, . . . ,M , simulating

responses for a maximum number J1 of arrays. For a grid of sample
sizes, from J1 down to J0, compute ri for each gene i, each simulation
m, and each sample size J on the grid. Record the triples (J, ρi, ri)
across m, i and J . Plot δi = I(ri > t) against J and ρi. Finally,
fitting a smooth surface through δi as a function of (J, ρi) we estimate
β(J, ρ). The algorithm is summarized by the following steps. To simplify
notation we drop the i index from ri, ρi and δi.

(i) Simulate experiments (θm, ym
J1

) ∼ p(θ) p(yJ1 | θ), m = 1, . . . ,M .
(ii) Compute r across all genes i = 1, . . . , n, simulations m = 1, . . . ,M ,

and for all samples sizes J on a given grid. Record all triples
(J, ρ, r).

(iii) Let δ = I(r > t) and Fit a smooth surface β̂(J, ρ) through δ as a
function of (J, ρ).

Note 1: Most probability models for microarray data assume that yj

are independent given the parameters θ. This allows easy sim-
ulation from the joint probability model.

Note 2: Evaluating posterior probabilities ri usually involves poste-
rior MCMC. However, the MCMC requires no burn-in since
p(θ)p(yJ | θ) = p(yJ) p(θ | yJ). In words, the prior draw θ gen-
erated in step 1 is a draw from the posterior distribution given
yJ . It can be used to initialize the posterior MCMC.

The plot of β̂(J, ρ) is used for an informed sample choice, in the same way
as power curves are used in sample size arguments under a frequentist
paradigm.

29.4 The Probability Model

29.4.1 A Hierarchical Mixture of Gamma/Gamma Model

The proposed approach builds on the model introduced in (Newton
et al., 2001; Newton and Kendziorski, 2003). Let Xij and Yij denote
appropriately normalized intensity measurements for gene i on slide j

under the two biologic conditions of interest, i.e., yJ = (Xij , Yij , i =
1, . . . , n and j = 1, . . . , J) We assume conditionally independent mea-
surements given gene specific scale parameters (θ0i, θ1i):

Xij ∼ Gamma(a, θ0i) and Yij ∼ Gamma(a, θ1i).
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We define a hierarchical prior probability model, including a positive
prior probability for a tie between θi0 and θi1, corresponding to non-
differential expression across the two conditions. We introduce a pa-
rameter ri ∈ {0, 1} as latent indicator for θ0i = θ1i, and assume

θ0i ∼ Gamma(a0, ν)

and

p(θ1i | ri, θ0i) =

{
I(θ1i = θ0i) if ri = 0

Gamma(a0, ν) if ri = 1

with Pr(ri = 0) = p0. The model is completed with a prior for the
parameters (a, a0, p) ∼ π(a, a0, p), and fixed ν. We assume a priori
independence and use marginal gamma priors for a0 and a, and a con-
jugate beta prior for p. As in Newton et al. (2001) , the above model
leads to a closed form marginal likelihood after integrating out θ1i, θ0i,
but still conditional on η = (p, a, a0). Let Xi = (Xij , j = 1, . . . , J) and
Yi = (Yij , j = 1, . . . , J). We find

p(Xi, Yi|ri = 0, η) =
{

Γ(2Ja + a0)
Γ(a)2JΓ(a0)

} (ν)a0 (
∏

j Xij

∏
j Yij)a−1

[(
∑

j Xi +
∑

j Yi + ν)]2a+a0

and

p(Xi, Yi|ri = 1, η) =
{

Γ(aJ + a0)
Γ(a)J Γ(a0)

}2 (νν)a0 (
∏

j Xij

∏
j Yij)a−1

[(
∑

j Xij + ν)(
∑

j Yij + ν)]a+a0
,

and thus the marginal distribution is

p(Xi, Yi|η) = p0 p(Xi, Yi | ri = 0, η)+(1−p0) p(Xi, Yi | ri = 1, η) (29.4)

Availability of the closed form expression for the marginal likelihood
greatly simplifies posterior simulation. Marginalizing with respect to
the random effects reduces the model to the 3-dimensional marginal
posterior p(η | y) ∝ p(η)

∏
i p(Xi, Yi|η). Conditional on currently im-

puted values for η we can at any time augment the parameter vector by
generating ri ∼ p(ri | η, Xi, Yi) as simple independent Bernoulli draws,
if desired.

29.4.2 A Mixture of Gamma/Gamma Model

One limitation of a parametric model like this hierarchical Gamma/Gamma
model is the need to fix specific model assumptions. The investigator
has to select hyper-parameters that reflect the relevant experimental
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conditions. Also, the investigator has to assume that the sampling dis-
tribution for observed gene expressions can adequately be approximated
by the assumed model. To mitigate problems related with these require-
ments we consider a model extension that still maintains the computa-
tional simplicity of the basic model, but allows for additional flexibility.

A computationally convenient implementation is a mixture extension
of the basic model. In particular, we replace the Gamma distributions
for p(Xij |θ0i) and p(Yij |θ1i) by scale mixtures of Gamma distributions

Xij ∼
∫

Ga(a, θ0i qij) dp(qij |w,m) and

Yij ∼
∫

Ga(a, θ1i sij) dp(sij |w,m) (29.5)

where p(q | w,m) is a discrete mixing measure with P (q = mk) =
wk (k = 1, . . . ,K). Locations m = (m1, . . . ,mK) and weights w =
(w1, . . . , wK) parameterize the mixture. To center the mixture model at
the basic model, we fix m1 = 1.0 and assume high prior probability for
large weight w1. We use the same mixture for sjk, P (sjk = mh) = wh.
The model is completed with mk ∼ Ga(b, b), k > 1 and a Dirichlet
prior w ∼ DirK(M · W,W, . . . ,W ). Selecting a large factor M in the
Dirichlet prior assigns high prior probability for large w1, as desired. By
assuming a dominating term with m1 = 1.0 and E(mk) = 1, k > 1,
we allocate large prior probability for the basic model and maintain the
interpretation of θ0i/θ1i as level of differential expression.

Model (29.5) replaces the Gamma sampling distribution with a scale
mixture of Gamma distributions. This is important in the context of
microarray data experiments, where technical details in the data collec-
tion process typically introduce noise beyond simple sampling variability
due to the biological process. A concern related to microarray data ex-
periments prompts us to introduce a further generalization to allow for
occasional slides that are outliers compared to the other arrays in the
experiment. This happens for reasons unrelated to the biologic effect of
interest but needs to be accounted for in the modeling. We achieve this
by adding a second mixture to (29.5)

(Xij |qij , gj) ∼ Ga(a, θ0i gj qij) and (Yij |sij , gj) ∼ Ga(a, θ1i gj sij),
(29.6)

with an additional slide specific scale factor gj . Paralleling the defi-
nition of p(qij |w,m) we use a finite discrete mixture P (gj = mgk) =
wgk, k = 1, . . . , L with a Dirichlet prior (wg1, . . . mgL) ∼ DirL(Mg ·
Wg,Wg, . . . ,Wg), mgk ∼ Ga(bg, bg) for k > 1 and mg1 ≡ 1.
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29.4.3 Posterior MCMC

Posterior inference is implemented by Markov chain Monte Carlo (MCMC)
posterior simulation. See, for example, Tierney (1994), for a review of
MCMC methods. MCMC simulation proceeds by iterating over the fol-
lowing transition probabilities. We use notation like [x | y, z] to indicate
that x is being updated, conditional on the known or currently imputed
values of y and z. We generically use θ− to indicate all parameters,
except the parameter on the left side of the conditioning bar.

(i) [qij | θ−, Xi], for i = 1, . . . , n and j = 1, . . . , J .
(ii) [sij | θ−, Yi], for i = 1, . . . , n and j = 1, . . . , J .
(iii) [gj | θ−, X, Y ], j = 1, . . . , J .
(iv) [a | θ−, X, Y ]
(v) [a0 | θ−, X, Y ]
(vi) [mh | θ−, X, Y ], h = 1, . . . ,K

(vii) [w | θ−, X, Y ], w = (w1, . . . , wK)
(viii) [mg | θ−, X, Y ], g = 1, . . . , L

(ix) [wg | θ−, X, Y ], wg = (wg1, . . . , wgL).
(x) [K | θ−, X, Y ]
(xi) [L | θ−, X, Y ]

All but steps (x) and (xi) are standard MCMC transition probabilities.
Changing K and L we use reversible jump MCMC (Green, 1995). See
Richardson and Green (1997) for a description of RJMCMC specifically
for mixture models. Our reversible jump implementation includes a
merge move to combine two terms in the current mixture, a matching
split move, a birth move and a matching death move. Details are similar
to Richardson and Green (1997), with the mixture of gammas replacing
the mixture of normals. Inference is based on a geometric prior on the
number of terms K and L in both mixtures.

29.5 Pilot Data

The flexible mixture model allows to use pilot data to learn about details
of the sampling distribution. We envision a process where the investi-
gator either uses available data from similar previous experiments, or
collects preliminary data to allow estimation of the mixture model pa-
rameters before proceeding with the sample size argument. The pilot
data might not include samples under both biologic conditions. Pilot
data is often available only for control tissue. For such data a reduced



12 Müller, Robert, Rousseau

version of the model, using only the parts of the model relevant for Xij

is used. This is sufficient to estimate the mixture model parameters.
In summary, we proceed in two stages. In a first stage the pilot data

is used to fit the mixture model. Let Xo
ij , j = 1, . . . , Jo, denote the

pilot data. We will use posterior MCMC simulation to estimate the
posterior mean model. This is done once, before starting the optimal
design. We then fix the mixture model at the posterior modes K̂ and L̂,
and the posterior means (w̄, m̄, w̄g, m̄g) = E(w,m, wg,mg | Xo, K̂, L̂).
We proceed with the optimal sample size approach, using model (29.5)
with the fixed mixtures. The

29.6 Example

For illustration we consider the data reported in Richmond et al. (1999),
and used in Newton et al. (2001). We use the control data as pilot data
to plan the sample size for a hypothetical future experiment. Estimating
the mixture model we find a posterior mode K̂ = 3 and L̂ = 2.

We now fix K and L at the posterior mode, and the remaining mixture
parameters (m,w, mg, wg) at their conditional posterior means, condi-
tional on K − 3 and L = 2. We then use the mixture Gamma/Gamma
model with fixed mixture parameters to proceed with the Monte Carlo
simulation to compute β(J, ρ). In the context of the mixture of
Gamma/Gamma model we define ρi = log(θ0i/θ1i), the log ratio of scale
parameters for gene i. Figure 29.2 shows the estimated predictive power
curves β(J, ρ). The left panel shows β(J, ρ) for fixed ρ. Aiming for four-
fold differential expression, the plot shows the predictive power that
can be achieved with increasing sample size. The left panel of Figure
29.2 summarizes the surface β(J, ρ) by fixing J at J = 15, and plotting
predictive power against assumed level of differential expression ρ. For
increasing level of ρ the figure shows the predictive power that can be
achieved with J = 15 arrays. The points show the simulated true frac-
tion of rejections for J and ρ on a grid. The estimated surface β(J, ρ)
is based on all simulations, across all ρ and J . But the plot only shows
the simulations corresponding to the shown slice of the surface.

29.7 Conclusion

We have discussed ideas for a Bayesian decision theoretic sample size
argument for microarray experiments. The strength of the approach is
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(a) β(J, ρ = log(4)) (b) β(J = 15, ρ)

Fig. 29.2. Power β (labeled BETA in the plot) against sample size for as-
sumed four-fold over-expression, ρ = log(4) (left), and against ρ for sample
size J = 1 (right). Power β(J, ρ) is defined in (29.3) as the average posterior
probability of discovery, conditional on the true level of differential expression
ρi = log(θ0i/θ1i).

the opportunity to use essentially arbitrarily complex probability mod-
els. The proposed mixture Gamma/Gamma model is an example. But
the argument is valid for any probability model, as long as the model in-
cludes latent variables ri that can be interpreted as indicators for a true
effect for gene i, and parameters ρi that can be interpreted as strength
of the effect. In particular, the probability model could include more
complicated designs than two-sample experiments.

Limitations of the proposed approach are the assumed independence
across genes, and the implicit 0-1 loss function. More general loss func-
tions could, for example, include a weight proportional to the true ρi

in the penalty for false negatives. More general models could explicitly
allow for networks and dependence.
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