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Abstract

We consider decision problems defined by a utility function and an underlying prob-
ability model for all unknowns. The utility function quantifies the decision maker’s
preferences over consequences. The optimal decision maximizes the expected utility
function where the expectation is taken with respect to all unknowns, i.e., future data
and parameters. In many problems the solution is not analytically tractable. For
example, the utility function might involve moments that can only be computed by
numerical integration or simulation. Also, the nature of the decision space, i.e., the
set of all possible actions, might have a shape or dimension that complicates the max-
imization. The motivating application for this discussion is the choice of a monitoring
network when the optimization is performed over the high dimensional set of all possible
locations of monitoring stations, possibly including choice of the number of locations.

We propose an approach to optimal Bayesian design based on inhomogeneous
Markov chain simulation. We define a chain such that the limiting distribution iden-
tifies the optimal solution. The approach is closely related to simulated annealing.
Standard simulated annealing algorithms assume that the target function can be eval-
uated for any given choice of the variable with respect to which we wish to optimize.
For optimal design problems the target function, i.e., expected utility, is in general
not available for efficient evaluation and might require numerical integration. We over-
come the problem by defining an inhomogeneous Markov chain on an appropriately
augmented space. The proposed inhomogeneous Markov chain Monte Carlo method
addresses within one simulation both problems, evaluation of the expected utility as

well as maximization.
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1 INTRODUCTION

We propose a simulation based approach to expected utility optimization. Consider a de-
cision problem described by a utility function u(d, 6, y) and a probability model py(f,y) on
all unknowns. Here d is the decision, # are unknown parameters and y are the observable
data. The utility function models preferences over consequences and py(f,y) models be-
liefs, possibly influenced by actions. It can be argued (Raiffa and Schlaifer, 1961; DeGroot,
1970) that a rational decision maker chooses the action that maximizes expected utility
U(d) = [u(d,0,y)dps(0,y). The expectation is taken with respect to all unknowns at the
time of decision making. Many decision problems consider utility functions that involve
inference loss. See, for example, Chaloner and Verdinelli (1995) for a review of Bayesian
approaches to such decision problems traditionally known as optimal design problems. Here
we focus instead on problems with more general utility functions. We propose an approach
which is suitable when the expected utility is an analytically intractable integral, possibly
due to a complex probability model, the nature of the utility function or the nature of the
action space. For example, the decision about shrinking a network of monitoring stations
requires maximization over all possible patterns of included and excluded candidate sites,
typically allowing neither analytical maximization nor full enumeration. Such problems are
discussed, for example, in Clayton et al. (1999) or Nychka and Saltzman (1998). Decision
problems that require simulation based solutions also frequently arise in biomedical research
problems. Berry (1993), Spiegelhalter et al. (1994) and Berry and Stangl (1996) review
related problems.

Simulation based approaches to decision problems have been successfully used in many
contexts. For example, Carlin et al. (1998) and Brockwell and Kadane (2003) propose
simulation based solutions to sequential decision problems. In these papers simulation is
used to evaluate expected utility integrals. Miiller and Parmigiani (1996) propose a similar
strategy for general non-sequential problems, exploiting the continuity of U(d) to reduce
computational effort. Extensive literature in operations research deals with simulation based
approaches to solve decision problems represented in so called influence diagrams. See, for
example, Bielza et al. (1999) for a discussion and references.

Expected utility integration is only one of the computational challenges in optimal de-
sign. The other computational challenge is the maximization over the design space. One
approach to implement simulation based maximization are simulated annealing methods.

See van Laarhoven and Aarts (1987) for a review of simulated annealing. Geman and Ge-



man (1984) use simulated annealing for maximum a posteriori estimation. Fei and Berliner
(1991) and Laud et al. (1992) discuss convergence issues and alternative probing distribu-
tions. The paradigm of simulated annealing is non-homogenuous Markov chain simulation
with a sequence of stationary distributions which increasingly concentrate around the point
of maximum (or minimum). The approach proposed in this paper builds on simulated
annealing algorithms by blending simulated annealing and standard Markov chain Monte
Carlo integration to develop an algorithm that simultaneously addresses maximization and
integration.

A computational problem which is similar to that of expected utility maximization arises
in the evaluation of marginal a posteriori modes (MMAP). In this case the expected utility
is replaced by the marginal posterior distribution. Both, expected utility and marginal pos-
terior distributions, require the calculation of possibly high dimensional integrals. Expected
utility maximization and MMAP share the same formal description as maximizing analyti-
cally intractable integrals. In independent work Doucet et al. (2002) and Robert et al. (1999)
discuss an MMAP strategy that is formally similar to the simulation based optimal design
approach proposed in this paper.

In Section 2 we introduce the basic strategy. Section 3 gives the specific algorithm.
Section 4 illustrates the proposed approach with examples. Section 5 concludes with a final

discussion.

2 AUGMENTED PROBABILITY MODEL

Consider the generic decision problem defined by a utility function u(d, 6, y) and a probability
model py(6,y). Typically the probability model factors as py(#,y) = p(0) pa(y | #) into a
prior p(#) which is invariant under the decision d and a sampling distribution py(y | #). The

optimal decision problem is formally described as

d* = arg max U(d) with U(d) = /u(d, 0,y)dpa(y | 6) dp(0). (1)

The assumptions about the probability model are not critical. Little changes in the fol-
lowing discussion if py(f,y) does not factor as assumed in (1), or if the prior probability
model py(6) depends on d. When the target function U(d) is not available in closed form
standard optimization approaches are difficult to implement. However, U(d) can easily be
approximated by appropriate Monte Carlo integration. This is generally possible by inde-

pendent Monte Carlo simulation since both, prior p(f) and sampling model py(y | €), are



usuallly available for efficient computer simulation. We can generate a Monte Carlo sample

(05,y;) ~ p(0;) pa(y;10;), 3 =1,..., M, to obtain an approximation

U(d) =1/MY_ ul(d,8;,y;)- (2)

The use of such approximations is a common technique in many simulation based optimal
design approaches, including, for example, Sun et al. (1996), Carlin et al. (1998), or Miiller
and Parmigiani (1996).

We propose instead to solve the decision problem (1) by recasting it as a simulation
from a sequence of augmented probability models. The central idea is to define an auxiliary
distribution h;(d,-) such that the marginal distribution in d is proportional to U(d)” for
a positive integer J. Assume that u(d,0,y) is non-negative and bounded. We define an
artificial distribution h; as

J
hJ(d;ylaela"'ayJan)OCHu(daejayj) pd(ajay]) . (3)

i=1

Marginalizing over (yi,...,60;) we find that

hy(d) [/ u(d, 0,y) dpa(6, y)r = U(a)’,

as desired. In (3) we have augmented the original probability model on parameters and data
to include the design parameter d as a random variable. Treating d as a random variable we
can from now on simplify the notation and write p(y | 8, d) instead of p,y(y | ), etc.

Fixing J = 1 the described procedure defines a probability model that randomly generates
designs d with probability proportional to the expected utility U(d). This is exploited in
Bielza et al. (1999) by defining a Markov chain Monte Carlo (MCMC) simulation to generate
from h(d,0,y) = hi(d,0,y) using MCMC schemes as reviewed, for example, in Tierney
(1994). A summary of the algorithm proposed in Bielza et al. (1999), as well as the discussion
in Miiller and Parmigiani (1996) appears in Miiller (1999).

The fact that the target distribution is h(d,6,y), instead of a posterior distribution
p(0]y) as in traditional posterior MCMC simulation, does not hinder application of the same
simulation strategies. Appropriate summaries of the simulation output in d allow inference
about the optimal design d*. For example, for univariate d one can find the optimal design as
the mode of the histogram of simulated d values. However, such strategies are limited to low
dimensional design vectors d, say up to dim(d) = 4. For higher dimensional design spaces

it becomes impracticable to estimate the mode of h(d) from the simulation output. An
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exception is the special case when U(d) is very peaked and gives only negligible probability
to designs d significantly away from d*. The optimum can then be inferred as the sample
average of simulated d values.

This special case motivates the following computer simulation. We start by simulating
from h. Suitable MCMC algorithms are discussed in Section 3, below. In subsequent it-
erations of the MCMC algorithm, n = 1,2,..., we change the target distribution to h;,,
incrementing J = J,, as we proceed. For sufficiently large J the marginal distribution A (d)
is tightly concentrated on the set of optimal designs d* (d* need not be unique).

The outlined algorithm is related to simulated annealing for a target function f(d) =
log U(d). Central to simulated annealing is a sequence of equilibrium distributions 7, (d)
exp{f(d)/T,}. Defining T,, = 1/J, we find m,(d) = hy, (d), highlighting the similarity
to simulated annealing. However, standard simulated annealing requires that the target
function logU(d) be available for direct evaluation. But it is exactly this evaluation of the

expected utility integral which complicates the optimal design problem (1) in the first place.

3 INHOMOGENEOUS MCMC CHAINS

We use inhomogeneous MCMC simulation to implement simulation from h;(d, -), with J =
J, increasing across iterations n. The chain is set up in such a way that the stationary
distribution for fixed J is h;. To describe the chain we use the alternative state vector (d,v)
where v is the average log observed utility, v =1/J ) log u(d, 6;,y;).

Algorithm 1.

0. Assume that the current state of the chain is (J,d,y1,01,...,vs,0;), or (d,v).

1. Propose a new design d ~ g(ci|d) We discuss the choice of g below. For the moment,
assume ¢(d|d) is symmetric, g(d|d) = g(d|d). For example, g might be a normal random
walk g(d|d) = N(d, S).

2. Propose simulated experiments (6;,9;) ~ p(0,y | d), j = 1,...,J. Evaluate the corre-

sponding v value and record (ci, 0) as a proposed new state of the Markov chain.
3. Evaluate the acceptance probability
ay =min[1,exp(Jo — Jv)].
With probability «; accept the proposal and set v = ©. Otherwise leave v unchanged.
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4. Let J, denote the current value of J. Increase J to J,11 > J,,, following a chosen cooling
schedule (J,,n =1,2,...), such that J, — oc.

5. Repeat steps 1 through 4 until the chain has practically converged.

Steps 1 through 5 describe a Markov chain (d,,v,) in the state vector (d,v). For fixed J,
the chain is also Markovian in the extended state vector (d,yi,6:,...,ys,60;). The accep-
tance probability a; is a Metropolis-Hastings acceptance probability for a target distribu-
tion hy(d,y1,61,...,ys,0;) and a proposal distribution ¢(v, 71, . . wr | d,y1,...,05) = g(cz|
d) Hp(éj, Uj | d). The choice of g(d|d) is essentially arbitrary, subject only to some tech-
nical conditions to ensure that the homogeneous chain which is obtained by fixing J = J,
converges to the limiting distribution h;. See Tierney (1994) for a discussion of appropriate
conditions. In the context of the proposed algorithm, the only critical condition is irre-
ducibility of the chain. Essentially, for any current state d and any candidate d;, there must
be a positive probability of reaching state d; starting from d in finitely many transitions. If
the decision space is continuous, the event of reaching d; is replaced by the event of reaching
a neighborhood of d;. See Tierney (1994) for details.

The conditions in Tierney (1994) assure convergence to h; for fixed J. Convergence
of the inhomogeneous Markov chain (d,,v,) requires additional consideration. We first
introduce some notation for the involved distributions. Discussion of Algorithm 1 includes
three related, but different, probability models. We have already introduced the sampling
model p(f,y|d), and the homogeneous equilibrium distribution h,(d,yi,...,60;). A third
probability model is given by the transition probabilities p(dy i1, Vnt1 | dn, vn) that define the
Markov chain. Also, p(6,y|d) and h;(d,yi, ..., 8;) imply corresponding probability models
for (d,v). Let p;(v|d) denote the probability model on v implied by (6;,y;) ~ p(0,y|d),
j=1,...,J. Let h;(d,v) denote the distribution on (d,v) that is implicitely defined by
hs(d,y1,...,05). We will use h(d,v) and p(v | d), without subindex J, as short notation
for hy and p;. Note that the conditional distribution h;(v|d) differs from p;(v|d). For
example, for J = 1, the distribution h(f,y | d) includes an additional factor u(-) compared
to p(#,y | d). Let pu(d) = [ v dh(v|d) denote the expected log utility under h(d,v), and let

S* = {(d",v"), U(d") > U(d) Vd # d*, v* = pu(d")}

denote the set of optimal decisions d* and corresponding expectations. Finally, for i = (d',v')
and j = (d,v) let
B(m7n) :p(dn = d,’l)n = | dm = d,,’l)m = U,)



denote the multi-step transition probabilities for the inhomogeneous chain (d,,v,) and let
Py(n) = Py(n,n +1).

The following result gives sufficient conditions for the convergence of the inhomogeneous
chain under the following assumptions. We assume a finite state space S for (d,v) € S.
In practice this might require to round v to a finite grid. We assume that u is bounded,
0 < ug < u(d,f,y) < uy. The positive lower bound can be assumed without loss of generality.
If ug were negative we add an appropriate offset without changing the optimal decision. Also,

we assume p(v|d) > 0 for all (d, v).

Theorem 1 Let (d,,v,) denote the states of the Markov chain defined in Algorithm 1, and
let T, = 1/J,. If the annealing schedule {T,,, n =1,2,...} satisfies

T, = v/log(n + )

with v > b where b is defined in the appendiz and ¢ > 0, then the inhomogeneous Markov
chain (d,,v,) is strongly ergodic. That is, there exists a probability distribution ©* defined
on S, such that for allm>1,14,5€ S

lim P;;(m,n) = 7*(j) (4)

n—oo

and T 1s uniform over S*. Further, 7* =limh; asn — oo.

Proof: see the Appendix.

For practical implementation we recommend to increase J only to the point where A (d)
is sufficiently peaked to identify the desired optimal design within meaningful accuracy. Let
Ad be the minimum difference in d such that any two designs with difference Ad are still
practically distinguishable. Stop cooling (incrementing J) when J = J such that V;(d) < Ad
where V;(d) is some measure of dispersion for h;(d), for example, the sample standard
deviation of the designs simulated under h;.

When J is capped at .J, then the algorithm essentially reduces to a homogeneous chain.
The early iterations, J, < J, define a finite burn-in only. The purpose of the early transient
is to avoid simulations from getting trapped in local modes. In the rare case that U(d) was
known to be unimodal, the burn-in could be dropped without harm.

In either case, capping J allows an important generalization. Algorithm 1 requires i.i.d.
sampling from p(#,y|d) in step 2. In many decision problems this is easily possible by
sampling from the prior p(f) and the sampling model p(y|#,d). Both, prior and sampling
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distribution, are typically chosen as some well known distributions which allow efficient ran-
dom variate generation. However, complications arise if some data y° is already observed at
the time of decision making, replacing p(6,y | d) by p(6,y | y°,d). Such posterior and poste-
rior predictive simulation conditional on observed data y° might require MCMC simulation
and hinder i.i.d. simulation as required in step 2. But this generalization is easily accomo-
dated by replacing i.i.d. simulation by an appropriate MCMC proposal g, (7;, §j|y1, 01, d),
j=1,...,J, and changing the acceptance probability «; accordingly. The exact nature of

the MCMC proposal g, is problem specific.

Algorithm 2. Proceed with steps 1 through 5, with the following modifications:

2’. Propose simulated experiments (éj, ;) ~ qy(9;, §j|yj, b;, cZ), j=1,...,J. Evaluate ¥ as

the corresponding v value.

3’. Evaluate the acceptance probability

p(0;,7,]d) ] ay(y;, 0;15;, 0;, )
(y]’H ‘yjao'ad) p(ej’yj|d)

7
ay =min |1, exp(Jo — Jv) H

]:

With probability «; accept the proposal and set v =19, d = d, Y1 = 11, etc.

4’. Let J, denote the current value of J. Increase J to Juy1, J > Jpi1 > Jp. If Juy1 > Jy,
generate new values (y;,0;), j = J,+1,..., Jy,41 by resampling the currently imputed
experiments (y;,6;),7 =1,...,Jy,

Algorithm 2 is no longer a Markov chain in (d,v). The Markov property holds for the state
vector (J,d, y1,...,0;) only. But the homogeneous chain obtained by fixing J = J, still has
the desired asymptotic distribution h;, allowing use of Algorithm 2 with J increasing up to
some fixed upper bound .J.

Another variation of Algorithm 1 occurs when U(d) can be evaluated exactly. In this case
step 2 is removed and v is replaced by log U(d). Without the uncertainty in the evaluation of
U(d) the chain reduces to a standard simulated annealing algorithm. A variation of such a

simulated annealing algorithm is described in Miiller (1999). Suppose the decision parameter

can be written as a vector d = (d, . ..,d,). To simulate a sample from A ;(d) a Gibbs sampling
scheme is defined by iteratively generating from h;(d; | di,...,d;_1,d;1,...,d,), scanning
over all coordinates j = 1,...,p. The complete conditional draws from h,(d; | ...) are

implemented as nested Metropolis-Hastings chains. The resulting Metropolis-within-Gibbs



scheme provides an approximate draw from h;(d). The need for practical convergence for
each run of the nested Metropolis-Hastings makes the scheme very computation intensive.
Algorithm 1 avoids this complication by defining one Markov chain that achieves both, the

integration and the maximization in the same Markov chain simulation.

4 NETWORK DESIGN AND OTHER APPLICATIONS

The proposed algorithm for optimal design is very general. It is applicable for any problem
that allows pointwise evaluation of the utility function for assumed future outcomes and
assumed parameter values. The probability model on parameters and future data must allow
efficient computer simulation, either by independent simulation or by appropriate posterior
MCMC simulation. However, we do not recommend to use Algorithms 1 and 2 as default
approach for generic decision problems. In particular, in many problems the structure of the
decision space and the nature of the utility function imply that U(d) satisfies the regularity
conditions needed for smoothing based methods. See Miiller and Parmigiani (1996) for a
discussion.

The proposed algorithm is most suitable for problems with complicated decision space.
A typical application arises in the design of monitoring networks. Assume a current network
of monitoring stations, ¢ = 1,...,n, and a desired decision about shrinking the network.
The actions are described by binary variables d;, with d; = 0 (d; = 1) indicating that station
i is dropped from (retained in) the network. A typical utility function combines sampling
cost with some notion of parameter learning, prediction and interpolation. There is no
convenient formalization of continuity or regularity for expected utility U(d) as a function
of the n-dimensional binary vector. In sections 4.1 and 4.2 we describe two applications to
network design. The first example uses a kriging model and a utility function that awards
accurate prediction. The application is taken from Sansé and Miiller (1999) where we use
simulation with J = 1 to explore the expected utility. The second example uses a process
convolution model (Higdon, 2002) and a utility function that combines criteria related to the
violation of a given maximum ozone level, prediction, and inference about the mean ozone
level across the entire region of interest.

Another class of interesting applications arises in variable selection. Usually the problem
of selecting variables in a regression problem is cast as a problem of posterior inference,
considering the indicators for variable inclusion as part of the unknown parameter vector.

See, for example, Chipman et al. (2001) and Clyde and George (2003) for a review. Alter-



natively the variable selection problem can be considered as a decision problem, adding a
loss function. This approach is chosen in Berger and Barbieri (2003), using a utility func-
tion that reduces expected utility maximization to finding the median probability model.
Brown et al. (1999) propose a setup for variable selection that allows computation efficient
evaluation of expected utility. The expected utility maximization is then implemented as
a simulated annealing algorithm. When variable selection is desired for a planned future
experiment, and when the nature of the utility function or the sampling model prohibit an
analytic evaluation or good approximation of expected utility, the variable selection problem
can be addressed by algorithms proposed in Section 3. We show an example in Section 4.3.
We set up an optimal design problem with decisions related to variable selection in a probit

model, and a utility function combining classification and sampling cost.

4.1 Optimal Shrinkage of a Network of Rainfall Stations

We consider the problem of redesigning a network of 80 rainfall stations. Due to funding
constraints the network has to be reduced in size. The stations are located in the State of
Guarico, in the plains of central Venezuela, north of the Orinoco and Apure rivers and are
managed by the Venezuelan authority of the environment (MARNR). The goal is to reduce
the number of stations to approximately half. This should be done in a way such that
the ability to interpolate and predict local rainfall over the state is mantained as much as
possible whilst, at the same time, the cost of running the network is minimized. In Figure 1
and Figure 2 we show the locations of the n = 80 stations together with a plot of the annual
rainfall for three of the stations during 7" = 16 years from 1968 to 1983.

Several authors have studied related problems of designing monitoring networks for ath-
mospheric data: Caselton et al. (1992) and Guttorp et al. (1994) consider an approach based
on a multivariate normal and inverse Wishart model and entropy minimization as design
criterion. The approach is further developed in Zidek et al. (2000). The use of an entropy-
based criterion avoids the difficult task of trading off the multiple conflicting objectives served
by many monitoring networks, including unkonwn future uses of the network. The authors
argue that the entropy-based approach captures the spirit of all the objectives without em-
phasizing any one of them. Alternatively, Nychka and Saltzman (1998) use kriging and show
how the problem of designing the network is equivalent to a variable selection problem in a
linear model. Bras and Rodriguez-Iturbe (1985) consider the design problem over a grid and
minimize a cost function that is similar to the one we consider in this paper, although they

deal with only a small number of stations. The problem of redesigning the Guarico network
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Figure 1: Locations of the 80 stations in Guarico, in the plains of central Venezuela, north of
the Orinoco and Apure rivers. The dotted line shows the borders of Guérico. The locations

labeled 1, 2 and 3 are the stations for which time series are shown in Figure 2.
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Figure 2: Annual rainfall at three locations, marked as 1 (solid line), 2 (dashed line) and 3

(dotted line) in Figure 1. The gaps are missing values.

was originally studied in Sansé and Miiller (1999) who propose a stochastic algorithm that
explores possible designs, but without a formal optimization step.

In this example we consider an isotropic Gaussian spatial model as in Handcock and Stein
(1993). We avoid the need of temporal modeling by considering annual rainfall and assuming
that annual observations are exchangeable. To highlight the decision problem involved in
the network shrinkage we keep the assumptions of the geostatistical model simple by using

a standard model. A review of related, more complex models appears in Sansé and Guenni
(1999).

4.1.1  The Probability Model

Let y € R™ be the data that consist of rainfall observed at n stations scattered over the state
of Guadrico. Latitude (x;1), longitude (z;), and elevation (z;3) of the stations are known.
We propose a Gaussian random field with a linear drift and an isotropic covariance structure,
that is, we assume that correlations depend only on the relative distances between locations.

Analysis of the historical data supports the model. We assume
y ~ NplzB,0°V ()] (5)

where N,(a, B) denotes a n-dimensional normal distribution with moments ¢ and B. The

design matrix z is an (n X p) matrix of p basis functions evaluated at the n station locations,
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B is an (p x 1) vector of linear regression parameters, o2 > 0 is a scale parameter and V()
is a correlation matrix parametrised by A > 0. We use V;;(\) = exp(—Ad;;) where d,; is the
distance between stations ¢ and j. Let x; denote the i-th row of the design matrix z. For the
mean function we choose a quadratic polynomial, i.e., ;5 is a quadratic form in z;; and z;,.
To simplify the model we do not use the elevations in the mean regression, a simplification
that is sustained by the analysis of the historical data.

We complete the model with a prior distribution for the parameters 6 = (3, \, 0?). We
base the prior distribution on available historical data. Rather than formally defining a
hierarchical probability model for joint inference on historical and future data, we choose
the simpler mechanism of analyzing a separate probability model for the historical data, and
using the posterior moments from that analysis to define the prior probability model for (5).
Let z;; be the log annual rainfall corresponding to station ¢ =1,...,n,in year j =1,...,T.
Recall that n = 80 and 7" = 16. Let z; be the (n x 1) data vector for year j. We assume

that the z; are exchangeable across years and
zj ~ Np[zvy, 7°V(K)], j=1,...,T, (6)

as in (5), with (v, k, 7) replacing (3, A, o). In particular V' is the same exponentially decaying
correlation matrix. We assume a priori p(v, k,72) o< 1/7%p(k) with p(x) being a gamma
distribution with large variance and a mean chosen to match the empirical estimation of
based on the covariogram of the data z.

Inference on (v, ,72?) was implemented by straightforward MCMC simulation. We now
use posterior inference on (7, k, 7) to motivate prior choices for model (5). The marginal pos-
terior distribution on & is very peaked, leading us to fix A at the posterior mean F(x|z). For
(B8,0) we use a normal/inverse-Gamma prior, 1/0? ~ Gamma(a,b) and B|o? ~ N(m,c%5).
The hyperparameters m, S, a and b are fixed to match the posterior means F(v, 72 | z) and
the ten-fold inflated marginal posterior variances, 10 Var(y | z) and 10 Var(1/7% | z). Using
inflated posterior variances to define prior distributions based on historical data is a standard

procedure to account for lack of exchangeability across historical and future data.

4.1.2  Utility function

Let y; denote log rainfall in a given year at station i = 1,...,n and let d = (dy,...,d,) be
a vector that indicates a specific network design with d; = 0 if station ¢ is removed from the
network and d; = 1 if station 7 remains in the network. We need to specify a utility u(d, 6, y)

associated with the decision d when the outcome y is observed. Let y; be the subvector of
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y that corresponds to stations in the network under design d. Let D = {i : d; = 1} be the
set of stations in the network and D¢ = {1,...,n}\ D. We consider the utility function

u(d,y) =C Y 1{yi € Gi(ya) £6} = Y i+ Co, (7)
ieDe —5:_/ i€D

where 1{A} denotes the indicator function of the event A and ¥;(yq) is the prediction for
station ¢ based on the observed stations y4, and C,Cy,d and ¢;,2 = 1,...,n, are positive
constants. Since the utility function (7) does not depend on 6 we drop it from the list of
arguments in u(d, y). In words, we include a payoff C for predicting a station 7 that is dropped
from the network, and we deduct a cost ¢; for every station in the network. Prediction within
46 suffices. A constant C is added to ensure a non-negative utility function, as needed in
the conditions of Theorem 1. The idea behind this utility function is that a design d has a
high utility if the total cost of running the network is low but the stations in the complement
D¢ can be reasonably well predicted by stations in D. Notice that u(d,y) is bounded.

A key issue in the specification of the utility is the constant C'. This involves a trade-off
between sampling cost and payoff which is seldom easy to do. We interpret C as the cost of
one individual measurement and assume that (C' — ¢;) > 0 since a station would not have
been built if the cost of running it were greater than the utility of a measurement. The
choice of § is naturally related to the variability in the y. In our case we used the historical
data and fixed § as twice the residual standard deviation in fitting model (6).

We implemented Algorithm 1, changing J, by increments of one every 25 iterations,
running over 2500 iterations. The proposal distribution g(d | d) is defined by randomly
selecting a station i € {1,...,n} and proposing to flip the corresponding indicator, i.e.,
d; = (1 — d;). Other station indicators remain unchanged, ch = d;, j # 1. Figure 3 reports
the expected utilities of imputed network designs d against iterations. Since expected utilities
U(d) are not computed as part of the algorithm, we used separate large scale Monte Carlo
simulation to compute U(d) for the plotted designs. Figures 4 and 5 summarize some features

of the selected designs.

4.2 An Ozone Monitoring Network

We consider the choice of an optimal design for a network of ground level ozone monitoring
stations in the eastern United States. The stations report daily maxima for eight hours
running average ozone concentrations. A formal solution of this optimal design problem is

complicated by the use of complex spatio-temporal models and the need to account for several
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Figure 3: Estimated U(d*)) for simulated designs d*) over iterations in the indicated range.
Note how the level of observed U(d) shifts to higher expected utility and the dispersion
tightens. Evaluating U(d®) is not part of the algorithm and was separately computed for
this plot, using a Monte Carlo approximation (2) with M = 100. The numerical standard

errors for evaluating U(d) are approximately 0.5.

competing goals. Some current solutions rely on heuristic methods to find designs that can
intuitively be expected to be reasonable under typical utility functions related to prediction,
forecasting, inference on extremes, etc. One approach is the entropy optimization that we
already mentioned in the context of the previous example (Zidek et al., 2000). An attractive
alternative are the space-filling designs proposed in Nychka and Saltzman (1998). A space-
filling design determines an optimal set of stations in a design region by choosing a subset
from a larger candidate set of possible monitoring locations. The subset is selected such
as to minimize the maximum distance between every design point and its nearest neighbor
station. The space-filling design is a purely geometrical way of choosing the monitoring
stations. The optimal design is chosen for its ability to cover the design region. The method
makes no use of the available information in the ozone measurements at each location. By
their nature space-filling methods can not take into account the ultimate aims of the study.
In Figure 7b we show the optimal space-filling design for the current example.

Let y; denote the measurement on day t at station ¢. As probability model we use a
process convolution model as described in Higdon (2002). Let y; = (ys1, ..., Ym) denote the

vector of all observations in period ¢, and let s; denote the coordinates of the i-th station.
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Figure 4: Frequency of occurence of individual stations in the top 500 designs generated
during the simulation. Each circle corresponds to one station, centered at a location corre-
sponding to longitude and latitude of the respective station. The sizes of the circles vary from
small to large according to the frequency of the stations. The figure has to be interpreted

with care since it provides only a marginal summary of the multivariate problem.
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Figure 5: Best (left panel) and worst (right panel) design generated. These are the designs
that correspond to the maximum and minimum in the plot of Figure 3. Selected stations

are marked with solid dots, dropped stations are marked with empty circles.

To construct a probability model for g, the process convolution model defines a set of knots,
Q= {wi,...,wn}, and kernels k(s; —w;) centered at these knots. In our implementation we
used a regular grid of m = 27 knots over the study region. A linear combination of these
kernels is used to construct a spatial mean function. Adding independent normal residuals

completes the model:
yr = K0, + e with K;; = k(s; — w;) and € ~ N(0, o’l,), (8)

where I, denotes the (n x n) identity matrix. The (m x 1) vector #; parametrizes the mean

surface. We assume a conjugate normal prior,
0, ~ N(0,7%I,,). (9)

The available data are for T = 30 days in summer 1999, collected by the U.S. Environmental
Protection Agency (EPA). We extend the model to a spatio-temporal design model by assum-
ing 0;,t=1,...,T a priori independent, and defining a conditional prior p(ér41 | 61, ..,07)
as Pr(0p,=6;)=1/T,t=1,...,T. In words, we simply assume that future mean ozone

levels are generated by resampling one of the latent {6;,...,07}. This is a suitable design
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model since the resampling enforces the imputed future mean surface to be realistic realiza-
tions of ozone levels. However, the model would not be suitable as an analysis model. It fails
to specify temporal dependence of 6;, t < T. In particular we assume a different model for
p(Ors1 | 01, ...,07) than for p(6541 | 61,...,0,) for any s < T. The use of different models
for design and analysis is a common procedure (Etzioni and Kadane, 1993). It is perhaps
most commonly seen in inference for clinical trials (Spiegelhalter et al., 1994), but equally
appropriate in other areas.

The construction of a utility function formalizes several competing aims. First, we want
to identify locations with mean ozone level beyond the air quality standard for ozone of
y* = 85 ppb (parts per billion). Second, we wish to estimate ozone levels at stations that
are dropped from the network. Third, we wish to make inference about the response surface
of mean ozone level across the eastern United States. Finally, we want to minimize cost.
Let y° = (y1,...,y:) denote the observed data. Let D = {i : d; = 1} be the set of
chosen stations and D¢ = {i : d; = 0} the set of stations removed from the network. Let
Ya = (Y1414, © € D) denote the future data at selected stations, and let y = yr,; denote
all future data, including the latent responses at stations dropped from the network. Let
6 = Or,, denote the parameters for the mean response surface at 7'+ 1 and let ¥ = E(y |
y°,ya) = K E(0 | y°,ya) denote the vector of estimated mean future responses. Finally, let
K (s) denote the (p x 1) vector of kernels k(s — w;) evaluated at a generic location s, let
f(s;8) = K(s) 6 be the mean response surface evaluated at s and f(s) = E(f(s;6) | y°, ya)-

We use

u(d,0,y) = R Y {(yri1i > y") and (5 > y*)}+

ieDe
+ Cy/ Z (yri1s — 0)° + Cz//(f(s) — f(s;0))*ds — Z ¢+ Co. (10)
ieDe s ieD

The terms correspond to the described competing aims plus a shift Cj to ensure u > 0.

The coefficients R, C7,Cs and ¢; define the relative importance of the competing goals and

the cost of including station %, respectively. The integral in the third term extends over the

entire study region S. In the implementation we approximate the integral by a sum over a
10 by 10 grid.

Based on the EPA data we find an optimal network of ozone measurement stations by

maximizing U(d) = E(u | y°,d). We use Algorithm 1., replacing p(y, 0 | d) by p(y,0 | ¥°, d).

We fix the tradeoff coefficients as R = 1,C; = Cy = 10 and ¢; = 5. We simulated 30,000

iterations, discarding the first 10,000 as initial burn-in. Starting with iteration 10,000 we
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Figure 6: Frequency of occurence of individual stations during the simulation. Selected
stations are marked with circles and dropped stations with squares. The area of the symbol

is proportional to the frequency of the station.

increment J by 1 every 1000 iterations, leading to a maximum power of J = 20. Figure 6
shows a summary of the networks d simulated in the course of the simulation. Figure 7a
shows the proposed optimal design. For comparison Figure 7b shows the design proposed
by the space filling algorithm discussed in Johnson et al. (1990), and as implemented in the
software FIELDS (http://www.cgd.ucar.edu/stats/Software/Fields/index.shtml).

4.3 Variable Selection

Death status, defined as indicator for high probability of death, is a key input variable
in input-output quality assessment of hospitals. A traditional approach is to fit a logistic
regression to predict death status from sickness variables, using variable selection approaches

to identify a subset of all potentially available sickness variables to include in the logistic
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Figure 7: Optimal network design.
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regression.  An approach including the explicit use of an utility function is described in
Fouskakis and Draper (2002). The method is based on substituting the maximum likelihood
estimators of the regression parameters in the utility function and approximating expected
utility as the average utility across all possible cross-validation samples. The approach does
not take into account the fact that measuring sickness variables takes time and costs money.
A more cost effective approach is to consider the cheapest subset of sickness variables that

have the highest predictive capability. The statistical setting of the decision problem is the

following.
Consider data y° = {yi, Si1,.- ., Sip, @ = 1,...,n} where y; is an indicator for patient ¢
dying within 30 days of admission, and s;;,7 = 1,...,p are all sickness variables recorded

for patient 7. We assume a logistic regression

yi ~ Ber(m;), log(mi/(1—m)) = Po+ f1Sia+ ---+ BpSip- (11)

The utility function has two components. One term is related to the cost of including
a sickness variable. A second term measures the predictive capability of the model. Let
d; be an indicator for variable j being in the model. Then, for a given variable selection
d = (di,-..,dp) we find total sampling cost >*_, c;jd;, where ¢; is the cost of including
variable j.

To measure the predictive capability of the model consider a threshold p*. Let s¢ =
(sij, j € D). We say the model predicts death for a future patient n + 1 if p(yp41 = 1 |
Y%, s8.1) > p*. Let pd\ = p(yns1 = 1] s¢,,,y°). We define predictive utility of the model
as K 1{(ynt1 =0, p2., < p*) or (yn+1 =1, pt,, > p*)}. Here K is a constant that allows

to monetize the utility of the precision. The total utility is equal

D
U(d, yn+1) =K 1{(yn—|—1 = Oa p2+1 < p*) or (yn—|—1 = ]-ang—l 2 p*)} - ZCJdJ + CO'
j=1

The shift Cj ensures non-negativity. An additional complication arises from budget con-
straints, bounding total cost Y ¢;d; < C by a available funds C.

Based on available data y° we could now proceed to find the best model d* under utility
u(d, y) and the probility model (11) completed with a prior on the logistic regression param-
eters and a probability model for s,,;. For the latter we recommend using the empirical
distribution of the first n patients, i.e., simple resampling of {si,...,s,}. The nature of
the design space as the set of p—dimensional indicator vectors makes the variable selection
problem notoriously difficult. The inhomogeneous Markov chain simulation as proposed in

algorithm 1 provides a useful alternative.

21



5 DISCUSSION

We have described the use of inhomogeneous MCMC simulation to solve expected utility
maximization problems. The main feature of the proposed approach is its generality. The
method only requires that under a given decision and assuming hypothesized future data y
and parameter values 6 the decision maker be able to evaluate utilities u(d,8,y). Similarly
the probability model can be quite general. As in posterior MCMC simulation, essentially
any probability model that allows pointwise evaluation of posterior distributions for given
parameter values can be used.

As in any complex MCMC simulation the main limitation of the proposed method is the
computation intensive implementation. The approach strictly assumes a decision theoretic
setup, and thus inherits any limitations related to this paradigm. In particular, we assume
that there is one single utility function, with known tradeoffs between possibly competing
goals. Also, the need for pointwise evaluation of utilities limits applicability of the method
for problems with traditional inference loss involving often analytically intractable posterior
variances.

In summary, the proposed algorithm is likely to be useful for decision problems with
complicated design spaces, like in the network design example, and problems with utility
functions that involve complicated functions of future data and parameters, like life histories
of future patients undergoing screening for chronic disease.

For the sake of being specific the discussion was restricted to design problems, focusing
on the motivating problem of network design. We defined the generic design problem as
expected utility maximization, marginalizing with respect to parameters and future data to
be collected in a planned experiment. One of the reasons why we chose this setting was
that it often leads to the kind of difficult expected utility maximizations where the proposed
algorithms are useful. However, nothing in the proposed inhomogeneous Markov chain Monte
Carlo simulation limits the use to such settings. In particular, one inference question that
leads to a similar problem structure is maximum a posterior: variable selection in a regression
model. Let d = (dy,...,d,) denote a vector of binary indicators with d; = 1 corresponding
to the inclusion of the i-th potential covariate and let y denote the observed data. Finding
the maximum a posteriori model becomes the problem of maximizing marginal posterior
probability max, p(d | y). The general setup is described in George and McCulloch (1993).
A typical application appears, for example, in Sha et al. (2003) who describe a multivariate

probit model for gene expression in large-scale microarray experiments.
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APPENDIX: PROOF OF THEOREM 1

The proof for Theorem 1 follows standard arguments for convergence of inhomogeneous
Markov chains. See, for example, Isaacson and Madsen (1976) for related results. In the
proof we will frequently need to refer to the equilibrium distribution h; under J = J,. To
avoid double subscripts we write ,, for 7, (d,v) = h;,(d,v).

The outline of the proof is as follows. We first establish that the chain is weakly ergodic,
i.e., the chain forgets the starting condition in the limit. We show weak ergodicity by
considering the series s, = »_,_ [1 — 7 (P(k))], where 71 (P) is the coefficient of ergodicity
for the transition matrix P(n) = [P;;(n)]. Divergence of s,, implies weak ergodicity. To assess
strong ergodicity and convergence to the desired stationary distribution 7* we verify that
Yoo Il T — mny1 ||< oo for the sequence of stationary distributions m,. This conditition
together with weak ergodicity implies strong ergodicity.

We start with some observations about the time-homogenuous chains obtained by fixing
J = J,. The transition probabilities P;;(n) for the homogenuous chain at J = J, define a
Metropolis-Hastings chain with the target distribution 7, and proposals defined by steps 1
and 2 in Algorithm 1. Let i = (d;, v;) and j = (d;,v;). Then

9(dj|d;) ps(vi|dy) cr(viyv;) if j #
1= a2 9(d |di) ps(v |di) as(vi,v ) it j =14,

with a (v, w) = min{1, exp(Jw — Jv)}.

Pij(n) =

The sequence of invariant distributions 7, converges to the uniform distribution 7* over
the optimal set S*. Marginally, for m,(d), this follows from 7, (d) oc U’"(d). Convergence
of the conditional distributions 7, (v|d) follows from the fact that v is the sample mean of
Jy, 1i.d. samples from h(v|d). The law of large numbers implies convergence of 7, (v|d) to a
point mass at p(d).

We establish a bound on P;;(n), which will later allow us to make an argument about

the sequence of ergodic coefficients.

Lemma 1 There are constants 0 < a < oo and 0 < b < oo such that
Py(n) > aexp {~b/T,}

Proof. Recall the definition v = 1/J > logu(d,y;,0;). By assumption u(-) is bounded,
uo < u(d,0,y) < uq, and thus

ay(i, j) = min{1, exp[J (5 — v))|} > (uo/u1)”.
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Also, we assumed p(v|d) > € > 0 for all (d,v), and thus p;(v|d) > ¢’/. Additionally we asume
g(d|d) > a > 0. Set b= log[u,/(ug€)] and let T}, = 1/.J,. Then

Py(n) > a (euo/ur)™ = aexp(=b/T,).

The assumption g(d|d) > 0 is not critical. For the proof of Lemma 2 it suffices if there is an
m such that g,, (cﬂd) > 0, V(d, ci) for the m—step transition probability g,,. ®

We are now ready to show weak ergodicity
Lemma 2 Under the cooling schedule
T, >~v/log(n+¢), n=0,1,2,...,
v > b and ¢ > 0, the Markov chain (d,,v,) is weakly ergodic.

Proof. Recall that P(m,n) denotes the transition probabilities between steps m and n
and P(n) = P(n,n + 1). Let 7(P) denote the coefficient of ergodicity for the transition
probabilties P, defined as
mn(P)=1- mianin(Pil, Py).
0]
=1

An inhomogeneous Markov chain is weakly ergodic if and only if there is a strictly increasing

sequence of positive numbers {n;}, l =0,1,2,... such that
> {1 = n[P(n, )]} = oo (12)
1=0

Using the bound on P;;(n) we find 71 (P(n)) < 1—aexp(b/T,,). Substituting T,, = v/ log(n+c)
in (12) gives

Y L—n(P(n)]>a) exp(=b/T,) >ad 1/(n+c)"".

For v > b it follows that a 3.7° 1/(n + ¢)*7 = oo, implying weak ergodicity. m

n=ng
Theorem 2 (Isaacson and Madsen, 1976). If there exists a sequence of probability vectors

Tn such that m, = 7, P(n),
D = T [I< 00, (13)
n=0

and the time inhomogeneous Markov chain is weakly ergodic, then it is also strongly ergodic.

If 7 = lim,,_,o, 7, then for allm>1,14,5 € S,

lim P;;(m,n) = 7*(j)

n—oo
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We use Theorem 2 to prove strong ergodicity of (d,,v,). We have already established
Tn = T P(n) and lim 7, = 7*. Only (13) is left to show. Without loss of generality assume
the optimal set is a single point S* = {(d*,v*)}. Let S° = {(d,v), d # d*}. We assume

U(d)>1and » U(d)=e<1

dese

(if not, multiply u(-) and replace U(d) by U(d)” to achieve the condition without changing
the optimal solution). It follows that

hy(d) = U’(d)/[U7(d) + > U’ (d)] < U’(d)

and Y g, hy(d) <|5°]67, where |S°| indicates the cardinality of S°.
Finally, assume a finite fourth moment Ej(v*|d*) = [v* dhi(v]|d*) < oo and let v* =
w(d*). We will use the following identity for the fourth moment of a sample mean X, in a

random sample X; ~ p(X),i=1,...,n
E(X, — EX)* = (1/n*)E{(X — EX)*} + [3n(n — 1)/n"] [E{(X — EX)?}]".
Using Tschebychev’s inequality and substituting for the fourth moment we get
Prifo—v' 26| d} < B {(w—v)' |8} < e/ + ) )

for some positive constants ¢; and ce. Let § = min, |v — v*|. Then

Dollm—mu | = D Ihs—hoa ||
= Y ) D lhaldyv) = hua(d o) + )Y Thy(d,v) = hyga(d,v))]

J dAd* v
< ZchJ—f—222/64 (Cl/J3+CQ/J2) < 00.
J J

The equality in the first line holds since || 7, — 7,41 ||= 0 for J, = J,41. In the last line, the
extra factor 2 in front of the second sum appears because we use 2/8%(c;/J? + co/J?) as a
bound for ) |h;(d*,v) — hyy1(d*,v)|, as well as for |h;(d*,v*) — by (d*, v*)|.
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