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Summary. We present a definition for the effective sample size of a parametric prior dis-

tribution in a Bayesian model, and propose methods for computing the effective sample

size in a variety of settings. Our approach first constructs a prior chosen to be vague in

a suitable sense, and updates this prior to obtain a sequence of posteriors corresponding

to each of a range of sample sizes. We then compute a distance between each posterior

and the parametric prior, defined in terms of the curvature of the logarithm of each

distribution, and the posterior minimizing the distance defines the effective sample size

of the prior. For cases where the distance cannot be computed analytically, we provide a

numerical approximation based on Monte Carlo simulation. We provide general guide-

lines for application, illustrate the method in several standard cases where the answer

seems obvious, and then apply it to some non-standard settings.
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1. Introduction

A fundamental question in any Bayesian analysis is the amount of information contained

in the prior. For many commonly used models, the answer seems straightforward. For

example, it can be argued that a beta(a, b) distribution has effective sample size (ESS)

a + b. This is based on the fact that a binomial variable Y from a sample of size n with

success probability θ following a beta(a, b) prior implies a beta(a+Y, b+n−Y ) posterior.

In other words, given a sample of size n, the prior sum a + b becomes the posterior sum

a+b+n. Thus, saying that a given beta(a, b) prior has ESS m = a+b requires the implicit

reasoning that the beta(a, b) may be identified with a beta(c + Y, d + m− Y ) posterior

arising from a previous beta(c, d) prior having a very small amount of information. A

simple way to formalize this is to set c + d = ε for an arbitrarily small value ε > 0 and

solve for m = a + b− (c + d) = a + b− ε.

More generally, one may match a given prior p(θ) with the posterior qm(θ | Y ) arising

from an earlier prior q0(θ) that is chosen to be vague in a suitable sense and that was

updated by a sample of size m, and consider m to be the ESS of p(θ). In this general

formulation, p(θ), q0(θ) and qm(θ | Y ) play roles analogous to those of the beta(a, b),

beta(c, d) and beta(a+Y, b+n−Y ) distributions given above. In some cases one may find

the hyperparameters of qm(θ | Y ) as a function of m, compare qm(θ | Y ) with p(θ) and

solve for m analytically. For many parametric Bayesian models, however, this analytic

approach does not work, and it is not obvious how to determine the ESS of the prior. A

simple example is the usual normal linear regression model where the observed response

variable Y for predictor X has mean β0 + β1X and variance σ2, so that θθθ = (β0, β1, σ
2).

A traditional, technically convenient prior is that (β0, β1) is bivariate normal and σ2 is

inverse chi-squared, with hyperparameters chosen either for computational convenience

or by elicitation. In either case, there is no obvious answer to the question of what the
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ESS of the prior may be. Moreover, for many commonly used choices of q0(θθθ), the joint

prior p(θθθ) cannot be matched with qm(θθθ | Y ) analytically.

Understanding the prior ESS is important when applying Bayesian methods in set-

tings with a small to moderate sample size. For example, when fitting a Bayesian model

to a data set of 10 observations, an a priori ESS of 1 is reasonable, whereas a prior ESS

of 20 implies that the prior, rather than the data, dominates posterior inferences. If the

prior is elicited from a domain expert, then an informative prior is desirable (Chaloner

and Rhame, 2001; Garthwaite et al., 2005). In contrast, if the prior is only a technically

convenient ad-hoc choice, as is often the case in practice, then understanding the ESS

may prompt the investigator to reconsider the prior choice. Thus, it is important to

have a good idea of the prior’s ESS when interpreting one’s inferences. This is especially

important from the viewpoint of defending Bayesian methods against the concern that

the prior may inappropriately introduce artificial information.

In this paper, we present a definition for the ESS of a prior p(θθθ) in a Bayesian

parametric model, and we provide methods for computing the ESS in a wide variety

of settings. Our approach relies on the idea of constructing an “ε-information” prior

q0(θθθ), considering a sample Y of size m and the posterior qm(θθθ | Y), and computing a

distance between qm(θθθ | Y) and p(θθθ) in terms of the curvature (second derivatives) of

log{p(θθθ)} and log{qm(θθθ | Y)}. The value of m minimizing the distance is the prior ESS.

For cases where the distance cannot be computed analytically, we provide a numerical

approximation based on Monte Carlo simulations from qm(θθθ | Y). In cases where θθθ

is multivariate, one may compute multiple ESSs, one associated with each of several

subvectors of θθθ.

Section 2 presents a motivating application and defines ε-information priors and ESS.

Computational methods are presented in Section 3. Section 4 gives guidelines for using
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ESS computations in specific settings. Applications are described in Sections 5 and 6. In

Section 7, we discuss connections between our proposed procedures and related methods

given by Hodges and Sargent (2001), Spiegelhalter, Freedman and Parmar (1992), and

Spiegelhalter, Best, Carlin, and van der Linde (2002).

2. Effective Sample Size

The following example illustrates why it may be useful to determine the ESS of a prior.

We consider a design for a phase I trial to determine an optimal dose combination X =

(X1, X2) of two cytotoxic agents (Thall et al., 2003). The toxicity probability at X is

given by the 6-parameter model

π(X,θθθ) =
α1X

β1

1 + α2X
β2

2 + α3(X
β1

1 X β2

2 )β3

1 + α1X
β1

1 + α2X
β2

2 + α3(X
β1

1 X β2

2 )β3

, (1)

where all parameters in θθθ = (α1, β1, α2, β2, α3, β3) are non-negative. Under this model, if

only agent 1 is administered at dose X1, with X2 = 0, as in a single-agent phase I trial,

then π(X,θθθ) = π1(X1, θθθ1) = α1X
β1

1 /(1 + α1X
β1

1 ) only depends on X1 and θθθ1 = (α1, β1).

Similarly, if X1 = 0 then π(X,θθθ) = π2(X2, θθθ2) = α2X
β2

2 /(1 + α2X
β2

2 ) only depends on

X2 and θθθ2 = (α2, β2). The parameters θθθ3 = (α3, β3) characterize interactions that may

occur when the two agents are used in combination. The model parameter vector thus

is partitioned as θθθ = (θθθ1, θθθ2, θθθ3). Since phase I trials of combinations generally require

that each agent previously has been tested alone, it is natural to obtain informative

priors on θθθ1 and θθθ2, but assume a vague prior on θθθ3. Denoting by Ga(a, b) the gamma

distribution with mean a/b and variance a/b2, the elicitation process (Thall et al., 2003,

section 3) yielded the priors α1 ∼ Ga(1.74, 4.07), β1 ∼ Ga(10.24, 1.34) for the effects of

agent 1 alone, α2 ∼ Ga(2.32, 5.42), β2 ∼ Ga(15.24, 1.95) for the effects of agent 2 alone,

and α3 ∼ Ga(0.33, 0.33), β3 ∼ Ga(0.0008, 0.0167) for the interaction parameters.

Since doses must be selected sequentially in phase I trials based on very small amounts
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of data, an important question is what ESS may be associated with the prior. Our

proposed methods (Section 5, below) show that the overall ESS of this prior is m = 1.5.

However, since informative priors on θθθ1 and θθθ2 were obtained and a vague prior on θθθ3

was desired, it also is important to determine the prior ESS of each subvector. Applying

our proposed methods yielded prior ESSs m1 = 547.3 for θθθ1, m2 = 756.8 for θθθ2, and

m3 = 0.01 for θθθ3. The small value for m3 confirms that the prior on θθθ3 reflects little

information about the interaction of the two agents. The large numerical discrepancy

between m = 1.5 and (m1, m2) = (547.3, 756.8) is desirable. It reflects the fact that, for

each i = 1, 2, “θθθi” has a very different meaning in the submodel πi(Xi, θθθi) parameterized

by θθθi alone versus its meaning in the full 6-parameter model π(X,θθθ). See, for, example,

Berger and Pericchi (2001). From a geometric viewpoint, if π(X,θθθ) is thought of as a

response surface varying as a function of the two-dimensional dose (X1, X2), since the

edges of the surface correspond to the submodels π1(X1, θθθ1) where X2 = 0 and π2(X2, θθθ2)

where X1 = 0, the large values of m1 and m2 indicate that the locations of the edges

were well known, while the small overall ESS m = 1.5 says that otherwise very little

was known about the surface. In practice, one would report m1, m2, m3 and m to the

clinician from whom the priors were elicted. The clinician could then judge whether m1

and m2 are reasonable characterizations of his/her prior information about the single

agents, and compare m to the trial’s sample size. In the motivating application, a trial of

gemcitabine and cyclophosphamide for advanced cancer, the large values of m1 and m2

were appropriate since there was substantial clinical experience with each single agent,

and the small overall ESS also was appropriate since no clinical data on the two agents

used together were available and a sample size of 60 patients was planned.

This example illustrates four key features of our proposed method, namely that (1)

ESS is a readily interpretable index of a prior’s informativeness, (2) it may be useful
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to compute ESSs for both the entire parameter vector and for particular subvectors,

(3) ESS values may be used as feedback in the elicitation process, and (4) even when

standard distributions are used, it may not be obvious how to define a prior’s ESS.

The intuitive motivation for the following construction is to mimic the rationale,

given in Section 1, for why the ESS of a beta(a, b) equals a + b. As a general Bayesian

framework, let f(Y | θθθ) denote the probability distribution function (pdf) of an s-

dimensional random vector Y , and let p(θθθ | θ̃θθ) be the prior on the parameter vector θθθ =

(θ1, . . . , θd), where θ̃θθ denotes the vector of hyperparameters. The likelihood of an i.i.d.

sample Ym = (Y1, . . . , Ym) is then given by fm(Ym | θθθ) =
∏m

i=1 f(Yi | θθθ).

We define an ε-information prior q0(θθθ | θ̃θθ0) by requiring it to have the same mean,

Eq0(θθθ) = Ep(θθθ), and correlations, Corrq0(θj , θj ′) = Corrp(θj , θj ′), j 6= j′, as p(θθθ | θ̃θθ), while

inflating the variances of the elements of θθθ so that Varq0(θj ) � Varp(θj ), in such a way

that q0(θθθ | θ̃θθ0) has small information but Varq0(θj ) must exist for j = 1, . . . , d. Table

1 illustrates how to specify q0(θθθ | θ̃θθ0) for several standard parametric priors. Given the

likelihood fm(Ym | θθθ) and ε-information prior q0(θθθ | θ̃θθ0), we denote the posterior by

qm(θθθ | θ̃θθ0,Ym) ∝ q0(θθθ | θ̃θθ0)fm(Ym | θθθ) and the marginal distribution under p(θθθ | θ̃θθ) by

fm(Ym | θ̃θθ) =

∫
fm(Ym | θθθ)p(θθθ | θ̃θθ)dθθθ. (2)

When θ̃θθ is fixed we write f(Ym) for brevity. To define the ESS(s), consider the following

three cases based on p(θθθ | θ̃θθ). For implementation, we find it useful to distinguish between

these cases although, formally, Cases 1 and 2 are special instances of Case 3.

Case 1: d = 1, with p(θ | θ̃θθ) a univariate parametric model. For this case, we will define

one ESS. Examples include the beta, gamma, univariate normal with known variance,

and inverse-χ2 distributions.

Case 2: d ≥ 2 with p(θθθ | θ̃θθ) a d-variate parametric model. For this case, we will define
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one ESS. Examples include the Dirichlet and multivariate normal (MVN) distributions.

The following case deals with settings where it is scientifically appropriate to define two

or more ESSs for p(θθθ | θ̃θθ).

Case 3: d ≥ 2 with p(θθθ | θ̃θθ) written as a product of K parametric distributions, p(θθθ | θ̃θθ)

=
∏K

k=1 pk(θθθk, | θ̃θθk, θθθ1, . . . , θθθk−1) where θθθ = (θθθ1, . . . , θθθK) is partitioned into K subvectors,

for 1 < K ≤ d. In this case, a vector of K ESSs, one for each subvector, may be

meaningful. An example is a normal-inverse-χ2 distribution where (θ1, θ2) = (σ2, µ), the

variance and mean of a normal sampling model, with p(θ1, θ2) = p1(σ
2)p2(µ | σ2) and σ2

∼ Inv-χ2(ν̃, σ̃2) and µ | σ2 ∼ N(µ̃, σ2/φ̃). Here K = d = 2 and the two subvectors of θθθ

are the single parameters σ2 and µ. We will discuss other examples in Sections 4 and 5.

To define the distance between p(θθθ | θ̃θθ) and qm(θθθ | θ̃θθ0,Ym) in Cases 1 and 2, the basic

idea is to find the sample size, m, that would be implied by normal approximations of

the prior p(θθθ) and the posterior qm(θθθ | θ̃θθ0,Ym). This led us to use the second derivatives

of the log densities to define the distance. The real validation and justification of our

definition, however, comes from comparing the resulting ESS values with the commonly

reported ESS in standard settings. We carry out these comparisons in Section 5.

Let θ̄θθ = Ep(θθθ) denote the prior mean under p(θθθ | θ̃θθ). We define

Dp,j(θθθ) = −∂2 log{p(θθθ | θ̃θθ)}
∂θ2

j

,

and

Dq,j(m,θθθ,Ym) = −∂2 log{qm(θθθ | θ̃θθ0,Ym)}
∂θ2

j

, j = 1, . . . , d .

Denote Dp,+(θθθ) =
∑d

j=1 Dp,j(θθθ) and Dq,+(m,θθθ) =
∑d

j=1

∫
Dq,j(m,θθθ,Ym) fm(Ym)dYm .

We define a distance between p(θθθ | θ̃θθ) and qm(θθθ | θ̃θθ0,Ym) for sample size m as the
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difference of the trace of the two information matrices,

δ(m, θ̄θθ, p, q0) =
∣∣Dp,+(θ̄θθ)−Dq,+(m, θ̄θθ)

∣∣ . (3)

That is, we define the distance in terms of the trace of the information matrix (2nd

derivative of the log density) of the prior p(θθθ | θ̃θθ), and the expected information matrix

of the posterior qm(θθθ | θ̃θθ0,Ym), where the expectation is with respect to the marginal

fm(Ym). When d = 1, since the ’+’ subscript is superfluous, we write Dp(θ̄θθ) and

Dq(m, θ̄θθ).

DEFINITION 1: The ESS of p(θθθ | θ̃θθ) with respect to the likelihood fm(Ym | θθθ) is the

integer m that minimizes the distance δ(m, θ̄θθ, p, q0).

Algorithm 1, below, will generalize this to allow non-integer-valued m. An essential

point is that the ESS is defined as a property of a prior and likelihood pair, so that,

for example, a given prior might have two different ESS values in the context of two

different likelihoods.

The definition of the distance (3) involves some arbitrary choices. We chose this

definition after an extensive empirical investigation (not shown) of alternative formula-

tions. Instead of evaluating the curvature at the prior mean, one could use the prior

mode. Similarly, one could marginalize θθθ with respect to the prior, average over Ym

with respect to fm(Ym | θθθ) rather than the marginal fm(Ym), or use the determinant

rather than the trace of the information matrix. One also could define δ(.) in terms

of Kullback-Liebler divergence, or variances. We investigated all of these alternatives

and evaluated the resulting ESS in each of several standard cases, and found that the

proposed distance (3) was best at matching the results that are commonly used as ESS

values.

For Case 3, a more general definition is required. A motivating example is the logistic
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regression model, logit{π(X , θθθ)} = β0 +β1X1 +β2X2 where d = 3, θθθ = (β0, β1, β2) and βj

∼ N(µ̃j , σ̃
2
j ) independently with θ̃θθ = (µ̃j , σ̃

2
j } for j = 0, 1, 2. In this case, the subvectors

of interest are θθθ1 = β0 and θθθ2 = (β1, β2), so two ESS values, m1 and m2, may be

computed. To accommodate Case 3, we generalize (3) by defining a set of K subvector-

specific distances. Let γk be the set of indices of the elements of θθθk, and denote Dk
p,+(θθθ)

=
∑

j∈γk
Dp,j(θθθ) and Dk

q,+(mk, θθθ) =
∑

j∈γk

∫
Dq,j(mk, θθθ,Ymk

)fmk
(Ymk

)dYmk
. For each

k = 1, · · · , K, we define the distance between pk(θθθk | θ̃θθk, θθθ1, . . . , θθθk−1) and qmk
(θθθk |

θ̃θθ0,k ,Ymk
, θθθ1, . . . , θθθk−1) to be

δk(mk, θ̄θθ, p, q0) =
∣∣Dk

p,+(θ̄θθ)−Dk
q,+(mk, θ̄θθ)

∣∣ . (4)

DEFINITION 2: Assume p(θθθ | θ̃θθ) as in Case 3. Let mk = arg min δk(m, θ̄θθ, p, q0).

We define (m1, . . . ,mK) to be the ESSs for the prior p(θθθ | θ̃θθ) with respect to the model

fm(Ym | θθθ) and the partition θθθ = (θθθ1, . . . , θθθK).

3. Computational Methods

Let θ̄θθ = (θ̄1, . . . , θ̄d) denote the prior mean vector. With the following algorithms, we

generalize Definitions 1 and 2 to allow non-integer ESS values.

Algorithm 1, for Cases 1 and 2: Let M be a positive integer chosen so that, initially,

it is reasonable to assume that m ≤ M .

Step 1. Specify q0(θθθ | θ̃θθ0).

Step 2. For each m = 0, . . . ,M , compute δ(m, θ̄θθ, p, q0).

Step 3. The ESS is the interpolated value of m minimizing δ(m, θ̄θθ, p, q0).

In practice, Step 2 is carried out either analytically or using the simulation-based nu-

merical approximation described in Section 3.2.
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Algorithm 2, for Case 3: For each k = 1, . . . , K, let Mk be a positive integer chosen

so that, initially, it is reasonable to assume that mk ≤ Mk.

Step 1. Specify q0(θθθ | θ̃θθ0) =
∏K

k=1 q0,k(θθθk | θ̃θθ0,k , θθθ1, . . . , θθθk−1).

Step 2. For each k = 1, . . . , K, and mk = 0, . . . ,Mk, compute δk(mk, θ̄θθ, p, q0).

Step 3. The ESS of θθθk is the interpolated value of mk minimizing δk(mk, θ̄θθ, p, q0).

If the hyperparameter θ̃θθ of p(θθθ | θ̃θθ) includes a degree of freedom (d.f.) parameter ν̃, as with

an inverse-χ2, inverse-gamma, inverse-Wishart, or t distribution, then the corresponding

hyperparameter of q0(θθθ | θ̃θθ0) is ν̃0 = ν̃min + ε, where ν̃min is the smallest integer that

ensures the second moments of θθθ ∼ q0(θθθ | θ̃θθ0) exist and ε > 0 is arbitrarily small. In such

cases, we add Dq,+(ν̃min, θ̄θθ)−Dq,+(0, θ̄θθ) to Dq,+(m, θ̄θθ) and add Dk
q,+(ν̃min, θ̄θθ)−Dk

q,+(0, θ̄θθ)

to Dk
q,+(mk, θ̄θθ) to ensure that ESS > ν̃min.

For each m = 1, · · · , M, when
∫

Dq,j(m, θ̄θθ,Ym)fm(Ym)dYm cannot be computed

analytically, we use the following simulation-based approximation. Given θ̄θθ = Ep(θθθ),

we first simulate Monte Carlo sample θθθ(1), . . . , θθθ(T ) from p(θθθ | θ̃θθ) for large T , e.g. T

= 100,000. For each t = 1, . . . , T , simulate Y
(t)
1 , . . . , Y

(t)
M from fM(YM | θθθ(t)). Use the

Monte Carlo average T−1
∑T

t=1 Dq,j(m, θ̄θθ,Y
(t)
m ) in place of

∫
Dq,j(m, θ̄θθ,Ym)fm(Ym)dYm .

For Case 3, the same method is used to evaluate Dk
q,+(mk, θ̄θθ) in (4).

For regression models of Y as a function of a u-dimensional predictor X, we extend

Definition 1 by augmenting the regression model with a probability distribution gm(Xm |

ξξξ) for the covariates and prior r(ξξξ | ξ̃ξξ), usually assuming independence, gm(Xm | ξξξ) =∏m
i=1 g(Xi | ξξξ). Then we define

fm(Ym) =

∫
fm(Ym | Xm , θθθ) gm(Xm | ξξξ) f (θθθ | θ̃θθ) r(ξξξ | ξ̃ξξ) dθθθ dξξξ.

In this case, we simulate θθθ(1), . . . , θθθ(T ) from p(θθθ | θ̃θθ) and ξξξ(1), . . . , ξξξ(T ) from r(ξξξ | ξ̃ξξ), then

simulate each X
(t)
1 , . . . , X

(t)
M from gM(XM | ξξξ(t)), and Y

(t)
i from f(Yi | θθθ(t), X

(t)
i ) for each
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i = 1, . . . ,M , to obtain (Y
(t)
1 , X

(t)
1 ), . . . , (Y

(t)
M , X

(t)
M ). Finally, we compute the Monte

Carlo average T−1
∑T

t=1 Dq,j(m, θ̄θθ,Y
(t)
m ,X

(t)
m ). For Case 3, the same method is used to

evaluate Dk
q,+(mk, θ̄θθ) in (4).

4. Guidelines for Application

Before illustrating how the above methods for computing ESS may be applied in par-

ticular cases, we provide general guidelines for using ESS values in some commonly

encountered settings of Bayesian inference.

1. Prior Elicitation. When eliciting a prior from an area expert, ESS values may be

provided as a readily interpretable form of feedback. The area expert may use this as

a basis to modify his/her judgments, if desired, and this process may be iterated. For

example, in the motivating example of Section 2, we would report the ESS values m1 =

547 and m2 = 756 to the investigator planning the study. If his/her prior were based

on earlier single agent trials with around 100 patients each, (s)he would be prompted to

revise the replies to the prior elicitation questions.

2. Formalizing Uninformative Priors. Often an investigator wishes to formalize vague

prior information. The ESS can be used to confirm that the chosen prior carries little

information, as desired. For example, in for the motivating example in section 2.1, the

reported ESS m3 = 0.01 for the interaction parameter confirms that this prior is vague.

3. Reviewing Others’ Analyses. When interpreting or formally reviewing a Bayesian data

analysis, the ESS of the analyst’s prior provides a tool for evaluating the reasonableness

of the analysis. In particular, if it is claimed that a vague or uninformative prior was

used, the ESS provides an objective index to evaluate this claim. If appropriate, one may

alert the analyst if a prior appears to be overly informative. Similarly, if an informative

prior based on historical data is used in the analysis, reporting the ESS enables the

reviewer to verify that the prior data is given appropriate weight.
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4. Sensitivity Analyses. In performing a conventional Bayesian sensitivity analysis in

which prior parameters are varied and corresponding posterior values of interest are

computed, the ESS of each prior may be computed to enhance interpretation of this

analysis. The ESS itself may be used as an index of prior informativeness in such a

sensitivity analysis.

5. Designing Outcome-Adaptive Experiments. When formulating a prior as part of a

Bayesian model to be used in a sequentially outcome-adaptive experiment, the ESS

may be used to calibrate the prior to ensure that the data, rather than the prior, will

dominate early decisions during the trial.

6. Reviewing Bayesian Designs. When interpreting or formally reviewing a Bayesian

design, such as that given in a clinical trial protocol, the ESS of the prior provides a

tool for determining the extent to which the prior may influence the design’s decisions.

Currently, an important reservation about using Bayesian inference in a regulatory en-

vironment, such as the planning of clinical trial protocols, is the difficulty of evaluating

and judging the appropriateness of prior distributions in complex probability models.

The ESS provides a useful tool to mitigate such concerns.

5. Validation with Standard Models

We validate the proposed definition of ESS by computing the implied sample sizes

in standard models (Table 2) for which commonly reported prior equivalent sample

sizes exist. Following Gelman et al. (2004), we denote Be(α, β), Bin(n, θ), Ga(α, β),

Exp(θ), N(µ, σ2), Inv-χ2(ν, s2) Dir(α1, . . . , αJ), Mn(n, θ1, . . . , θJ), and BeBin(n, α, β) for

the beta, binomial, gamma, exponential, normal, scaled inverse-χ2, Dirichlet, multino-

mial and beta-binomial distributions. The corresponding ε-information priors are given

in Table 1. For each model in Table 2, the reported ESS matches the obvious choice.

Example 1: Beta/Binomial Model. δ(m, θ̄θθ, p, q0) = {(α̃ − 1)θ̄−2 + (β̃ − 1)(1 − θ̄)−2}
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− {(α̃/c +
∑m

Y =0 Y fm(Ym) − 1)θ̄−2 + (β̃/c + m −
∑m

Y =0 Y fm(Ym) − 1)(1 − θ̄)−2},

where fm(Ym) = BeBin(n, α̃, β̃) and θ̄ = Ep(θ) = α̃/(α̃ + β̃). Figure 1 shows a plot of

δ(m, θ̄, p, q0) against m in the case θ̃θθ = (α̃, β̃) = (3,7). Using θ ∼ Be(3,7), the computed

ESS is 10, matching the commonly reported ESS in this case. Analogous plots (not

shown) in all other cases examined below are very similar in appearance to Figure 1.

Example 2: Gamma/Exponential Model. δ(m, θ̄, p, q0) = (α̃− 1)θ̄−2 − (α̃/c+m− 1)θ̄−2,

where θ̄ = α̃/β̃, and the ESS is found analytically to be α̃, as desired.

Example 3: Univariate Normal With Known Variance. For Y | θ ∼ N(θ, σ2) with σ2

known and prior θ | θ̃θθ ∼ N(µ̃, σ̃2), so that θ̃θθ = (µ̃, σ̃2), one may compute analyti-

cally Dp(θ) = −∂2log{p(θ | θ̃θθ)}/∂θ2 = 1/σ̃2 and, similarly, Dq(m, θ̄) = m/σ2. Thus,

δ(m, θ̄, p, q0) = |1/σ̃2 −m/σ2|, so the ESS = σ2/σ̃2, the ratio of the known variance

in the likelihood to the prior variance of θ. In applying this model to a clinical trial

setting where θ is the difference between two treatment effects, Spiegelhalter, Freedman

and Parmar (1994, section 3.1.2) propose assuming that σ̃2 = σ2/n0 to obtain a prior

that “... is equivalent to a normalized likelihood arising from a (hypothetical) trial of

n0 patients with an observed value µ̃ of the treatment difference statistic.” Thus, in this

case, the two methods for defining prior effective sample size agree.

Example 4: Inverse-χ2/Normal Model. We find analytically that Dp(θ) = −(σ2)−2(ν̃ +

2)/2 + (σ2)−3ν̃σ̃2, while
∫

Dq(m, θ̄,Ym)fm(Ym)dYm is obtained by simulation. As

explained in Section 3, the adjustment factor {Dq(4, θ̄) −Dq,(0, θ̄)} is added to Dq(m, θ̄).

For θ̃θθ = (ν̃, σ̃2) = (20,1), ESS = 20 = ν̃, as desired.

Example 5: Dirichlet/Multinomial Model. From Table 1, denote α̃αα = (α̃1, . . . , α̃J), θθθ =

(θ1, . . . , θJ) and S = (S1, . . . , SJ ) with Sj =
∑m

i=1 Yji. Compute Dq,j(m, θ) analytically,

as with the beta−binomial. For d = 3 and θ̃θθ = (10, 15, 25), ESS = 50 =
∑

α̃j, as

desired.

13



Example 6: Power Priors. Ibrahim and Chen (2000) propose a class of “power priors”

based on an initial prior p0(θθθ | c0), a likelihood L(θθθ | D0) of historical data D0, and a

scalar prior parameter a0. The power prior is p(θθθ | D0, a0) ∝ L(θθθ | D0)
a0p0(θθθ | c0), so

that a0 weights the historical data relative to the data that will be obtained in the future.

To see how one would compute the ESS of a power prior, consider the beta/binomial

model with a beta(1,1) initial prior and D0 consisting of 3 successes in 10 historical

trials. The power prior is p(θ | D0, a0) = p(θ | (3, 10), a0) ∝ {θ3(1− θ7)}a0θ(1− θ), and

it follows easily (Case 1) that ESS = a010 + 2. More generally, the ESS of p(θθθ | D0, a0)

is aoESS{L(θθθ | D0)} + ESS{p0(θθθ | c0)}, the weighting parameter times the ESS of the

historical data likelihood treated as a function of θθθ plus the ESS of the initial prior.

Hodges and Sargent (2001) derive a formula for the effective degrees of freedom

(EDF) of a richly parameterized model, and illustrate this for a balanced one-way normal

linear random effects model for Nn observations {Yij , i = 1, . . . , N, j = 1, . . . , n}, given

by the likelihood Yi1, · · ·Yin | θi, σ
2 ∼ iid N(θi, σ

2) for each i, and prior θ1, · · · , θN | µ̃, σ̃2

∼ iid N(µ̃, σ̃2). They show that the EDF for this model is ρ = (nN +φ)/(n+φ), where φ

= σ2/σ̃2, the ratio of the residual variance and the prior variance. Recall from Example

3 that φ is the ESS of the simple normal model with known variance. In the limiting

case with φ → ∞, i.e., all θi are equal, θi = µ, we find ρ = 1. In other words, for large

ESS and essentially only one group, Hodges and Sargent report ρ ≈ 1. At the other

extreme, for φ → 0, i.e., for small ESS and θi’s very different from each other, they

report ρ ≈ N . However, such comparisons should not be overinterpreted. EDF and ESS

are quite different summaries. Formally, the EDF is a function of the sample size n. In

contrast, ESS is not a function of n. Rather it reports an equivalent sample size for the

given model.

Using an information theoretic argument, Spiegelhalter, Best, Carlin and van der
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Linde et al. (2002) also derive a measure for the effective number of parameters in

complex models, such as generalized linear (mixed effects) models, pD, defined as the

difference between the posterior mean of the deviance and the deviance evaluated at

the posterior means of the parameters of interest. But, similar to the effective degrees

of freedom ρ, the nature of pD is different from the proposed ESS. Formally, pD is a

function of the data, while the ESS is not.

6. Application to Some Non-Standard Cases

The following examples show how ESS values may be computed in settings where no

commonly agreed upon ESS exists, using the numerical approximations described earlier

to obtain δ(m, θ̄θθ, p, q0).

Example 7: Logistic Regression. Thall and Lee (2003) use a logistic regression model to

determine a maximum tolerable dose in a phase I clinical trial. Each patient receives one

of six doses 100, 200, 300, 400, 500, 600 mg/m2, denoted by d1, . . . , d6, with standardized

doses X(z) = log(dz) − 6−1
∑6

l=1 log(dl). The outcome variable is the indicator Yi = 1

if a patient i suffers toxicity, 0 if not. A logistic model π(Xi, θθθ) = Pr(Yi = 1 | Xi, θθθ) =

logit−1{η(Xi , θθθ)} with η(Xi , θθθ) = µ + βXi is assumed, where logit−1(x) = ex/(1 + ex).

Hence d = 2, θθθ = (θ1, θ2) = (µ, β), and the likelihood for m patients is

fm(Ym | Xm , θθθ) =
m∏

i=1

π(Xi , θθθ)
Yi{1− π(Xi , θθθ)}1−Yi .

Thall and Lee (2003) obtained independent normal priors for µ and β, based on

elicited mean π(X,θθθ) for d = 200 and 500, and setting σ̃µ = σ̃β = 2 based on prelim-

inary sensitivy analyses, which yielded N(µ̃µ, σ̃
2
µ) = N(−0.1313, 22) and N(µ̃β, σ̃2

β) =

N(2.3980, 22). For this application, Algorithms 1 and 2 may be applied to compute one

ESS of p(θθθ | θ̃θθ) and two ESSs mµ and mβ of the priors for µ and β, as follows. For

Step 1, specify q0(θθθ | θ̃θθ0) = N(µ̃µ, cσ̃
2
µ) N(µ̃β, cσ̃2

β), with c = 10,000. Next, compute
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Dp,1(θθθ) = (σ̃2
µ)−1, Dp,2(θθθ) = (σ̃2

β)−1, Dq,1(m,θθθ,Ym ,Xm) =
∑m

i=1 π(Xi, θθθ){1− π(Xi, θθθ)},

and Dq,2(m,θθθ,Ym ,Xm) =
∑m

i=1 X2
i π(Xi, θθθ){1 − π(Xi, θθθ)}. Since Dq,1(m,θθθ,Ym ,Xm)

and Dq,2(m,θθθ,Ym ,Xm) depend on Xm but not on Ym , this simplifies the simulation

method given in Section 3.2. We assume a uniform distribution on the six doses for the

probability model g(Xi | ξξξ). Draw X
(t)
1 , . . . , X

(t)
M independently from {X(1), . . . , X(6)}

with probability 1/6 each, for t = 1, . . . , 100, 000. Then, using the plug-in vector θ̄θθ =

(µ̄, β̄) = (µ̃µ, µ̃β), compute δ(m, θ̄θθ, p, q0) for each m = 0, . . . ,M , δ1(mµ, θ̄θθ, p, q0) for each

mµ = 0, . . . ,M1, and δ2(mβ, θ̄θθ, p, q0) for each mβ = 0, . . . ,M2. As shown in Table 3, m

= 2.3, mµ = 1.4 and mβ =6.3.

Since the standardized doses Xi were defined to be centered at 0, one may interpret

mµ as the ESS for the prior on the average effect, and mβ as the ESS for the dose effect.

The prior indicates greater knowledge about the effects of the doses than about the

average response. Since m = 2.3, after enrolling 3 patients, the information from the

likelihood starts to dominate the prior, as desired.

As a sensitivity analysis, Table 3 summarizes corresponding results for σ̃2
µ = σ̃2

β =

0.52, 1.02, 3.02, and 5.02. As a basis for comparison, we also include the ESS at each

dose obtained by the crude method of equating the mean and variance of π(X(z), θθθ)

at each dose to the corresponding values for a beta, E(θ) = α̃/(α̃ + β̃) and Var(θ) =

{E(θ)( 1 − E(θ) )} /(α̃ + β̃ + 1), and solving for α̃ + β̃. We denote by m̄ the average of

the ESSs mX(1)
, . . . ,mX(6)

at the six doses, obtained in this way. The results indicate

that the crude method provides smaller estimates of the ESS for σ̃2 < 5.02.

It also is useful to examine how the ESS in this example would vary with a0 if one

wished to re-weight the prior by replacing it with a power prior {p(θθθ | θ̃θθ)}a0 . Identifying

p(θθθ | θ̃θθ) with L(θθθ | D0) in the set-up of Ibrahim and Chen (2000), and considering the

additional ESS of an initial prior to be negligible, the ESS may be computed by applying
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Algorithms 1 and 2 and setting the ε-information prior to be {q0(θθθ | θ̃θθ0)}a0 . This yields

the values summarized in Table 4. These values illustrate, as in Example 6 given earlier,

that the power a0 acts essentially as a multiplier in the ESS domain, aside from the

additive ESS of an initial prior.

Example 8: Two-Agent Dose-Response Model: The next example is that described

earlier in Section 2, a design to find acceptable dose combinations of two cytotoxic

agents used together in a phase I trial. Recall the definition of π(X,θθθ) given in equation

(1). The likelihood for m patients with toxicity indicators Ym = (Y1, . . . , Ym) and dose

pairs Xm = (X1, . . . , Xm) is

f(Ym | Xm , θθθ) =
m∏

i=1

π(Xi , θθθ)
Yi{1− π(Xi , θθθ)}1−Yi . (5)

Based on (5) and the gamma priors given in Section 2, for this case, Algorithm 1 is used

to compute one ESS, m, of p(θθθ | θ̃θθ). The three ESSs m1, m2 and m3 for θθθ1, θθθ2 and θθθ3

can be computed using Algorithm 2. In Step 1, with c = 10,000, q0(θθθ | θ̃θθ0) =
∏3

k=1

Ga(ãk ,1/c, ãk ,2/c) Ga(b̃k ,1/c, b̃k ,2/c). In Step 2, we computed Dp,1(θθθ) = (ã1,1 − 1)α−2
1 ,

. . . , Dp,6(θθθ) = (b̃3,1− 1)β−2
3 analytically. The numerical methods given in Section 3 give

δk(mk, θ̄θθ, p, q0) for k = 1, 2, 3, yielding the values m = 1.5, m1 = 547.3, m2 = 756.8, and

m3 = 0.01, as reported earlier.

Example 9: Linear Regression. The last example is a linear regression model used to

analyze a small data set (Y1, X1), · · · , (Y10, X10) where Yi is December rainfall and Xi is

November rainfall for ten consecutive years i = 1, . . . , 10 (Congdon, 2001). The sampling

model is Yi | Xi, θθθ ∼ N(µi, 1/τ) with µi = α + β(Xi − X̄ ) and τ denoting the precision

where X̄ is the sample average of the original predictor, so θθθ = (θ1, θ2, θ3) = (α, β, τ). Let

N(x; m, s) indicate that the random variable x is normally distributed with moments

(m, s). In Congdon (2001), an independent prior p(θθθ) = p1(θ1, θ2 | θ̃θθ1, θ̃θθ2) · p2(θ3 | θ̃θθ3)
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is assumed, with p1(θ1, θ2) = N(θ1; µ̃α, σ̃2
α) · N(θ2; µ̃β, σ̃2

β) and p2 = Ga(ã, b̃). Congdon

(2001) uses µ̃α = µ̃β = 0, σ̃2
α = σ̃2

β = 1000, ã = b̃ = 0.001. Algorithm 2 was used

to compute two ESSs: m1 for p1(θ1, θ2 | θ̃θθ1, θ̃θθ2) and m2 of p2(θ3 | θ̃θθ3). The plug-

in vector is θ̄θθ = Ep(θθθ) = (µ̃α, µ̃β, ã/b̃). In Step 1, specify q0(θθθ | θ̃θθ0) = q0,1(θ1 | θ̃θθ0,1)

q0,1(θ2 | θ̃θθ0,2) q0,2(θ3 | θ̃θθ0,3)= N(µ̃α, cσ̃2
α) N(µ̃β, cσ̃2

β) Ga(ã/c, b̃/c), with c = 10,000. In

Step 2, compute analytically Dp,1(θθθ) = (σ̃2
α)−1, Dp,2(θθθ) = (σ̃2

β)−1, Dp,3(θθθ) = (ã− 1)τ−2,

Dq,1(m1, θθθ,Ym1 ,Xm1) = (cσ̃2
α)−1 + τm1, and Dq,3(m2, θθθ,Ym2 ,Xm2) = (ã/c − 1)τ−2 +

m2τ
−2/2. For this case, only Dq,2(m1, θθθ,Ym1 ,Xm1) = (cσ̃2

β)−1 + τ
∑10

i=1 X 2
i depends on

X. Following the methods in Section 3, we simulated X
(t)
1 , . . . ,X

(t)
M1
∼ i.i.d. N(0, 1) for

t = 1, . . . , 100, 000 to obtain m1 = 0.001 and m2 = 0.002. We interpret the reported

ESSs as evidence of very vague priors. As a sensitivity analysis, we also computed the

ESSs of two alternative priors p′(θθθ | θ̃θθ) = N(0, 100) N(0, 10) Ga(1, 1) and p′′(θθθ | θ̃θθ) =

N(0, 1) N(0, 1) Ga(2, 2), which gave m1 = 0.06 and m2 = 2.0 for p′(θθθ | θ̃θθ), and m1 =

1.0 and m2 = 4.0 for p′′(θθθ | θ̃θθ).

7. Discussion

The methods proposed in this paper are useful in Bayesian analysis, particularly in

settings with elicited priors or where the data consist of a relatively small number of

observations. By computing ESSs, one may avoid the use of an overly informative prior

in the sense that inference is dominated by the prior rather than the data. As noted in

our guidelines for application, other uses of ESS values include interpreting or review-

ing others’ Bayesian analyses or designs, using the ESS values themselves to perform

sensitivity analyses in the prior’s informativeness, and calibrating the parameters of

outcome-adaptive Bayesian designs.

Extension of our methods to accommodate hierarchical models is not straightfor-

ward. This is a potentially important area for future research, since it would be useful
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to compute ESS values in such settings. Other potential applications involving more

complicated problems include mixture priors synthesizing multiple component priors, or

the class of ε-contaminated priors where ε reflects the amount of uncertainty in the prior

information (Greenhouse and Wasserman, 1995).
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Table 1. Examples of ε-information prior distributions. The hyperparameters c, c1, and

c2 are very large constants chosen to inflate the variances of the elements of θθθ under q0.

d Distribution p(θθθ | θ̃θθ) q0(θθθ | θ̃θθ0)

1 Beta Be(α̃, β̃) Be(α̃/c, β̃/c)

1 Gamma Ga(α̃, β̃) Ga(α̃/c, β̃/c)

1 Univariate normal N(µ̃, σ̃2) N(µ̃, cσ̃2)

with known variance

1 Scaled inverse-χ2 Inv-χ2(ν̃, σ̃2) Inv-χ2 (4 + c−1, ν̃σ̃2/2(ν̃ − 2))

2 Normal-inverse-χ2 N(µ̃, σ̃2/φ̃)∗Inv-χ2(ν̃, σ̃2) N(µ̃, cσ̃2/φ̃)∗

Inv-χ2 (4 + c−1, ν̃σ̃2/2(ν̃ − 2))

3 Dirichlet Dir(α̃1, α̃2, α̃3) Dir(α̃1/c, α̃2/c, α̃3/c)

3 Multivariate normal MVN (µ̃1, µ̃2, σ̃
2
1, σ̃

2
2, σ̃12) MVN (µ̃1, µ̃2, c

2
1σ̃

2
1, c

2
2σ̃

2
2, c1c2σ̃12)

21



Table 2. Prior, likelihood and corresponding posterior qm with respect to the ε-information

prior q0, and traditionally reported prior effective sample size, ESS, for some common

models. In line three, we denote s2 =
∑m

i=1(Yi − ν̃0)
2.

p(θθθ | θ̃θθ) f(Ym | θθθ) qm(θθθ |θ̃θθ,Ym) ESS

Be(α̃, β̃) Bin(n, θ) Be(c−1α̃ + Y, c−1β̃ + m− Y ) α̃ + β̃

Ga(α̃, β̃) Exp(θ) Ga(c−1α̃ + m, c−1β̃ +
∑

Yi) α̃

Inv-χ2(ν̃, σ̃2) N(0, σ2) Inv-χ2(ν̃0 + m, ν̃0σ̃2+s2

ν̃0+m
) ν̃

Dir(α̃αα) Mn(n, θθθ) Dir(c−1α̃αα + S)
∑

α̃j
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Table 3. Comparison of ESSs computed using the proposed method and the crude

method that matches first and second moments to a beta, for the logistic regression

model, π(Xi, θθθ) = Pr(Yi = 1 | Xi, θθθ) = exp (µ + βXi) / {1 + exp(µ + βXi)}, where the

priors are µ ∼ N(µ̃µ, σ̃
2
µ) with µ̃µ = −0.1313 and β ∼ N(µ̃β, σ̃2

β) with µ̃β = 2.3980.

Proposed method Crude method

σ̃2
µ = σ̃2

β m mµ mβ m̄∗ mX(1)
mX(2)

mX(3)
mX(4)

mX(5)
mX(6)

0.52 37.1 22.7 101.3 18.2 23.5 18.2 17.0 16.6 16.8 17.3

1.02 9.3 5.7 25.3 4.5 4.1 4.7 4.8 4.6 4.4 4.2

2.02 2.3 1.4 6.3 1.3 1.0 1.4 1.5 1.5 1.3 1.2

3.02 1.0 0.6 2.8 0.7 0.5 0.8 0.8 0.8 0.7 0.7

5.02 0.4 0.2 1.0 0.4 0.3 0.4 0.4 0.4 0.4 0.3

∗ m̄ = 6−1
∑6

z=1 mX(z)
.
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Table 4. ESSs for power priors {p(θθθ | θ̃θθ)}a0 based on the prior {p(θθθ | θ̃θθ)} in the logistic

regression example, using hyperparameter values µ̃µ = −0.1313 and µ̃β = 2.3980, as in

Table 3, with σ̃2
µ = σ̃2

β = 4.

a0 m mµ mβ

0.5 1.2 0.7 3.2

1 2.3 1.4 6.3

2 4.6 2.8 12.6

4 9.3 5.7 25.3
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Figure Legends

Figure 1. Plot of δ(m, θ̄, p, q0) against m for the beta/binomial model with θ̃θθ = (α̃, β̃) =

(3, 7).
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