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Efficient MCMC Schemes for
Robust Model Extensions using
Encompassing Dirichlet
Process Mixture Models

Steven MacEachern and Peter Miiller

ABSTRACT We propose that one consider sensitivity analysis by embed-
ding standard parametric models in model extensions defined by replacing
a parametric probability model with a nonparametric extension. The non-
parametric model could replace the entire probability model, or some level
of a hierarchical model. Specifically, we define nonparametric extensions of
a parametric probability model using Dirichlet process (DP) priors. Similar
approaches have been used in the literature to implement formal model fit
diagnostics (Carota, Parmigiani and Polson, 1996).

In this paper we discuss at an operational level how such extensions can be
implemented. Assuming that inference in the original parametric model is
implemented by Markov chain Monte Carlo (MCMC) simulation, we show
how minimal additional code can turn the same program into an imple-
mentation of MCMC in the larger encompassing model, allowing formal
sensitivity analysis with respect to prior and likelihood assumptions. If the
base measure of the DP is assumed conjugate to the appropriate component
of the original probablity model, then implementation is straightforward.
The main focus of this paper is to discuss general strategies allowing im-
plementation of models without this conjugacy.

1 Introduction

We propose that one consider sensitivity analysis by embedding standard
parametric models in nonparametric extensions. We use random measures
with DP priors to define these encompassing nonparametric extensions.
We present a framework which makes the implementation of posterior in-
ference in such extensions always possible with minimum additional effort,
essentially requiring only one additional multinomial sampling step in a
Markov chain Monte Carlo (MCMC) posterior simulation. This is straight-
forward for models which are conjugate (conjugate in a sense which we
shall make formal). In models without such conjugate structure, however,
computational problems render posterior simulation difficult, and hinder
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the routine application of such nonparametric model augmentations. In
this paper we present a scheme which overcomes this hurdle and allows the
implementation of robust nonparametric model extensions with equal ease
in nonconjugate models.

In this chapter we shall use models based on Dirichlet process prior distri-
butions (Ferguson, 1973; Antoniak, 1974). Many alternative approaches are
possible for the encompassing nonparametric model. Among the many mod-
els proposed for nonparametric Bayesian modelling in the recent literature
are Polya trees (Lavine 1992, 1994), Gaussian processes (O’Hagan, 1992;
Angers and Delampady, 1992), beta processes (Hjort, 1990), beta-Stacy
processes (Walker and Muliere, 1997), extended gamma processes (Dyk-
stra and Laud, 1981), random Bernstein polynomials (Petrone, 1999a,b).
See Walker et al. (1999) for a recent review of these alternative forms of
nonparametric Bayesian modelling.

Consider a generic Bayes model for a collection of n nominally identical
problems with likelihood

iid ,

Yi Npe,u(yi)v 1= ]-7 1, (1)
and prior 8 ~ Go(f|v) and v ~ H(v). In anticipation of the later gen-
eralization the parameter vector is partitioned into (6, v), where 6 is the
subvector of parameters with respect to which the model extension will
be defined below. Model (1) could, for example, be a normal distribution
with unknown location # and variance v. Inference from such a model is
extremely restrictive in that a single parameter  indexes the conditional
distribution for each and every y;. Estimation of an observation specific
parameter — say #;, representing the mean of the conditional distribution
for y; in our simple example — is identical for every ¢ since there is only a
single 6. At the far extreme from model (1), we may write

iid .
Yi w Poi,v; (yi)7 i=1,...,n, (2)

and prior 6; ~ Go(0;|v;) and v; ~ H(v;), creating n separate problems.
Since the joint distribution on the n collections of parameters, 8;,v;, y;,
form a set of n independent distributions, inference is made independently
in the n cases. This model does not permit any pooling of information
across the n problems, leading to potentially poor inference.

We consider generalizations of (1) to

yi / Po.(yi) dG(B), G ~ DP (M Go(-|v)) . 3)

The original sampling model pg , is replaced by a mixture over such models,
with a mixing measure G. For example, we might replace a simple normal
sampling model by a location mixture of normals. As a probability model
for the random mixing measure we assume a Dirichlet process (DP) with
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base measure MGy, where Gy is a probability measure. See, for example,
Antoniak (1974) or Ferguson (1973) for a definition and discussion of DP’s.
The model contains the original model (1) as a special case when G is
a point mass. The DP prior puts non-zero prior probability on G being
arbitrarily close to such a single point mass, and implies that the point
mass be a sample from Go. The base measure of the DP need not be the
same as the prior in the original parametric model, but this is a natural
choice since it implies the same marginal distribution p(y;) as under (1).
The model provides a nice alternative to (2), allowing us to pool information
obtained from the entire collection of problems to make better inference for
each individual problem.

The perspective of providing a flexible, nonparametric version of the
parametric Bayes model motivated much early work in the area (see, for
example, Susarla and van Ryzin, 1976; Kuo, 1983; MacEachern, 1988; Es-
cobar, 1988). The flexibility of the nonparametric analysis both allows one
to conduct a formal sensitivity analysis by comparing the fit of the para-
metric model and its elaboration and also provides a fresh look at the data
with what can alternatively be considered a larger model.

For the sake of presentation it is convenient to consider the case of a
parametric hierarchical model which is to be elaborated separately from
the case of non-hierarchical models. To wit,

Yi “ Po;.0 (Y1),

6, < Go(0;|v), (4)

with prior v ~ H(v). The model is generalized by replacing the prior Gg
with a random distribution G:

yi * po. . (vi)
6; X G(6;), G~ DP(MGo(-[v)). (5)

As can easily be seen by marginalizing over 6; in (5) model (5) is identical
to (3). Following traditional terminology we refer to (5) as the mixture of
Dirichlet process model (MDP). Given a MDP model it is often a matter
of perspective whether it is seen as a generalization of a basic model (1)
or a hierararchical model (4), although we believe the latter is the more
common view in the literature. See Escobar and West (1998) for a recent
summary of this perspective. Below, in examples (i) through (xii), we give
examples of both.

In the rest of this chapter we will argue that Markov chain Monte Carlo
(MCMC) posterior simulation in model (5), and thus in (3), can be easily
implemented by adding just one additional (multinomial) sampling step to
an MCMC scheme for the original models (4) or (1). Posterior inference
under the augmented model (3) or (5) provides a basis for investigating
model sensitivity and robustness.
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2 Survey of MDP models

A number of models in the recent literature fit into the framework of (5).
Recent versions of these models, and new developments include those that
follow. When likelihoods do not depend on certain parameters, the corre-
sponding subscripts have been omitted. Most of these applications include
priors on v which have been omitted. Using the notation of (1) and (4), for
each application we point out the corresponding Gy and parameter 6 or 6;,
respectively. Depending on what we think is the more natural perspective,
we write pg, as in (1), or pg,, ., asin (4). We use N(x;m, S) to indicate that
the random variable z follows a normal distribution with mean and vari-
ance (m, S). Also, we use Bin(z; n,0), W(z; v, A), Ga(z; a,b), Exp(z; \),
U(x;a,b), Dir(z; ) and Be(x; a,b) to denote a binomial, Wishart, gamma,
exponential, uniform, Dirichlet and beta distribution, respectively. Our no-
tation ignores distinctions between random variables and their realizations.

(i) Nonparametric regression: Miiller, Erkanli and West (1996) use
0i = (wi, Ti) and py, s, (i) = N (yi; pi, 2)
where Go (i, X) = N(u;a, B) W (X715, 5);
(i) Density estimation: West, Miiller, and Escobar (1994) have
b5 = (1, Z4), Ppi,zi (Ys) = N (Y35 i )
and Go(u, %) = N(u;a,B) W(EYs,5);
Gasparini’s (1993) model can be reformulated as an MDP model with
po.v(yi) = U(y; 0 — v,0; +v)
and Go(0) a discrete measure on {a,a + 2v,a +4v,... };
(iii) Estimation of a monotone density. Brunner (1995) has
po; (yi) = U(y; 0,65),

where Gy(f) is an arbitrary distribution on the positive half-line.
Brunner and Lo (1989) use a similar model for estimation of a sym-
metric, unimodal density.

(iv) Hierarchical modelling: Escobar and West (1995) have
0i = (i, i)y Pus,oi(¥i) = N(ys; i, 04)
and Go(p,0) = Ga(072%;5/2,5/2) N(u;m,70?).
MacEachern (1994) uses py, (ys) = N(yi;60;,02).

Liu (1996) proceeds from (1), the non-hierarchical model, and uses
po(yi) = Bin(n;, 0), where Go(6) = Be(a, b).
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(v) Fixed and random effects modelling: Bush and MacEachern (1996)
have

Po; A (Yi) = N(ys; Nw; + 0;,07)

where Go(f) = N(m,0?) and z; is a vector of covariates for observa-
tion ¢. Malec and Miiller (1999) use a similar random effects model
in the context of small area estimation.

(vi) Contingency tables: Quintana (1998) has
i = (pi1,--- ,pa) and py,(n;) = Multin(ni, p;),
with Go(p) = Dir(p; \);

(vii) Longitudinal data models: Miiller and Rosner (1997) and Kleinman
and Ibrahim (1998) use for patient-specific random effects z;:

Pux(2i) = N(zi5 1, %), Go(p) = N(m, S).

(viii) Estimating possibly non-standard link functions: Erkanli, Stang],
and Miiller (1993).

o Oifzi<0,
Yi= 1if % >0,

po(2;) = N(zi;11,1), and Go(u) = N(p;m, 72).

(ix) Censored data: Doss’ (1991) model for survival data and one of the
proposed models in Gelfand and Kuo (1991) for dose-response data
can be rewritten as:

(i) = 0 with prob. 1 if 0; > z;,
Po:\¥i) = 1 1 with prob. 1 if 8; < x5,

for those data values that are right censored. Left and interval cen-
sored data values have similarly defined likelihoods. Uncensored ob-
servations are absorbed into the base measure. Doss uses Go(f) =
Exp (). while Gelfand and Kuo take Go(#) = N(0; u, 0?).

(x) Survival analysis with covariates: Kuo and Mallick (1997) use the
accelerated failure time model where

Pui,oi,310g T) = N(log Tj; pi — x4, 03)

for failure times T;, and — in one example — Go(u, o) = Ezp(1) do.1(0),
where §,(+) is a point mass at z. Alternatively they consider a similar
DP mixture on v; = T; exp(x;3) instead of w; = logT; + f'z;.
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(xi) Generalized linear models: Mukhopadhyay and Gelfand (1997) use

po.5(yi) = f(yiln = 0 + 2;)
where f(y|n) is a generalized linear model with linear predictor 7.

(xii) Errors in variables models: Miiller and Roeder (1997) use for the
joint distribution of the missing covariate z; and observed proxy w;:

pu,E(wmwi) = N(wmwi; NaE)a Go(ﬂ) = N(mvs)‘

Other related models are used in Lavine and Mockus (1995), Kuo and
Smith (1992) and Newton, Czado and Chappell (1996) Numerous other au-
thors are currently working with models that fit into this MDP framework.

3 Gibbs Sampling in Conjugate MDP Models

We briefly review Markov chain Monte Carlo schemes currently applied to
estimate MDP models. Estimation of the MDP model (5) can be efficiently
implemented by a Gibbs sampling scheme if pg , and Gy are conjugate (cf.
Escobar and West, 1995, MacEachern, 1994, West, Miiller and Escobar,
1994, Bush and MacEachern, 1996). In MacEachern and Miiller (1998),
we define a model augmentation and outline a Markov chain Monte Carlo
implementation which allows the use of nonconjugate pairs pg,, and Go.
The focus is on discussing the conceptual framework.

The next two sections summarize the discussion in MacEachern and
Miiller (1998) which is relevant for a practical implementation of a Gibbs
sampling algorithm. It has the added benefit of providing an explicit de-
scription of the “complete model” algorithm which was trimmed from the
published version of that manuscript. Building on this general discussion,
we give specific Gibbs sampler algorithms suitable for a practical imple-
mentation.

A key feature of the DP is the almost sure discreteness of the random
measure G which gives positive probability to some of the ;s being equal.
When the base measure Gg is continuous with probability 1, the 6;’s are
equal only due to the discreteness inherent in the Dirichlet process, and not
to discreteness of Gy. In this case, write {67,...,6;} for the set of k <n
distinct elements in {6y, ... ,0,}. Thus @ is partitioned into k sets. Call this
partitioning a configuration, and let s; = j iff §; = 67 denote configuration
indicators. Also let n; be the number of s; equal to j, i.e., the size of the
Jj-th element of the partition (also called the jth cluster).

A Gibbs sampling scheme to estimate MDP models is described by the
following conditional distributions.
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(i) Resampling s; given all other parameters:

We marginalize over 6; and sample s; from

Pr(si = jl0_s,5_i,v,y) oc 4 9 po;.(4:) J=Lk

(54 .7| i S_ iV, Y) {M fpa,u(yi) dGo(0) j =k +1 (6)
Here, 6_; denotes the vector (01,...,0; 1,0;¢1,...,6,), n; denotes
the size of the j-th cluster with 6; removed from consideration (i.e.,
ng, = ns; —1 while for other j, n; = n;), and k~ denotes the number
of clusters with 6; removed from consideration. If n, = 0, we relabel
the remaining clusters j =1,... , k- =k — 1.

After sampling s;, redefine k accordingly, i.e., set k =k~ if s; < k™,
andk=k  +1ifs; =k +1.

(ii) Resampling 67 is straightforward. The posterior p(67|s,v,y) is the
same as in the simple Bayes model (4) with ¢ going over all indices
with s; = 5:

Yi Npo;,u(yz')a 9; ~ G0(9;|V)

for all ¢ such that s; = j.

(i) Resampling M: If one wishes to express uncertainty about the total
mass parameter, it can be included in the parameter vector and re-
sampled in the MCMC simulation. West (1992) shows that if M is
given a Ga(a,b) hyperprior, it can be resampled by introducing an
additional latent variable z with p(z|k, M) = Be(M + 1,n) and

p(M|z, k) =
m Ga(a+k,b—log(x))+(1—7)Ga(a+k—1,b—log(x)),

where 7/(1 —7) = (a + k — 1) /n(b — log(z)). Alternatively, uncer-
tainty about the mass parameter can be expressed and then elim-
inated from the sampling scheme through a preintegration, as de-
scribed in MacEachern (1998).

(iv) Resampling v given all other parameters: The portion of the model
involving v is a conventional parametric model. Hence, conditioning
on all other parameters leaves a standard Bayes model. Often, this
will be of conjugate form and a standard generation will suffice.

Only step (i) and, if included, step (iii) go beyond the MCMC for the
original parametric model. Step (i) is a multinomial draw and Step (iii) is
a gamma and a beta random variate generation. Steps (ii) and (iv) might
require complicated posterior simulation, depending on the application.
These steps remain almost unchanged.
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4 Novel Algorithms for Non-conjugate MDP
Models

The Gibbs sampler described in Section 3 is practicable only if py, and
Go(f|v) are conjugate in # allowing analytic evaluation of ¢g = Pr(s; =
k~+1]...) in equation (6). In many applications, however, a nonconjugate
setup is required. West, Miiller, and Escobar (1994) present an algorithm
for nonconjugate MDP models using an approximate evaluation of ¢o. In
MacEachern and Miiller (1998), we propose a general framework which
allows nonconjugate pairs Go and pg,. The scheme is based on a model
augmentation introducing latent variables, {6}, .. ,0;}, for up ton pos-
sible cluster locations. At any time, n — k of the clusters are empty, i.e.
n; = 0 for these j. For a detailed definition and discussion we refer to
MacEachern and Miiller (1998). Here we build on the conceptual frame-
work described there to formulate a practical implementation of a Gibbs
sampling scheme for continous base measures Gp.

Alternative approaches for MCMC in nonconjugate models are described
in Neal (1998) and Green and Richardson (1998) and in Walker and Damien
(1998) and MacEachern (1998) for one-dimensional distributions. Neal (1998)
proposes alternative algorithms using Metropolis-Hastings type moves to
propose new configuration indicators s;. Similar to Neal (1998), Green and
Richardson (1998) exploit the relationship of the DP mixture model with a
dirichlet /multinomial allocation model and propose an algorithm based on
split/merge moves. Walker and Damien (1998) use the auxiliary variable
technique introduced in Damien, Wakefield and Walker (1998), essentially
avoiding evaluation of the integral in (6) by introducing a uniform latent
variable u with p(u;|6;) ~ U[O0, pg, . (y;)]- MacEachern (1998) suggests the
use of adaptive rejection techniques for the special case of log-concavity in
the complete conditional posterior distribution for 6;.

We define two alternative algorithms, based on the “no gaps” model and
the “complete model” defined in MacEachern and Miiller (1998). Choice
of the algorithm depends on the particular application. As a guideline, if k&
is typically much smaller than n, and n is large, then we recommend the
“no gaps” algorithm. In other nonconjugate situations, we recommend the
complete model.

4.1 No Gaps Algorithm

Application of the “no gaps” model results in the following changes of the
Gibbs sampler steps (i) through (v) described in Section 3:

(") If ng, > 1, then resample s; from

; n; posw(Ys) j=1,... k"
Pr(si = jl0*,s_i,v,y) {50 ‘ 3
Z z T por_ (i) J=k" +1.

(7)
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Here, k£~ and ny denote the number of distinct valuesin {6y,... ,6;_1,
Oit1, ... ,0,} and the number of observations in cluster j after re-
moving observation %, respectively.

If ng, = 1, then with probability (k — 1)/k leave s; unchanged. With
probability 1/k, resample s; from (8).

If a cluster j with n; = 1 is removed by resampling s; then switch
the labels of clusters 7 and k and decrement k by 1. But keep the old
value of 6 recorded as 6y ;.

After repeating step (i’) for ¢ = 1,...,n to resample all indicators s;,
marginalize over 0 ,,... 6, by simply dropping them from the simula-
tion. Steps (ii), (iii) and (iv) are executed conditioning on 67, ... ,6; only.
Before returning to step (i’) in the next iteration, augment the 6* vector
again by sampling 6} ,,,...,0; from Go(6;|v). Of course, this could be
done when and as 0} is needed in step (') only, i.e., 67, j =k +1,... ,n
need not be actually generated and kept in memory until they are needed
in step (1").

4.2 The Complete Model Algorithm

(i”) The complete conditional posterior for resampling s; is given by

ny porw(yi)  J=1,....k"

L ®)
M ppu(yi) G=k +1,....n

PT'(Si :jw*as—ial/’y) &8 {

where £~ and n; are defined as before.

Again, after step (i”) update k and relabel the clusters such that all
“empty” clusters (with n; = 0) have higher indices than the “non-
empty” clusters (with n; > 0).

After completing step (i”) for i = 1,... ,n, marginalize over 6} ,,... ,6;
by dropping them from the simulation and execute steps (ii) through (iv)
conditioning on 67, ... ,0; only. Before returning to step (i”) augment the
6" vector again by generating 07 ~ Go(07|v), j =k +1,... ,n.

5 Non-identifiability of the algorithms

The primitive notion of identifiability is easily described. An identifiable
model has the property that, for every point in the parameter space, a
different distribution is implied for the data that are to be collected in an
experiment. Unfortunately, this notion becomes a bit fuzzy in the hierar-
chical Bayesian model, as just what is considered a parameter is open to
several interpretations. Since several different parameterizations of a model,
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some of which may even be nested in others, can be considered identifiable,
it is difficult to write a concise discussion of identifiability and its impact
on fitting nonparametric Bayesian models. Nevertheless, the issue is impor-
tant enough for fitting these models that we provide a brief discussion of
the issue here.

We stress that identifiability is often important for interpretation of an
analysis, and that the question can appear in subtle forms in nonparamet-
ric Bayesian analysis. Newton et al. (1996) create a model so that a set
of parameters that are useful for interpretation are identifiable and also
explicitly appear in their model. Green and Richardson (1997) provide a
focused treatment of identifiability in the context of finite mixture models
of varying dimension. In general, the interpretation of a model is often tied
to a particular parameterization at an intuitive level if not in mathemati-
cal terms. As an example, the two distinct routes to creation of the MDP
model lead to different identifiable parameterizations of the model. While
the eventual use of the model may follow from either generalization, for
computational purposes, we need only ensure that the strategy used to fit
the models allows us to make inference under either parameterization.

First, an example, to illustrate the variety of ways in which one can term
models as identifiable or not in the context of the MDP model. The pa-
rameter for model (3) or (5) can be considered either G, or (61,... ,6p),
or (G,01,...,6,). Under relatively weak conditions on the likelihood, the
first parameterization leads to a model that is identifiable in the sense that
the joint distribution on y differs for each differing G. This parameteriza-
tion is most naturally thought of as the generalization of model (3). The
second model is identifiable in that the distribution for y differs for each
differing vector 6. This parameterization is most naturally thought of as
the generalization of model (5). The third model only becomes identifiable
when one steps outside of the current experiment, as when performing a
predictive analysis. The joint distribution of the data collected from the
current experiment and a future observation, say y,+1 which depends on
0p+1 with 6,41 ~ G, depends both on G and on 6y, ... ,6,.

In terms of computation, the algorithms which we have just described
facilitate inference under any of the three parameterizations given above
(see the next section for the treatment of predictive inference relevant to
the third parameterization). At any stage in the Gibbs sampler, the stored
parameters — the vector s and the vector 8* — enable us to reconstruct
the entire vector 6. Consequently, inference about the individual #; can
be performed on the basis of the standard MCMC formulas. This handles
inference for the second parameterization given above.

Inference for the first parameterization follows from the distribution of G
given 6. Recalling the early result from Ferguson (1973), we know that the
distribution of G|6 follows a Dirichlet process with parameter a4 Y7_, dp,.
Subsequent inference about functionals against G' can be made with any of
the many varied tricks that have been described in the literature. The two
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main approaches for functionals that do not have tidy, closed form expres-
sions are to either pin down the random G at a collection of sites (the joint
distribution of G(z1),...,G(x,) for z1 < ..., x, follows from a Dirichlet
distribution on the increments between successive values of the distribution
function) or to approximate the countably infinite discrete distribution by
a finite discrete distribution, perhaps of arbitrary size. The distribution on
the finite approximation follows from Sethuraman’s (1994) representation
of the Dirichlet process and the rule for determining the (possibly random)
number of components in the finite mixture. See, in particular, Tardella and
Muliere (1998) for the e-Dirichlet process and Gelfand and Kottas (1999)
for the first sort of approximation. Guglielmi (1998) provides a means for
calculating what are effectively exact values for functionals of Dirichlet
processes.

The computational algorithms described in the preceeding section rely
on an additional non-identifiability in terms of the model that is written out
for simulation. Instead of describing the value of the parameters 6,,...,6,
at any stage of the algorithm directly in terms of the 6’s, a latent struc-
ture is introduced. The vector (s,0*) contains all information needed to
reconstruct the vector @ through the relation 6; = 0.. There will be many
vectors (s, 6*) that result in the same value for the vector §. We term these
models non-identifiable because for any inference made from the posterior
distribution for G and 6, the inference will not depend on the particular
(s,6*) which produced this €, G pair. The point that we wish to emphasize
is that the model devised for computational purposes provides a finer scale
of latent structure than does a model (3) or (5) elaboration.

The no-gaps algorithm and the complete model algorithm result from
particular models for the latent structure. Each grouping of the 8; into
clusters corresponds to several vectors s. We have deliberately created
non-identifiable models in order to improve the mixing/convergence of the
Markov chain used to fit the models. In particular, the models are created
by first writing an identifiable version of the model that leads to a 1-1 rela-
tionship between s and the grouping of the #;. This identifiable version of
the model is then symmetrized by creating many labellings that correspond
to that particular grouping of the #; and by apportioning the probability
assigned to that grouping to each of the possible labellings.

For the no-gaps model, symmetrization proceeds by first labelling the,
say k, groups 1,...,k. Next, all permutations of the labels 1,... ,k are
considered for the group names. Each such permutation receives 1/k! of
the probability assigned to that particular grouping of the 6;.

For the complete model, symmetrization proceeds by first labelling the
k groups 1,... .k, in an identifiable fashion. Next, all subsets of &k distinct
labels chosen from the integers 1,... ,n are considered as labellings of the
groups. Each of the n!/(n — k)! labellings receives an equal share of the
probability assigned to that particular grouping of the 6;.

The motivation behind the introduction of non-identifiable models for
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simulation as well as the idea behind symmetrization can be found in
MacEachern (1996, 1998). West (1997) and Huerta and West (1999) use
the technique to improve simulation in related models. For theory on the
improvement that non-identifiable models can bring to MCMC simulation
see Meng and van Dyk (1999).

6 The Predictive Distributions

The posterior feature of greatest interest is often a predictive distribution.
In the case of density estimation, the predictive distribution for a future
observation is of direct interest. In the basic MDP model, the posterior
predictive distribution is most easily found by returning from the no gaps or
complete model to the parameterization in terms of 6. Then the predictive
distribution is given by p(ynt1ly) = J | PWn+1/0n+1)dp(Bns116,y)dp(6ly)
The inner integral reduces to an integral of p(y,,+1|6n+1) against (3 n;0gs +
MGy)/(M + n). The term involving Go may be evaluated as M6 where §
represents a new draw from Gj.

To obtain an estimate of the predictive distribution as the algorithm
proceeds, we use an average over iterates of the resulting Markov chain.
After each complete cycle of the algorithm, just after stage (ii), one has
the estimate 1/T 25:1 P(yny1]6t,6%) when evaluation of the conditional
distributions are feasible. Here 8¢ refers to the imputed parameter vector 4
after ¢ iterations. When this evaluation is not feasible, after each iteration a
value y, 41 can be generated, with the resulting estimator 1/T Ethl Ynt1-

7 Discussion

Inference in the encompassing nonparametric model provides an alterna-
tive to traditional sensitivity analysis. In this paper we have introduced
practically feasible approaches to implement such model extensions with —
at least in principle — minimal additional effort. Considering nonparametric
extensions can also be used for formal robustness measures in the form of
model diagnostics. Such approaches are considered in Carota, Parmigiani
and Polson (1996) and Florens, Richard and Rolin (1996) using DP priors,
in Berger and Guglielmi (1999) using Polya tree priors, and in Verdinelli
and Wasserman (1998) using Gaussian processes.

The beauty of the nonparametric Bayesian sensitivity analysis/model
elaboration is that it plays this dual role. As a sensitivity analysis tech-
nique, one can monitor the range of posterior inferences as the prior distri-
bution is varied over a class of nonparametric priors; as a more general class
of models, one can monitor summaries of the fit of the model as the prior
varies over a class. In any realistic setting, the sensitivity analysis produces
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a range of inferences; often, the general class of models exhibits a subs-
tiantially better fit than does the parametric model. Qin (1998) provides a
prime example of this improvement in fit where, in a fairly complex model,
the posterior standard deviations for several parameters are smaller under
the nonparametric elaboration than under the parametric model. Such ex-
amples illustrate the benefit of a technique that plays both exploratory and
confirmatory roles.
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