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Abstract

Current Gibbs sampling schemes in mixture of Dirichlet process (MDP) models are restricted to
using “conjugate” base measures which allow analytic evaluation of the transition probabilities
when resampling configurations, or alternatively need to rely on approximate numeric evaluations
of some transition probabilities. Implementation of Gibbs sampling in more general MDP models
is an open and important problem since most applications call for the use of non-conjugate base
measures.

In this paper we propose a conceptual framework for computational strategies. This framework
provides a perspective on current methods, facilitates comparisons between them, and leads to sev-
eral new methods that expand the scope of MDP models to non-conjugate situations. We discuss
one in detail. The basic strategy is based on expanding the parameter vector, and is applicable for
MDP models with arbitrary base measure and likelihood. Strategies are also presented for the im-
portant class of normal-normal MDP models and for problems with fixed or few hyperparameters.

The proposed algorithms are easily implemented and illustrated with an application.

KEY WORDS: Gibbs sampling, hierarchical models, Markov chain Monte Carlo, simulation.



1 Introduction

1.1 The MDP model

This paper proposes a novel solution strategy to an open problem in implementing Gibbs sam-
pling for mixture of Dirichlet process (MDP) models with non-conjugate base-measure and likeli-
hood. MDP models have become increasingly popular for modeling when conventional parametric
models would impose unreasonably stiff constraints on the distributional assumptions. Examples
include empirical Bayes problems (Escobar, 1994), nonparametric regression (Miiller, Erkanli and
West, 1996), density estimation (Escobar and West, 1995; Gasparini, 1996), hierarchical model-
ing (MacEachern, 1994; West, Miiller and Escobar, 1994; Bush and MacEachern, 1996), censored
data settings (Doss, 1994; Kuo and Smith, 1992; Gelfand and Kuo, 1991), and estimating possibly
non-standard link functions (Newton, Czado and Chappell 1996; Erkanli, Stangl and Miiller 1993).

Despite the large variety of applications, the core of the MDP model can basically be thought
of as a simple Bayes model given by the likelihood y; ~ pyg, (yi) and prior 6; ~ G(6;), with added

uncertainty about the prior distribution G:
y; ~po, (i), i=1,...n, 0; ~G, G~ DP(Gy,a), (1)

where G ~ DP(Gy,«) refers to G being a random distribution generated by a Dirichlet process
with base measure aGy and total mass parameter «. An important instance of the general model
is the normal-normal MDP model, given by p, s (yi) = N(yi;p,¥) and Go(p, X) = N(u;m, B):
W (X' 7, R). Here F(z;7n) means that the random variable o has distribution F' with parameter
7, N denotes the normal distribution, and W denotes the Wishart distribution. Models with more
general applications typically require another portion to the hierarchy that allows the introduction
of observation specific covariates, say x;, and hyperparameters v. The more complex models also
introduce distributions on the hyperparameters v, Gy, and a. But conditional on these additional
parameters, the portion of the model involving the MDP has the form given above. See Antoniak

(1974) and Ferguson (1973) for discussion of the Dirichlet process.

1.2 Estimating the MDP model

A key feature of the Dirichlet process in this MDP model is that the 6; are marginally samples from

Gy, and with positive probability some of the 6; are identical. This is due to the discreteness of



the random measure G. This discreteness of G is the main impediment to an efficient estimation.
Posterior integration, and thereby most inference, is made difficult by a combinatorial explosion in
the number of terms in the posterior distribution, due to the need to account for all possible con-
figurations of how the 6;’s are identical and distinct. See, for example, Antoniak (1974). However,
implementation of Gibbs sampling is almost straightforward when one marginalizes over G and
works directly with the 6;. Except for a difficulty which arises when resampling 6; conditional on
all other parameters. The new value of 6; can either be one of the 8;’s, h # i, or ; could be a new
draw from Gy. Computing the probability of the latter alternative involves an integral of py,. (y;)
with respect to Go(0;): P(0; # On,h # i|0h, h # 1) x qo = [ pg, (yi)dGo(6;). Using J, to indicate a
point mass at x, the conditional posterior for 6; can be written as:
p(0il6_i,y) < > qnds, + qGi(6:),
h#i

with gn, = pg, (vi) and Gi(6;) o< Go(0i)pe, (yi). We will discuss details in Section 2.2. Following a
pragmatic definition we call a prior/likelihood pair G(6;) and py, (y;) “conjugate” if the posterior
p(0;]y;) takes the form of some well known distribution, allowing efficient random variate generation
and integration. Evaluation of the integral expression for gq is non-trivial unless Gy and py, are
a conjugate pair. Current implementations therefore either use a conjugate model or rely on
approximate computations. Overcoming this computational hurdle is important because of the wide
range of current and potential applications of MDP models, and the need in most applications to
leave the conjugate framework. In this paper we propose a Gibbs sampling scheme which achieves
this.

Recent work by Walker and Damien (1996) describes a promising alternative computational

strategy for fitting MDP models.

1.3 Examples

In the description of current and proposed algorithms we will refer to the following models as

examples (the term “conjugate” is used in the sense defined above):

Conjugate normal-normal MDP model:

pus(yi) = N(yis 1, %), Go(p, B) = N(psm, 78) - W(S Y1, R),



Conditionally conjugate normal-normal MDP model:
Pux(i) = Ny, %), Go(p,Z) = N(u;m, B) - W(S~ ', R). The pair pyx, Go(p, %) is
conjugate in y if ¥ is fixed, and conjugate in 3 when p is fixed, but the posterior p(u, X|y)
does not allow efficient random variate generation and analytic integration (to compute the
probability ¢g of a new draw from Gy when resampling 6; as described in Section 2.2(i)).
Non-conjugate uniform-normal MDP model: p, »(yi) = N(yi; 1, %), Go(p, X) = Unif(p; pr, pr) -
W (X~ Y:r, R), where Unif(u; pr., rr) denotes a uniform distribution on a rectangle with lower

bounds p;, and upper bounds pg.

1.4 Novel Gibbs sampling schemes for the MDP model

In this paper we propose Gibbs sampling schemes which allow estimation of MDP models without
restriction to conjugate models. In Section 2 we review the sampling scheme which is currently
most often applied. In Section 3 we develop a model augmentation which allows efficient implemen-
tation of Gibbs sampling in general, possibly non-conjugate MDP models. Section 4 illustrates the
proposed scheme with an application to the non-conjugate uniform-normal MDP model. Section 5
concludes with a final discussion, including an outline of an alternative model augmentation that

is sometimes preferable to the augmentation developed here.

2 Gibbs Sampling in MDP models

In this section, we briefly review Markov chain Monte Carlo schemes currently applied to estimate
MDP models. For a more detailed discussion of the schemes, we refer the reader to Bush and

MacEachern (1996) and West, Muller, and Escobar (1994).

2.1 Notation

We start out by fixing notation. In the general MDP model with continuous base measure Gy, let
¢ = {¢1,...¢ } denote the set of distinct 6;’s, where k£ < n is the number of distinct elements in the
vector 0 = (04,....,6,). Let s = (s1,...,s,) denote the vector of configuration indicators defined by
si=7iff0; = ¢j,1=1,....n, and let n; be the number of s; = j. We will use the term “cluster” to
refer to the set of all observations y;, or just the indices i, or the corresponding 6;’s, with identical

configuration indicators s;. The n; defined above is the size of the j-th cluster: n; = [{i : s; = j}|.



Since we allow arbitrary permutations of the ¢ indices j = 1,...,k, any given # vector corresponds
to k! pairs (¢, s). For later reference we note that if we assign equal probabilities to each of the k!

permutations then
o (o — DI (n; — 1)!

Pe) = — o

(2)
This expression for P(s) is easily obtained by multiplying the conditional prior distributions

P(si|s1,...,8i-1),1=1,...,n, that arise from the Polya urn scheme representation of the Dirichlet

process. Under the convention that clusters are numbered consecutively as they arise, i.e., the first

cluster is assigned the number 1, etc., we have P(s; = j|s1,...,si-1) = ni;/(a+i—1),j=1,... ki,
and P(s; = k; + 1]s1,...,si-1) = o/(a+ i —1). Here k; denotes the number of clusters among
01,...,0;—1 and n; ; = |{sp, = j; h < i}| is the size of cluster j restricted to the first ¢ — 1 observa-

tions. The additional 1/k! term accounts for the permutations of the ¢ indices. This description
of the configuration relies on the assumption of continuity for the underlying base measure of the
Dirichlet process. When the base measure contains a discrete component, some of the #;’s may be
equal not because they belong to the same cluster, but because the draws from Gy happen to be
equal. The notion of a configuration may be extended in a straightforward fashion to these settings.
We avoid the extension here to retain a clearer notation.

Gibbs sampling is implemented by iterative sampling from the full conditionals described in

R

the next subsection. In the formulas below, the subscript “—i” means without the " element

of the vector. The superscript “—”

refers to a summary with the appropriate observation and/or
parameter removed. For example, with 6; removed, k= refers to the number of clusters formed
by 6_;, and n; represents the number of elements in cluster ; when observation i is removed.

The conditioning on the data, y = (y1,...,yn), does not appear in the notation, but should be

understood.

2.2 The full conditionals

(i) Resampling (6;, s;) given all other parameters: The new value of 6; is equal to 8y, h # i with prob-
ability proportional to g, = py, (yi), or with probability proportional to ¢y = « [ pg, (vi)dGo(6;)
is a draw from G;(0;) o Go(6;)pe,(yi). The distribution G; is the posterior in a simple Bayes

model given by likelihood y; ~ py, (y;) and prior 6; ~ Go(6;). Using J, to indicate a point mass



at x, combining identical 0j’s, and redefining q; = pg, (y;), this can be written as:
k
p(0il0-i, s i,y) < Y n; qidg; + qGi(6;). (3)
j=1

Note that sampling 6; implicitly samples a new configuration s;. If the base distribution G(6;)
and the likelihood py, (y;) are chosen as a conjugate pair, then the integral gy can be analytically
evaluated. If, however, G is not conjugate with pg. then resampling the configuration becomes
difficult, as the integral gg may be computationally intensive.
Note that n; could be zero for some j. This happens if the previous configuration put s; into
a cluster of size one, i.e., n; = 1 for j = s;. After resampling each s; it is necessary to redefine
the list ¢ of unique cluster locations if either a new cluster is created by sampling 0; ~ G, or
an old cluster is left “empty”, i.e., with n; = 0, by reallocating the only element of a previous
cluster to another cluster. In either case change ¢ accordingly by adding an element to ¢ or
deleting ¢; and relabeling the remaining elements of ¢ if necessary. Redefine s and k to agree
with the current clustering of 6.

(ii) Resampling ¢; conditional on the configuration s and all other parameters is straightforward.
For a fixed 7, it amounts to sampling from the posterior in the simple Bayes model given by y; ~
Py, and ¢; ~ Gy, for i € {i : s; = j}. In the conjugate normal-normal MDP, for example, the
conditional posterior for ¢; will simply be the appropriate inverse Wishart/normal posterior.

In the conditionally conjugate normal-normal MDP model resampling ¢; = (u?, Z}f) would be

¢

broken into two parts: (iia) Resampling p; conditional on Z';-) (and all other parameters), and

¢
;-

(iib) resampling E? conditional on p
(iii) Resampling v and other hyperparameters: While not explicitly included in model (1), typi-
cal MDP applications would include a hyperprior on the total mass parameter « and other
hyperparameters. For example, an unknown normal mean and covariance matrix or Wishart
parameters would appear in the specification of G. Sampling of « is described in Escobar and
West (1995), based on West (1992). See also Liu (1996) for an alternative approach based on

sequential imputation. Sampling of other hyperparameters is typically straightforward, since

conditioning on the configuration s reduces the problem to a conventional hierarchical model.



2.3 Current sampling schemes

MCMC implementations to estimate MDP models discussed in recent literature fit into the frame-

work presented here. All may be represented in terms of steps (i) through (iii) with minor variations.

Escobar and West use a scheme similar to the one described above, but don’t include the second
step of moving the cluster locations. In terms of the latent variable notation, they use: (i)
sample [0;|0_;] for i = 1,...,n. Drop (ii).

Bush and MacEachern use the above scheme. (i) sample [0;|0_;] fori =1,... ,n. (ii) sample[¢r, ..., dk|s].

MacEachern uses a scheme that dispenses with the cluster locations ¢; entirely. He uses: (i) sample

[si|s—i] for i =1,... n.

In each of these cases, the conditional distributions in (i) require an integration that is costly if py,
and Gy are not conjugate.

West, Miiller, and Escobar (1994) present the first algorithm designed specifically for use with
non-conjugate models. In this algorithm they approximate the draw in step (i) of the algorithm
above by approximating qo. Specifically, they take a random draw from G, say ', and replace
S po, (yi)dGo(0;) with pg(y;). The resulting rescaled probabilities typically lead to a Markov chain
with a stationary distribution, but a stationary distribution which differs from the posterior. While
this method does provide an approximation to the posterior, the accuracy of the approximation is
difficult to evaluate because the approximation occurs within the transition probabilities. In some
circumstances the approximation can be quite poor. Straightforward re-weighting of the output of
the approximating chain to provide a weighted sample from the posterior is also prevented, since
there appears to be no simple representation of the stationary distribution.

The new sampling plan entirely avoids the difficult integration and can replace 2.2.(i) when

evaluation of ¢ is problematic.

3 Estimating non-conjugate MDP models

3.1 The novel algorithm

The problem of evaluating qo in (3) arises because we have to integrate over a new value of ; if the

new indicator s; opens a new cluster, i.e., s; # sp, h # i. We propose an alternative parametrization



by augmenting ¢ to
{?h SRR ¢£7?k+17 T ¢TE}

v~

¢F B
with the same independent prior, ¢; ~ G, on the ¢;, the same definition of configuration indicators

s, and the prior p(s) given in (2). The augmentation relies upon the constraint that there be no
gaps in the values of the s;, i.e., n;j > 0for 5 =1,...,k, and n; =0, for j = k+1,...,n. This
corresponds to an interpretation of ¢ = {dr41,-..,¢,} as “potential”, but not yet used cluster
locations. We will refer to ¢ as “empty” clusters, and ¢ as “full” clusters.

In the augmented model the Gibbs sampler is simplified: Evaluation of integrals of the type qq

is replaced by simple likelihood evaluations.

No Gaps Algorithm: Repeat (ia) and (ib) for i = 1,...,n. Then perform step (ii).

(ia) Sample (s,¢r)|. This step reduces to choosing a permutation of the cluster indices 1, ..., k,
with each permutation having probability 1/k!.

(ib) Sample s;|(s—_i, ¢). The posterior conditional distributions are given by

P(si = jls—i, ¢, y) < P(si = j|s—i, ®)pg, (yi)- (4)

The conditional prior distribution for p(s;|s_;, ¢) is best described in two cases. First, if s_; is
a state where n; =0 for some j < k™, then the no gaps constraint implies that the distribution
of si|(s—i, @) is degenerate: P(s; = j|s_;,¢) = 1. Second, when no gap would be created with

the removal of s;, we have

P(si=jls—i,¢) o< nj forj=1,....k",

Plsi=k" +1ls_4,¢) o af(k” +1). (5)

(ii) Sample ¢|s. The conditional distribution for ¢ consists of a product of n independent distri-
butions. For j = k£ + 1,...,n this simply amounts to draws, ¢; ~ Gy, from the base measure
(see the comment below about actually recording ¢;, j =k +1,...,n). For j =1,...,k, the

conditional posterior remains as in Section 2.2, step (ii).

The implementation of this algorithm may be simplified and speeded by discarding unnecessary

draws that do not alter the chain itself. Thus, we recommend that the first step, where the indices



are permuted, be used only when ny, = 1. In this case, the permutation results in s; = k with
probability 1/k and s; < k with probability (k — 1)/k. The former case leads to a non-degenerate
posterior conditional for s; with distribution given above, while the latter leads to a degenerate

posterior for s;. Thus (ia) and (ib) can be combined to:

(i’) If ns; > 1 then resample s; with probabilities (5). Note that £k~ = k.
If ng, = 1 then with probability (k — 1)/k leave s; unchanged. Otherwise relabel clusters such
that s; = k and then resample s; with probabilities (5). Note that now k= = k — 1. Also, if s;
happens to be resampled as s; = k= + 1 = k, then 6; remains in effect unchanged because the
preceding relabeling kept the previous value of 6; as ¢.
The values of ¢ = (¢1, ..., ¢,) are never changed during execution of step (i’) (except relabeling
of the indices as described above). This implies in particular that locations ¢; of clusters which

are left empty by resampling some s; are not discarded. Only indices are changed if needed.

In a typical cycle of the algorithm, most of the ¢;’s will not be used. Since most of the ¢; will be
drawn from the prior distribution G (in step (ii) of the previous cycle), we do not sample them

until they are needed.

3.2 Extension to hyperparameters

The algorithm described above may be extended to models that incorporate hyperparameters with
the inclusion of a draw of these parameters, conditional on the observed vector (s, ®). The condi-
tional distributions are exactly those of the parametric hierarchical model that replaces the Dirichlet
process with G (see Escobar and West, 1995, or MacEachern, 1994). The conditional distribution
depends on all of ¢, not just ¢p. We recommend that the draws be made for the parameters
(¢, v)|pr. In this conditioning, since the distribution of ¢g|v is independent of ¢r|v, the updat-
ing of the hyperparameters reduces to the usual updating for the hierarchical model without the

Dirichlet process, conditioning only on ¢g.

3.3 Predictive distributions

The posterior feature of greatest interest is often a predictive distribution. In the case of den-

sity estimation, the predictive distribution for a future observation is of direct interest. It is



also the Bayes estimate under a weighted quadratic loss function. In the basic MDP model,
the posterior predictive distribution is most easily found by returning from the no gaps model
to the parameterization in terms of . Then the predictive distribution is given by p(yn+1|y) =
J [ p(yn+116n+1)dp(0,4110,y)dp(0,y). The inner integral reduces to an integral of p(y,41/6n+1)
against (Z?:l n;jdg. + aGo)/(a + n). The term involving Gy may be evaluated as ad; where 6
represents a new draw from Gj.

To obtain an estimate of the predictive distribution as the algorithm proceeds, we use an average
over iterates of the resulting Markov chain. Let 6° denote the imputed parameter vector 6 after ¢
iterations. After each complete cycle of the algorithm, just after stage (ii), one has the estimate
1T YT p(yni1|6t,0") when evaluation of the conditional distributions are feasible. When this
evaluation is not feasible, after each iteration a value y,y; can be generated, with the resulting
estimator based on the sample of T' such values.

In more complex models that involve hyperparameters or observation specific covariates, pre-
dictive distributions are obtained in a similar fashion. Typically, one will condition on the values of
these other parameters during the evaluations (see the forthcoming example in Section 4). In other
circumstances, one is interested in distributions where the future values of an observation specific
covariate are unknown. In these cases, either an integration over the distribution of the unknown

covariate or a generation of its value is required.

3.4 Convergence of the new algorithm

In this section, we discuss convergence issues for the algorithm. The strictest interpretation of the
Gibbs sampler is one in which only full conditional distributions are used and in which the order
of generation of the parameters is fixed. Even in this seemingly simple setting, there are typically
many sets of conditional distributions that may be used as the basis of the Gibbs sampler. Many of
these conditional distributions will violate the conditions required for convergence of the sampler to
the posterior distribution, even though the posterior distribution is naturally thought of as having
conditionals that produce an irreducible, aperiodic chain.

As a simple example consider a nondegenerate, bivariate normal posterior with known covariance
matrix. Define the conditional distribution of X;| X5 to be the appropriate normal distribution for

all Xy # 0 and to be degenerate at 0 when Xy = 0. Define the conditional distribution of X5| X7 in



a similar fashion, with the distribution of X9|X; degenerate at 0 when X; = 0. If started at (0,0),
the chain will not converge to the bivariate normal distribution.

These technical details prevent overall statements of convergence such as “implementation of the
Gibbs sampler in the general MDP model through the no gaps algorithm will provide convergence
to the posterior distribution, from every initial condition.” Instead, we provide a statement that
there is a representation based on a wise choice of conditional distributions for which the algorithm
will converge, and we provide guidance on the choice of the conditional distributions to use. The
following argument illustrates the reasoning needed to ensure convergence, and it is readily applied
to MDP models in the most common settings. The argument relies heavily on results in Tierney
(1994). In particular, we present an easy method that allows us to check the absolute continuity
condition in his Corollary 3.1. This corollary is reproduced below. Let P(x, A) denote the transition

probability in a Markov chain Monte Carlo scheme.

Corollary 3.1 (Tierney, 1994). Suppose P is w-irreducible and 7P = . If P(xz,.) is absolutely

continuous with respect to 7 for all x, then P is Harris recurrent.

Tierney’s work also shows that when the posterior distribution is proper, the conditions of Corollary
3.1 ensure convergence of the chain (in total variation norm) based on P to the unique invariant
distribution, 7, for all initial conditions x. In our applications of the MDP model, we begin with a
proper prior distribution.

The following argument verifies Tierney’s conditions to show convergence of the Markov chains
based on the no gaps algorithm. The notion behind the argument is that we may easily demonstrate
both m-irreducibility and absolute continuity with respect to = of P(x,.) with an examination of
the innards of a single Gibbs cycle. To this end, we focus on some set, A, for which w(A) > 0, with
the intent of showing that P(x, A) > 0 for each x. Any set A may be represented as a partition
A = Uz A, where the elements of the partition are indexed by the configuration vector. Also, the
distribution 7 has a unique representation as m = >, 7,, so that 7(A) = Y, m5(As). We have
m(A) > w(As) = ms(Ag) > 0 for some s.

The first stage of the Gibbs cycle in the algorithm involves the generation of a new configuration,

s, through a sequence of smaller generations. We assume that the conditional distributions used
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are such that there is positive probability of a transition to each vector s which receives positive
prior probability. At the second stage, we focus on some s for which 7(As) > 0. Conditional on this
s, the algorithm relies on a generation from a distribution which we take to be mutually absolutely
continuous with respect to m,, and so the conditional transition to A; has positive probability.
Thus, the overall transition kernel gives positive probability to the transition from x to A.

In the bivariate normal example, it is sufficient to choose families of conditional distributions
that are mutually absolutely continuous with respect to Lebesgue measure on R' for each of the
distributions X;|X9 and X3/ X;. In the model (1), where the marginal posterior for each 6; is
mutually absolutely continuous with respect to Lebesgue measure on the same subset of RY, it is
enough to choose a family of conditional distributions for each ¢; of the no gaps model that is
mutually absolutely continuous with respect to these marginal posteriors.

Convergence of the algorithm when hyperparameters are included may often be established with
an argument similar to the one presented above. A third step is added to the algorithm, with the
hyperparameters generated at this step.

When this additional level of hyperparameters is considered, an extra concern arises. At first
glance, the generation of (¢g,v)|¢r appears to be a random generation, depending on the results
of previous steps in the same cycle of the sampler. Again, a simple example where (X,Y’) has a
bivariate normal distribution with covariance matrix I shows the dangers of such schemes. Using
the “standard” conditional distributions, we may define an algorithm as (i) generate X|Y, (ii)
generate Y|X, and (iii) generate Y |X if Y < 0. This algorithm, though based on a sequence
of conditional generations, does not yield a chain which converges to the joint distribution of
(X,Y). The reason that the standard Gibbs sampling theory does not apply is that the sequence
of conditional generations is neither a fixed scan Gibbs sampler nor a random scan Gibbs sampler
with a randomization independent of the state of the chain.

To see that the algorithm we propose do not succumb to this difficulty, we provide a perspective
for the generation of the hyper-parameters: Conditioning on (s, ¢y ) partitions the state space. The
generation of (¢pp,v)|(s,¢p) is just a generation from a conditional distribution defined on this
partition. From this viewpoint, we simply return to the basic Gibbs sampler, with a fixed sequence
of conditional generations. To ensure convergence for any initial condition, we repeat the argument

above, invoking the requisite conditions on the posterior and conditional distributions as needed.

11



Note that for the example discussed in this paper, these arguments can be formalized. The
“standard” choices for conditional distributions lead to algorithms that satisfy the conditions of

Tierney’s Corollary 3.1.

4 Example: The uniform-normal MDP
We illustrate application of the no gaps parameterization in the uniform-normal MDP model:

Yi ~ N(ui,Zi), i=1,...,n,
(:uiuzi) ~ G, GNDP(aG0)7

GU(:UH Z) = U(/J,, Kmr, MH) ' W(Zil; T, R)a

The model is completed by conjugate hyperpriors on the parameters o and R: R ~ W (q, Q) and
a ~ Gamma(ag, by).

We estimate the model for a data set from Lubischew (1962). The data records five measure-
ments of physical characteristics for male insects of the species chactocnema concina, chactocnema
heikertinger, and chactocnema heptapotamica. We will only use two measurements in this illustra-
tion: y;1 and y;9, the width of the first and second joint on the i-th beetle. We will use y; = (yi1, yi2)
to denote the observation on beetle i, and y = (y1,...,yn) to denote the whole data set. There
are n = 74 observations. Although the classification into the three species was known, this was not
used in the estimation of the model. The data are plotted in Figure 1.

Figure 2 shows the posterior predictive p(y,+1|y) for a future observation. This can be thought
of as a density estimate for the unknown sampling distribution of beetle joint widths for the
given species. The predictive p(y,+1|y) is estimated as an average over conditional predictives:
PYn+1ly) = [ P(yn+110,a)dp(8, aly) = 1/T S{_ p(yns1]0', '), where § = (61,....0,) and (¢',0")
are the imputed values after ¢ iterations of the Gibbs sampling scheme. Compare with the com-
ments in Section 3.3 for a discussion of the parameterization used for computing the predictive
distribution. For reasons of computational efficiency, the first 200 iterations are discarded, and
thereafter only every 10-th iteration is used. Figures 3 through 5 show some more aspects of the

posterior distribution on the MDP parameters and the Gibbs sampling scheme.
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5 Discussion

We have discussed an augmented parameter model to allow implementation of efficient Gibbs
sampling schemes for estimating MDP models. The heart of the augmentation is the explicit
representation of € in terms of (¢,s). Placing a distribution on (¢, s) induces a distribution on
f. The no gaps model ensures that the induced distribution on @ is identical to the distribution
specified by the MDP model, and so whichever representation is computationally more convenient
may be used to fit the model.

There are many distributions on (¢, s) other than the no gaps model that induce the MDP’s
distribution on #. When the distribution on ¢ consists of independent draws from G, we need
only create a distribution on s that matches the MDP’s distribution over configurations. An easy
way to do this is to begin with the simple distribution on s arising from the Polya urn scheme that
leads to (2), and then to extend this to a more complex distribution by allowing permutations of
the indices for ¢ and by allowing gaps in the sequence of indices, so that some of the k£ clusters
may have indices larger than k.

Although it might at first seem detrimental to expand the distribution on s through introduc-
tion of permutations, or by allowing gaps in the sequence of cluster indices, these expansions are
actually helpful. In small examples, the deliberate introduction of non-identifiability, as with the
permutations for the no gaps model, can be demonstrated to speed convergence of the Markov
chain to its limiting distribution. The reason for the improvement in convergence is that the indi-
vidual updates in the Gibbs sampler are allowed to range over a larger set of potentially generated
values. Viewed in this fashion, it is essentially this same reasoning that leads to recommendations
for marginalizing unneeded parameters from the Gibbs sampler and for generating blocks of pa-
rameters all at once. In large problems, the same technique of expanding the distribution on s
through natural symmetries in the labeling of the clusters seems to empirically improve the rate of
convergence of the Markov chain.

One natural distribution on (¢, s), called the complete model, is described in the longer technical
report version of this work, available from MacEachern and Miiller (1994). This model allows one
to fit current estimation schemes into the framework developed in this paper. Current estimation

schemes based on special cases and approximations are shown to be specific choices of Gibbs scan-
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ning schemes, skipping, approximating and/or integrating certain full conditionals of the general
complete model scheme.

The important contribution of this paper is to provide a formal framework which encompasses all
of these Markov chain Monte Carlo algorithms. While the formulation of the algorithm presented
here is designed to fit a wide class of models, in many popular models simplifications are both
possible and recommended. For example, in the conditionally conjugate normal-normal model we
recommend an integration over ¢ when evaluating the multinomial resampling probabilities (4).
Another example of efficient specifications for particular models occurs in problems with fixed
hyperparameters (or a discrete hyperprior with few possible levels). The probabilities gy can then

be evaluated before starting the simulation and stored on file.
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Figure 1: The data. The scatterplot shows a scatterplot of widths for the first (y;1) and second

joint (y;o) for 74 beetles. The different plot symbols mark the three different species.
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Figure 2: Predictive p(yn+1]y). The white dots show the observations y;. The posterior predictive
P(yn+1]y) can be thought of as a density estimate for the unknown sampling distribution of beetle
joint widths for the given species. The format of the density estimate is similar to a conventional
kernel density estimate. It is a mixture of normal kernels. However, the density estimate is model
based, allows distinct correlation matrices for each normal term, and mixes over hyperparameters
like the number of normal terms k, the prior parameters for cluster location (m and B) and the

hyperparameters for cluster covariance matrices () and R).
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Figure 3: Cluster and relative weights at iteration 500. The four panels show cluster locations
,u';-) (solid dots), covariance matrices Z? (lines of constant Mahalanobis distance equal 0.5 from
,u'f) and cluster sizes n; (thermometers) for the clusters as they are when resampling s; for points
i =27, 31, 70 and 33 (clockwise from top). The solid triangles indicate points ya7, y31, y70 and ys3
respectively. The thin dots plot all other data points. Notice that in all four figures there are three
clusters which take almost all weight, i.e. n; is negligible for the remaining clusters compared to

these three clusters. The three dominant clusters correspond roughly to the three beetle species in

the data.
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Figure 4: Probabilities for resampling the configuration indicators s;. The figure shows for the
same plots as the the previous figure, except that instead of the cluster sizes, the probabilities
mj = Pr(s; = j|...) are plotted in the “thermometers”. Notice, for example, in the first panel,

that point yo7 could be attributed to each of the three neighboring clusters with reasonably large

probabilities.
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Figure 5: Some elements of the posterior distribution for the cluster locations p;. Panel (a) shows
the posterior predictive distribution for a new latent variable p,;. The posterior predictive for
Yn+1 shown in Figure 2 was the convolution of p(p,11ly) with p(yp41|tns1,y). The predictive
distribution of p,11 shows the location of the three dominant clusters even more clearly than
P(Yn+1]y)- Notice the fourth peak in between the two other modes on the right half of the plot. It
is probably due to a combination of the two neighboring clusters corresponding to the two higher
peaks. Panel (b) shows the sample of cluster locations ,u';-) sampled at iterations 300, 1000, 2000,
3000, 4000 and 5000. Each circle corresponds to one cluster. The center indicates u?. The area of

the circle is proportional to the weight n; of the cluster.
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