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AbstractCurrent Gibbs sampling schemes in mixture of Dirichlet process (MDP) models are restricted tousing \conjugate" base measures which allow analytic evaluation of the transition probabilitieswhen resampling con�gurations, or alternatively need to rely on approximate numeric evaluationsof some transition probabilities. Implementation of Gibbs sampling in more general MDP modelsis an open and important problem since most applications call for the use of non-conjugate basemeasures.In this paper we propose a conceptual framework for computational strategies. This frameworkprovides a perspective on current methods, facilitates comparisons between them, and leads to sev-eral new methods that expand the scope of MDP models to non-conjugate situations. We discussone in detail. The basic strategy is based on expanding the parameter vector, and is applicable forMDP models with arbitrary base measure and likelihood. Strategies are also presented for the im-portant class of normal-normal MDP models and for problems with �xed or few hyperparameters.The proposed algorithms are easily implemented and illustrated with an application.
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1 Introduction1.1 The MDP modelThis paper proposes a novel solution strategy to an open problem in implementing Gibbs sam-pling for mixture of Dirichlet process (MDP) models with non-conjugate base-measure and likeli-hood. MDP models have become increasingly popular for modeling when conventional parametricmodels would impose unreasonably sti� constraints on the distributional assumptions. Examplesinclude empirical Bayes problems (Escobar, 1994), nonparametric regression (M�uller, Erkanli andWest, 1996), density estimation (Escobar and West, 1995; Gasparini, 1996), hierarchical model-ing (MacEachern, 1994; West, M�uller and Escobar, 1994; Bush and MacEachern, 1996), censoreddata settings (Doss, 1994; Kuo and Smith, 1992; Gelfand and Kuo, 1991), and estimating possiblynon-standard link functions (Newton, Czado and Chappell 1996; Erkanli, Stangl and M�uller 1993).Despite the large variety of applications, the core of the MDP model can basically be thoughtof as a simple Bayes model given by the likelihood yi � p�i(yi) and prior �i � G(�i), with addeduncertainty about the prior distribution G:yi � p�i(yi); i = 1; :::; n; �i � G; G � DP (G0; �); (1)where G � DP (G0; �) refers to G being a random distribution generated by a Dirichlet processwith base measure �G0 and total mass parameter �. An important instance of the general modelis the normal-normal MDP model, given by p�;�(yi) = N(yi;�;�) and G0(�;�) = N(�;m;B)�W (��1; r;R): Here F (x; �) means that the random variable x has distribution F with parameter�; N denotes the normal distribution, and W denotes the Wishart distribution. Models with moregeneral applications typically require another portion to the hierarchy that allows the introductionof observation speci�c covariates, say xi, and hyperparameters �. The more complex models alsointroduce distributions on the hyperparameters �;G0; and �. But conditional on these additionalparameters, the portion of the model involving the MDP has the form given above. See Antoniak(1974) and Ferguson (1973) for discussion of the Dirichlet process.1.2 Estimating the MDP modelA key feature of the Dirichlet process in this MDP model is that the �i are marginally samples fromG0, and with positive probability some of the �i are identical. This is due to the discreteness of1



the random measure G. This discreteness of G is the main impediment to an e�cient estimation.Posterior integration, and thereby most inference, is made di�cult by a combinatorial explosion inthe number of terms in the posterior distribution, due to the need to account for all possible con-�gurations of how the �i's are identical and distinct. See, for example, Antoniak (1974). However,implementation of Gibbs sampling is almost straightforward when one marginalizes over G andworks directly with the �i. Except for a di�culty which arises when resampling �i conditional onall other parameters. The new value of �i can either be one of the �h's, h 6= i, or �i could be a newdraw from G0: Computing the probability of the latter alternative involves an integral of p�i(yi)with respect to G0(�i): P (�i 6= �h; h 6= ij�h; h 6= i) / q0 = R p�i(yi)dG0(�i). Using �x to indicate apoint mass at x, the conditional posterior for �i can be written as:p(�ij��i; y) /Xh6=i qh��h + q0Gi(�i);with qh = p�h(yi) and Gi(�i) / G0(�i)p�i(yi). We will discuss details in Section 2.2. Following apragmatic de�nition we call a prior/likelihood pair G0(�i) and p�i(yi) \conjugate" if the posteriorp(�ijyi) takes the form of some well known distribution, allowing e�cient random variate generationand integration. Evaluation of the integral expression for q0 is non-trivial unless G0 and p�i area conjugate pair. Current implementations therefore either use a conjugate model or rely onapproximate computations. Overcoming this computational hurdle is important because of the widerange of current and potential applications of MDP models, and the need in most applications toleave the conjugate framework. In this paper we propose a Gibbs sampling scheme which achievesthis.Recent work by Walker and Damien (1996) describes a promising alternative computationalstrategy for �tting MDP models.1.3 ExamplesIn the description of current and proposed algorithms we will refer to the following models asexamples (the term \conjugate" is used in the sense de�ned above):Conjugate normal-normal MDP model:p�;�(yi) = N(yi;�;�), G0(�;�) = N(�;m; ��) �W (��1; r;R),2



Conditionally conjugate normal-normal MDP model:p�;�(yi) = N(yi;�;�), G0(�;�) = N(�;m;B) � W (��1; r;R). The pair p�;�, G0(�;�) isconjugate in � if � is �xed, and conjugate in � when � is �xed, but the posterior p(�;�jy)does not allow e�cient random variate generation and analytic integration (to compute theprobability q0 of a new draw from G0 when resampling �i as described in Section 2.2(i)).Non-conjugate uniform-normal MDP model: p�;�(yi) = N(yi;�;�), G0(�;�) = Unif(�;�L; �H) �W (��1; r;R), where Unif(�;�L; �H) denotes a uniform distribution on a rectangle with lowerbounds �L and upper bounds �H .1.4 Novel Gibbs sampling schemes for the MDP modelIn this paper we propose Gibbs sampling schemes which allow estimation of MDP models withoutrestriction to conjugate models. In Section 2 we review the sampling scheme which is currentlymost often applied. In Section 3 we develop a model augmentation which allows e�cient implemen-tation of Gibbs sampling in general, possibly non-conjugate MDP models. Section 4 illustrates theproposed scheme with an application to the non-conjugate uniform-normal MDP model. Section 5concludes with a �nal discussion, including an outline of an alternative model augmentation thatis sometimes preferable to the augmentation developed here.2 Gibbs Sampling in MDP modelsIn this section, we brie
y review Markov chain Monte Carlo schemes currently applied to estimateMDP models. For a more detailed discussion of the schemes, we refer the reader to Bush andMacEachern (1996) and West, Muller, and Escobar (1994).2.1 NotationWe start out by �xing notation. In the general MDP model with continuous base measure G0, let� = f�1; :::�kg denote the set of distinct �i's, where k � n is the number of distinct elements in thevector � = (�1; : : : ; �n). Let s = (s1; : : : ; sn) denote the vector of con�guration indicators de�ned bysi = j i� �i = �j , i = 1; : : : ; n; and let nj be the number of si = j. We will use the term \cluster" torefer to the set of all observations yi, or just the indices i, or the corresponding �i's, with identicalcon�guration indicators si. The nj de�ned above is the size of the j-th cluster: nj = jfi : si = jgj.3



Since we allow arbitrary permutations of the � indices j = 1; : : : ; k, any given � vector correspondsto k! pairs (�; s). For later reference we note that if we assign equal probabilities to each of the k!permutations then P (s) = �k(�� 1)!Q(nj � 1)!(�+ n� 1)!k! (2)This expression for P (s) is easily obtained by multiplying the conditional prior distributionsP (sijs1; : : : ; si�1), i = 1; : : : ; n, that arise from the Polya urn scheme representation of the Dirichletprocess. Under the convention that clusters are numbered consecutively as they arise, i.e., the �rstcluster is assigned the number 1, etc., we have P (si = jjs1; : : : ; si�1) = ni;j=(�+i�1), j = 1; : : : ; ki,and P (si = ki + 1js1; : : : ; si�1) = �=(� + i � 1). Here ki denotes the number of clusters among�1; : : : ; �i�1 and ni;j = jfsh = j;h < igj is the size of cluster j restricted to the �rst i� 1 observa-tions. The additional 1=k! term accounts for the permutations of the � indices. This descriptionof the con�guration relies on the assumption of continuity for the underlying base measure of theDirichlet process. When the base measure contains a discrete component, some of the �i's may beequal not because they belong to the same cluster, but because the draws from G0 happen to beequal. The notion of a con�guration may be extended in a straightforward fashion to these settings.We avoid the extension here to retain a clearer notation.Gibbs sampling is implemented by iterative sampling from the full conditionals described inthe next subsection. In the formulas below, the subscript \�i" means without the ith elementof the vector. The superscript \�" refers to a summary with the appropriate observation and/orparameter removed. For example, with �i removed, k� refers to the number of clusters formedby ��i, and n�j represents the number of elements in cluster j when observation i is removed.The conditioning on the data, y = (y1; : : : ; yn), does not appear in the notation, but should beunderstood.2.2 The full conditionals(i) Resampling (�i; si) given all other parameters: The new value of �i is equal to �h; h 6= i with prob-ability proportional to qh = p�h(yi); or with probability proportional to q0 = � R p�i(yi)dG0(�i)is a draw from Gi(�i) / G0(�i)p�i(yi). The distribution Gi is the posterior in a simple Bayesmodel given by likelihood yi � p�i(yi) and prior �i � G0(�i). Using �x to indicate a point mass4



at x, combining identical �h's, and rede�ning qj = p�j (yi), this can be written as:p(�ij��i; s�i; y) / kXj=1n�j qj��j + q0Gi(�i): (3)Note that sampling �i implicitly samples a new con�guration si: If the base distribution G0(�i)and the likelihood p�i(yi) are chosen as a conjugate pair, then the integral q0 can be analyticallyevaluated. If, however, G0 is not conjugate with p�i then resampling the con�guration becomesdi�cult, as the integral q0 may be computationally intensive.Note that n�j could be zero for some j. This happens if the previous con�guration put si intoa cluster of size one, i.e., nj = 1 for j = si. After resampling each si it is necessary to rede�nethe list � of unique cluster locations if either a new cluster is created by sampling �i � Gi, oran old cluster is left \empty", i.e., with nj = 0, by reallocating the only element of a previouscluster to another cluster. In either case change � accordingly by adding an element to � ordeleting �j and relabeling the remaining elements of � if necessary. Rede�ne s and k to agreewith the current clustering of �.(ii) Resampling �j conditional on the con�guration s and all other parameters is straightforward.For a �xed j, it amounts to sampling from the posterior in the simple Bayes model given by yi �p�j and �j � G0; for i 2 fi : si = jg: In the conjugate normal-normal MDP, for example, theconditional posterior for �j will simply be the appropriate inverse Wishart/normal posterior.In the conditionally conjugate normal-normal MDP model resampling �j = (��j ;��j ) would bebroken into two parts: (iia) Resampling ��j conditional on ��j (and all other parameters), and(iib) resampling ��j conditional on ��j .(iii) Resampling � and other hyperparameters: While not explicitly included in model (1), typi-cal MDP applications would include a hyperprior on the total mass parameter � and otherhyperparameters. For example, an unknown normal mean and covariance matrix or Wishartparameters would appear in the speci�cation of G0. Sampling of � is described in Escobar andWest (1995), based on West (1992). See also Liu (1996) for an alternative approach based onsequential imputation. Sampling of other hyperparameters is typically straightforward, sinceconditioning on the con�guration s reduces the problem to a conventional hierarchical model.
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2.3 Current sampling schemesMCMC implementations to estimate MDP models discussed in recent literature �t into the frame-work presented here. All may be represented in terms of steps (i) through (iii) with minor variations.Escobar and West use a scheme similar to the one described above, but don't include the secondstep of moving the cluster locations. In terms of the latent variable notation, they use: (i)sample [�ij��i] for i = 1; : : : ; n. Drop (ii).Bush and MacEachern use the above scheme. (i) sample [�ij��i] for i = 1; : : : ; n. (ii) sample[�1; : : : ; �kjs].MacEachern uses a scheme that dispenses with the cluster locations �j entirely. He uses: (i) sample[sijs�i] for i = 1; : : : ; n.In each of these cases, the conditional distributions in (i) require an integration that is costly if p�iand G0 are not conjugate.West, M�uller, and Escobar (1994) present the �rst algorithm designed speci�cally for use withnon-conjugate models. In this algorithm they approximate the draw in step (i) of the algorithmabove by approximating q0. Speci�cally, they take a random draw from G0, say �0, and replaceR p�i(yi)dG0(�i) with p�0(yi). The resulting rescaled probabilities typically lead to a Markov chainwith a stationary distribution, but a stationary distribution which di�ers from the posterior. Whilethis method does provide an approximation to the posterior, the accuracy of the approximation isdi�cult to evaluate because the approximation occurs within the transition probabilities. In somecircumstances the approximation can be quite poor. Straightforward re-weighting of the output ofthe approximating chain to provide a weighted sample from the posterior is also prevented, sincethere appears to be no simple representation of the stationary distribution.The new sampling plan entirely avoids the di�cult integration and can replace 2.2.(i) whenevaluation of q0 is problematic.3 Estimating non-conjugate MDP models3.1 The novel algorithmThe problem of evaluating q0 in (3) arises because we have to integrate over a new value of �i if thenew indicator si opens a new cluster, i.e., si 6= sh; h 6= i. We propose an alternative parametrization6



by augmenting � to f�1; : : : ; �k| {z }�F ; �k+1; : : : ; �n| {z }�E g:with the same independent prior, �j � G0, on the �j , the same de�nition of con�guration indicatorssi, and the prior p(s) given in (2). The augmentation relies upon the constraint that there be nogaps in the values of the si, i.e., nj > 0 for j = 1; : : : ; k, and nj = 0, for j = k + 1; : : : ; n. Thiscorresponds to an interpretation of �E = f�k+1; : : : ; �ng as \potential", but not yet used clusterlocations. We will refer to �E as \empty" clusters, and �F as \full" clusters.In the augmented model the Gibbs sampler is simpli�ed: Evaluation of integrals of the type q0is replaced by simple likelihood evaluations.No Gaps Algorithm: Repeat (ia) and (ib) for i = 1; : : : ; n. Then perform step (ii).(ia) Sample (s; �F )j�. This step reduces to choosing a permutation of the cluster indices 1; :::; k,with each permutation having probability 1=k!.(ib) Sample sij(s�i; �). The posterior conditional distributions are given byP (si = jjs�i; �; y) / P (si = jjs�i; �)p�j (yi): (4)The conditional prior distribution for p(sijs�i; �) is best described in two cases. First, if s�i isa state where n�j = 0 for some j � k�, then the no gaps constraint implies that the distributionof sij(s�i; �) is degenerate: P (si = jjs�i; �) = 1. Second, when no gap would be created withthe removal of si, we have P (si = jjs�i; �) / n�j for j = 1; : : : ; k�;P (si = k� + 1js�i; �) / �=(k� + 1): (5)(ii) Sample �js. The conditional distribution for � consists of a product of n independent distri-butions. For j = k + 1; : : : ; n this simply amounts to draws, �j � G0, from the base measure(see the comment below about actually recording �j , j = k + 1; : : : ; n). For j = 1; : : : ; k, theconditional posterior remains as in Section 2.2, step (ii).The implementation of this algorithm may be simpli�ed and speeded by discarding unnecessarydraws that do not alter the chain itself. Thus, we recommend that the �rst step, where the indices7



are permuted, be used only when nsi = 1. In this case, the permutation results in si = k withprobability 1=k and si < k with probability (k � 1)=k. The former case leads to a non-degenerateposterior conditional for si with distribution given above, while the latter leads to a degenerateposterior for si. Thus (ia) and (ib) can be combined to:(i') If nsi > 1 then resample si with probabilities (5). Note that k� = k.If nsi = 1 then with probability (k � 1)=k leave si unchanged. Otherwise relabel clusters suchthat si = k and then resample si with probabilities (5). Note that now k� = k � 1. Also, if sihappens to be resampled as si = k� + 1 = k, then �i remains in e�ect unchanged because thepreceding relabeling kept the previous value of �i as �k.The values of � = (�1; : : : ; �n) are never changed during execution of step (i') (except relabelingof the indices as described above). This implies in particular that locations �j of clusters whichare left empty by resampling some si are not discarded. Only indices are changed if needed.In a typical cycle of the algorithm, most of the �j 's will not be used. Since most of the �j will bedrawn from the prior distribution G0 (in step (ii) of the previous cycle), we do not sample themuntil they are needed.3.2 Extension to hyperparametersThe algorithm described above may be extended to models that incorporate hyperparameters withthe inclusion of a draw of these parameters, conditional on the observed vector (s; �). The condi-tional distributions are exactly those of the parametric hierarchical model that replaces the Dirichletprocess with G0 (see Escobar and West, 1995, or MacEachern, 1994). The conditional distributiondepends on all of �, not just �F . We recommend that the draws be made for the parameters(�E ; �)j�F . In this conditioning, since the distribution of �E j� is independent of �F j�, the updat-ing of the hyperparameters reduces to the usual updating for the hierarchical model without theDirichlet process, conditioning only on �F .3.3 Predictive distributionsThe posterior feature of greatest interest is often a predictive distribution. In the case of den-sity estimation, the predictive distribution for a future observation is of direct interest. It is8



also the Bayes estimate under a weighted quadratic loss function. In the basic MDP model,the posterior predictive distribution is most easily found by returning from the no gaps modelto the parameterization in terms of �. Then the predictive distribution is given by p(yn+1jy) =R R p(yn+1j�n+1)dp(�n+1j�; y)dp(�; y). The inner integral reduces to an integral of p(yn+1j�n+1)against (Pkj=1 nj��j + �G0)=(� + n). The term involving G0 may be evaluated as ��~� where ~�represents a new draw from G0.To obtain an estimate of the predictive distribution as the algorithm proceeds, we use an averageover iterates of the resulting Markov chain. Let �t denote the imputed parameter vector � after titerations. After each complete cycle of the algorithm, just after stage (ii), one has the estimate1=T PTt=1 p(yn+1j ~�t; �t) when evaluation of the conditional distributions are feasible. When thisevaluation is not feasible, after each iteration a value yn+1 can be generated, with the resultingestimator based on the sample of T such values.In more complex models that involve hyperparameters or observation speci�c covariates, pre-dictive distributions are obtained in a similar fashion. Typically, one will condition on the values ofthese other parameters during the evaluations (see the forthcoming example in Section 4). In othercircumstances, one is interested in distributions where the future values of an observation speci�ccovariate are unknown. In these cases, either an integration over the distribution of the unknowncovariate or a generation of its value is required.3.4 Convergence of the new algorithmIn this section, we discuss convergence issues for the algorithm. The strictest interpretation of theGibbs sampler is one in which only full conditional distributions are used and in which the orderof generation of the parameters is �xed. Even in this seemingly simple setting, there are typicallymany sets of conditional distributions that may be used as the basis of the Gibbs sampler. Many ofthese conditional distributions will violate the conditions required for convergence of the sampler tothe posterior distribution, even though the posterior distribution is naturally thought of as havingconditionals that produce an irreducible, aperiodic chain.As a simple example consider a nondegenerate, bivariate normal posterior with known covariancematrix. De�ne the conditional distribution of X1jX2 to be the appropriate normal distribution forall X2 6= 0 and to be degenerate at 0 when X2 = 0. De�ne the conditional distribution of X2jX1 in9



a similar fashion, with the distribution of X2jX1 degenerate at 0 when X1 = 0. If started at (0; 0),the chain will not converge to the bivariate normal distribution.These technical details prevent overall statements of convergence such as \implementation of theGibbs sampler in the general MDP model through the no gaps algorithm will provide convergenceto the posterior distribution, from every initial condition." Instead, we provide a statement thatthere is a representation based on a wise choice of conditional distributions for which the algorithmwill converge, and we provide guidance on the choice of the conditional distributions to use. Thefollowing argument illustrates the reasoning needed to ensure convergence, and it is readily appliedto MDP models in the most common settings. The argument relies heavily on results in Tierney(1994). In particular, we present an easy method that allows us to check the absolute continuitycondition in his Corollary 3.1. This corollary is reproduced below. Let P (x;A) denote the transitionprobability in a Markov chain Monte Carlo scheme.Corollary 3.1 (Tierney, 1994). Suppose P is �-irreducible and �P = �. If P (x; :) is absolutelycontinuous with respect to � for all x, then P is Harris recurrent.Tierney's work also shows that when the posterior distribution is proper, the conditions of Corollary3.1 ensure convergence of the chain (in total variation norm) based on P to the unique invariantdistribution, �, for all initial conditions x. In our applications of the MDP model, we begin with aproper prior distribution.The following argument veri�es Tierney's conditions to show convergence of the Markov chainsbased on the no gaps algorithm. The notion behind the argument is that we may easily demonstrateboth �-irreducibility and absolute continuity with respect to � of P (x; :) with an examination ofthe innards of a single Gibbs cycle. To this end, we focus on some set, A, for which �(A) > 0, withthe intent of showing that P (x;A) > 0 for each x. Any set A may be represented as a partitionA = [sAs, where the elements of the partition are indexed by the con�guration vector. Also, thedistribution � has a unique representation as � = Ps �s, so that �(A) = Ps �s(As). We have�(A) � �(As) = �s(As) > 0 for some s.The �rst stage of the Gibbs cycle in the algorithm involves the generation of a new con�guration,s, through a sequence of smaller generations. We assume that the conditional distributions used10



are such that there is positive probability of a transition to each vector s which receives positiveprior probability. At the second stage, we focus on some s for which �(As) > 0. Conditional on thiss, the algorithm relies on a generation from a distribution which we take to be mutually absolutelycontinuous with respect to �s, and so the conditional transition to As has positive probability.Thus, the overall transition kernel gives positive probability to the transition from x to A.In the bivariate normal example, it is su�cient to choose families of conditional distributionsthat are mutually absolutely continuous with respect to Lebesgue measure on R1 for each of thedistributions X1jX2 and X2jX1. In the model (1), where the marginal posterior for each �i ismutually absolutely continuous with respect to Lebesgue measure on the same subset of Rd, it isenough to choose a family of conditional distributions for each �i of the no gaps model that ismutually absolutely continuous with respect to these marginal posteriors.Convergence of the algorithm when hyperparameters are included may often be established withan argument similar to the one presented above. A third step is added to the algorithm, with thehyperparameters generated at this step.When this additional level of hyperparameters is considered, an extra concern arises. At �rstglance, the generation of (�E ; �)j�F appears to be a random generation, depending on the resultsof previous steps in the same cycle of the sampler. Again, a simple example where (X;Y ) has abivariate normal distribution with covariance matrix I shows the dangers of such schemes. Usingthe \standard" conditional distributions, we may de�ne an algorithm as (i) generate XjY , (ii)generate Y jX, and (iii) generate Y jX if Y < 0. This algorithm, though based on a sequenceof conditional generations, does not yield a chain which converges to the joint distribution of(X;Y ). The reason that the standard Gibbs sampling theory does not apply is that the sequenceof conditional generations is neither a �xed scan Gibbs sampler nor a random scan Gibbs samplerwith a randomization independent of the state of the chain.To see that the algorithm we propose do not succumb to this di�culty, we provide a perspectivefor the generation of the hyper-parameters: Conditioning on (s; �F ) partitions the state space. Thegeneration of (�E ; �)j(s; �F ) is just a generation from a conditional distribution de�ned on thispartition. From this viewpoint, we simply return to the basic Gibbs sampler, with a �xed sequenceof conditional generations. To ensure convergence for any initial condition, we repeat the argumentabove, invoking the requisite conditions on the posterior and conditional distributions as needed.11



Note that for the example discussed in this paper, these arguments can be formalized. The\standard" choices for conditional distributions lead to algorithms that satisfy the conditions ofTierney's Corollary 3.1. 4 Example: The uniform-normal MDPWe illustrate application of the no gaps parameterization in the uniform-normal MDP model:yi � N(�i;�i); i = 1; : : : ; n;(�i;�i) � G; G � DP (�G0);G0(�;�) = U(�;�L; �H) �W (��1; r;R);The model is completed by conjugate hyperpriors on the parameters � and R: R � W (q;Q) and� � Gamma(a0; b0).We estimate the model for a data set from Lubischew (1962). The data records �ve measure-ments of physical characteristics for male insects of the species chactocnema concina, chactocnemaheikertinger, and chactocnema heptapotamica. We will only use two measurements in this illustra-tion: yi1 and yi2, the width of the �rst and second joint on the i-th beetle. We will use yi = (yi1; yi2)to denote the observation on beetle i, and y = (y1; : : : ; yn) to denote the whole data set. Thereare n = 74 observations. Although the classi�cation into the three species was known, this was notused in the estimation of the model. The data are plotted in Figure 1.Figure 2 shows the posterior predictive p(yn+1jy) for a future observation. This can be thoughtof as a density estimate for the unknown sampling distribution of beetle joint widths for thegiven species. The predictive p(yn+1jy) is estimated as an average over conditional predictives:p(yn+1jy) = R p(yn+1j�; �)dp(�; �jy) � 1=T PTt=1 p(yn+1j�t; �t), where � = (�1; : : : ; �n) and (�t; �t)are the imputed values after t iterations of the Gibbs sampling scheme. Compare with the com-ments in Section 3.3 for a discussion of the parameterization used for computing the predictivedistribution. For reasons of computational e�ciency, the �rst 200 iterations are discarded, andthereafter only every 10-th iteration is used. Figures 3 through 5 show some more aspects of theposterior distribution on the MDP parameters and the Gibbs sampling scheme.
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5 DiscussionWe have discussed an augmented parameter model to allow implementation of e�cient Gibbssampling schemes for estimating MDP models. The heart of the augmentation is the explicitrepresentation of � in terms of (�; s). Placing a distribution on (�; s) induces a distribution on�. The no gaps model ensures that the induced distribution on � is identical to the distributionspeci�ed by the MDP model, and so whichever representation is computationally more convenientmay be used to �t the model.There are many distributions on (�; s) other than the no gaps model that induce the MDP'sdistribution on �. When the distribution on � consists of independent draws from G0, we needonly create a distribution on s that matches the MDP's distribution over con�gurations. An easyway to do this is to begin with the simple distribution on s arising from the Polya urn scheme thatleads to (2), and then to extend this to a more complex distribution by allowing permutations ofthe indices for � and by allowing gaps in the sequence of indices, so that some of the k clustersmay have indices larger than k.Although it might at �rst seem detrimental to expand the distribution on s through introduc-tion of permutations, or by allowing gaps in the sequence of cluster indices, these expansions areactually helpful. In small examples, the deliberate introduction of non-identi�ability, as with thepermutations for the no gaps model, can be demonstrated to speed convergence of the Markovchain to its limiting distribution. The reason for the improvement in convergence is that the indi-vidual updates in the Gibbs sampler are allowed to range over a larger set of potentially generatedvalues. Viewed in this fashion, it is essentially this same reasoning that leads to recommendationsfor marginalizing unneeded parameters from the Gibbs sampler and for generating blocks of pa-rameters all at once. In large problems, the same technique of expanding the distribution on sthrough natural symmetries in the labeling of the clusters seems to empirically improve the rate ofconvergence of the Markov chain.One natural distribution on (�; s), called the complete model, is described in the longer technicalreport version of this work, available from MacEachern and M�uller (1994). This model allows oneto �t current estimation schemes into the framework developed in this paper. Current estimationschemes based on special cases and approximations are shown to be speci�c choices of Gibbs scan-13
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Figure 1: The data. The scatterplot shows a scatterplot of widths for the �rst (yi1) and secondjoint (yi2) for 74 beetles. The di�erent plot symbols mark the three di�erent species.
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Figure 2: Predictive p(yn+1jy). The white dots show the observations yi. The posterior predictivep(yn+1jy) can be thought of as a density estimate for the unknown sampling distribution of beetlejoint widths for the given species. The format of the density estimate is similar to a conventionalkernel density estimate. It is a mixture of normal kernels. However, the density estimate is modelbased, allows distinct correlation matrices for each normal term, and mixes over hyperparameterslike the number of normal terms k, the prior parameters for cluster location (m and B) and thehyperparameters for cluster covariance matrices (Q and R).
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Figure 3: Cluster and relative weights at iteration 500. The four panels show cluster locations��j (solid dots), covariance matrices ��j (lines of constant Mahalanobis distance equal 0.5 from��j ) and cluster sizes nj (thermometers) for the clusters as they are when resampling si for pointsi = 27, 31, 70 and 33 (clockwise from top). The solid triangles indicate points y27, y31, y70 and y33respectively. The thin dots plot all other data points. Notice that in all four �gures there are threeclusters which take almost all weight, i.e. nj is negligible for the remaining clusters compared tothese three clusters. The three dominant clusters correspond roughly to the three beetle species inthe data.
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Figure 4: Probabilities for resampling the con�guration indicators si. The �gure shows for thesame plots as the the previous �gure, except that instead of the cluster sizes, the probabilities�j = Pr(si = jj : : :) are plotted in the \thermometers". Notice, for example, in the �rst panel,that point y27 could be attributed to each of the three neighboring clusters with reasonably largeprobabilities.
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Figure 5: Some elements of the posterior distribution for the cluster locations �j. Panel (a) showsthe posterior predictive distribution for a new latent variable �n+1. The posterior predictive foryn+1 shown in Figure 2 was the convolution of p(�n+1jy) with p(yn+1j�n+1; y). The predictivedistribution of �n+1 shows the location of the three dominant clusters even more clearly thanp(yn+1jy). Notice the fourth peak in between the two other modes on the right half of the plot. Itis probably due to a combination of the two neighboring clusters corresponding to the two higherpeaks. Panel (b) shows the sample of cluster locations ��j sampled at iterations 300, 1000, 2000,3000, 4000 and 5000. Each circle corresponds to one cluster. The center indicates ��j . The area ofthe circle is proportional to the weight nj of the cluster.
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