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Abstract

Using a new type of array technology, the reverse phase protein array (RPPA), we
measure time-course protein expression for a set of selected markers that are known to
co-regulate biological functions in a pathway structure. To accommodate the complex
dependent nature of the data, including temporal correlation and pathway dependence
for the protein markers, we propose a mixed effects model with temporal and protein-
specific components. We develop a sequence of random probability measures (RPM) to
account for the dependence in time of the protein expression measurements. Marginally,
for each RPM we assume a Dirichlet process (DP) model. The dependence is introduced
by defining multivariate beta distributions for the unnormalized weights of the stick
breaking representation. We also acknowledge the pathway dependence among proteins
via a conditionally autoregressive (CAR) model. Applying our model to the RPPA
data, we reveal a pathway-dependent functional profile for the set of proteins as well
as marginal expression profiles over time for individual markers.

Key words: Bayesian nonparametrics, dependent random measures, Markov beta process,

mixed effects model, stick breaking processes, time series analysis.
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1. Introduction

1.1. Functional Proteomics

Functional proteomics is a systemic biological tool concerned with probing the protein func-

tions and their interaction with therapeutic regimens. Instead of studying individual protein

expression, system biologists now try to decode the behavior of an entire protein pathway,

including protein-protein interaction. Typically, a form of stimulus (such as a drug and/or

small interfering RNAs) is given to the biological system. The system is then observed over

time and the expression of all the proteins in disease-related pathways is measured. Such ex-

periments allow biologists and clinicians to directly investigate causal relationships between

the stimulus and the protein markers as well as the pathway dependence among the markers.

We analyze data from a functional proteomics profiling experiment using reverse phase

protein arrays (RPPA) (Tibes et al., 2006). RPPA is a high-throughput functional proteomic

technology that quantifies the expression for targeted proteins. Researchers can print on

each array more than 1,000 individual patient samples containing the whole cellular protein

repertoire in batches. On the slides, each sample can be recognized as a square matrix of

dots, which represent a dilution series used for quantification of protein expression. Each

slide is probed with an antibody that represents one specific protein. Researchers choose

specific pathways they want to target, usually containing 50-200 proteins, and produce the

same number of arrays, with each array hybridized against one protein. Because of the

reversed design (as compared to the microarray), RPPA’s allow much larger sample sizes

than the traditional microarrays and therefore allow for higher statistical power in detecting

protein interactions.

The RPPA data presented here are time-course data for proteins on a signaling pathway

over time after an initial intervention. We characterize the effect of the intervention by infer-

ence on the changing distribution of protein activation over time. The changing distribution
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summarizes the treatment effect on the entire pathway. Taking a Bayesian perspective, the

desired inference requires a prior probability model for this sequence of random distributions.

Probability models for random distributions are traditionally known as nonparametric Bayes

models. See, for example, Hjort et al. (2010) for a recent review. One of the most popular

nonparametric Bayesian models is the Dirichlet process (DP) model (Ferguson, 1973). Ex-

tending the DP model we define a non-parametric Bayesian model for a time series of random

probability measures. Additional protein-specific random effects account for dependence of

proteins on the same pathway.

1.2. An RPPA study

We recently performed pathway inhibition experiments to study the therapeutic effects

of FDA-approved drugs on ovarian cancer cell lines. Focusing on disease markers in the

EGFR/PI3K pathway (Figure 1), we aim to investigate how Lapatinib, an EGF (epider-

mal growth factor) inhibitor, impacts cellular signaling networks. We formalize the research

question as inference on the distribution on protein activation over time for the proteins on

the EGFR/PI3K pathway. In other words, we are interested in the shift of the distribution

over time.

In the experiment, an ovarian cell line was initially treated with Lapatinib, and then

stimulated with EGF over time. At D = 8 time points, td = 0, 5, 15, 30, 60, 90, 120, and

240 minutes, about 30 proteins were probed using RPPA. For each protein, three replicate

expression intensities were recorded. We normalized the data such that each protein has

a median expression level of 1,000. We then log-transformed the data and computed dif-

ference scores as defined for the significance analysis of microarrays method (Tusher et al.,

2001). The difference scores are between post-treatment and pre-treatment intensities for

each protein at each time point. This pre-processing of the data is necessary in order to

make expressions comparable across proteins. Figures 2 and 3 present histograms and time
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series of these difference scores for the 30 proteins at each of the 8 time points, respectively.

See also Figures B and C in the Supplementary Material for individual plots of each protein.

We first undertake a frequentist analysis of the data using the Bioconductor package

Linear Models for Microarray Data (LIMMA). Specifically, we propose a linear model with

two covariates, protein as a factor with 30 levels (indexed by i), and a partition of the eight

times points into four groups (denoted by cd∗ , d
∗ = 1, 2, 3, 4). In particular, c1∗ = {0}, c2∗ =

{5, 15, 30}, c3∗ = {60, 90, 120}, and c4∗ = {240}. We set the base line time point 0 as the first

group. Then whenever the time is doubled, we define a new group. Denote ydi the difference

score of protein i at time d. A negative value of ydi implies suppression of protein expression

after initial treatment of Lapatinib. Let C = {Cd, d = 1, . . . , D} = {0, 1, 1, 1, 2, 2, 2, 3} be

the group label under the above partition. For each protein, LIMMA fits a linear model of

the form,

ydi = γ + βi,Cd
+ εdi.

We then assess the contrasts that compare the differences between βi,0 (the fitted base-line

mean at time 0) versus other βi,Cd
in which Cd 6= 0. This allows us to see if the protein

expression changed over time groups. We apply the empirical Bayes shrinkage estimation

to calculate moderated t-statistics (Smyth, 2004) and adjust the p-values based on the false

discovery rate (FDR) approach in Benjamini and Hochberg (1995). These are all standard

procedures in the LIMMA package.

We find that four proteins (p.p70S6K.T389, p.JNK.T183.Y185, PKCa, and p.PKC.S567)

are differentially expressed between time group 1 and time group 0, two proteins

(p.p70S6K.T389, pS6.S235.236) between time group 2 and time group 0, and only one pro-

tein (p.p70S6K.T389) between time group 3 and time group 0. This implies that as time

elapses, fewer and fewer proteins are differentially expressed. Protein p.p70S6K.T389 is dif-

ferentially expressed in all three comparisons, suggesting a consistent suppression over time.

This is indeed the case shown in the data. Surprisingly, protein pS6.S235.236 is only iden-
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tified as differentially expressed between time group 2 and time group 0, but not in other

comparisons. Staring at the row data (Figure 3), this protein corresponds to the one with

the largest differences in its expression at almost all the time points relative to time point

0. We need a more detailed modeling and decided to pursue a fully model-based Bayesian

inference. As Section 5.3 shows, the alternative approach discovers interesting and plausible

new findings that echo biological belief.

1.3. Random effects model

The Bayesian analysis aims to achieve three objectives, (i) to characterize the time-varying

distribution of protein activation over time; (ii) to identify proteins that are suppressed due

to deactivation of the pathway by Lapatinib; and (iii) to account for the protein–protein

interaction in the pathway. To this end we propose the following random effects model. Let

Fd, d = 1, . . . , D denote a time-varying distribution of protein activations. Let ui denote

protein-specific random effects. We use ui to account for (known) dependence of proteins in

the pathway. Let ydi denote the observed difference in expression for protein i at time d. We

assume that ydi arises from the model

ydi = xdi + ui + εdi (1)

with independent residuals εdi ∼ N(0, τd) and xdi ∼ Fd, independently. The distributions

{Fd, d = 1, . . . , D} characterize the time-varying activation of the pathway after adjusting

for protein-specific effects.

The experiment includes data on some control proteins. These are proteins that are not

expected to respond to Lapatinib treatment and are included for verification purposes. Due

to the inclusion of these control proteins, we expect multi-modality in the distributions Fd.

This is confirmed by Figure 2. Beyond this, it is difficult to predict specific features of the

time-varying distributions. These considerations rule out the use of standard parametric

models. Instead, we introduce a variation of the nonparametric dependent Dirichlet process
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model, namely the time-series dependent Dirichlet process (tsDDP), to capture the temporal

effects of Lapatinib on the entire protein pathway. For the protein-specific random effects ui

we use a conditionally autoregressive (CAR) model to account for the pathway dependence

among proteins.

The contents of the rest of the paper is described as follows. In Section 2 we introduce

a novel dependent Dirichlet process to model the temporal effects. Pathway dependence

is modeled via a conditionally autoregressive model which is described in Section 3. In

Section 4 we deal with implementation issues and derive an efficient algorithm for carrying

out posterior inference. Results from the analysis of the RPPA data are presented in Section

5 and the paper concludes with some remarks in Section 6.

2. Time-Varying Protein-Activation

2.1 Dependent DP Models

One of the inference goals is modeling of the time-varying distributions, F = {Fd, d =

1, . . . , D}, of protein-activation. We introduce a novel model for a time series of random prob-

ability measures (RPM’s), p(F). In particular, we propose dependent RPMs with Dirichlet

process (DP) marginal distributions (Ferguson, 1973). We define the joint model on the se-

quence of RPMs F by assuming discrete RPMs with common locations of point masses and

varying, but dependent, weights. This construction allows us to specify different strengths of

dependence in different parts of the sample space. This feature becomes relevant when, for

example, two RPMs are judged to be similar in the center of the distributions, but outliers

are likely to be quite different, as is the case for the RPPA data.

The DP prior (Ferguson, 1973) is indexed by two parameters, a total mass parameter c

and base measure G. We write F ∼ DP(c,G). The base measure defines the expectation,

i.e., E(F ) = G and the total mass parameter can be interpreted as a precision parameter;

6



the larger c, the closer the random F is to G.

MacEachern (1999) introduced a general idea to define dependent DP (DDP) as a way

of extending the DP model to multiple random measures F = {Fx, x ∈ X}. Since the DP

generates almost surely (a.s.) discrete RPM, we can write Fx(·) =
∑

hwxh δµxh(·), where δm

denotes a point mass at m and wxh and µxh are random quantities. The key idea behind the

DDP is to introduce dependence across the measures Fx by assuming that the distribution

of the point masses µxh are dependent across different levels of x but still independent

across h. Alternatively the dependence across x can be introduced on the weights wxh,

keeping the model unchanged marginally, for fixed x. There are several ways to achieve this.

For instance, in the basic version of the DDP the weights are assumed constant across x,

i.e., wxh = wh, and the dependence of µxh’s across x could be obtained by using a Gaussian

process (MacEachern, 1999). Alternatively, DeIorio et al. (2004) indexed Fx with categorical

factors x to define an analysis of variance type dependence of the µxh across x. Moreover,

Gelfand et al. (2005) worked with spatial data and defined dependence through a spatial

Gaussian process. In a time series setting, taking x to be time, Caron et al. (2007) and

Rodriguez and Ter Horst (2008) considered dynamic DP models by introducing first order

dependence in the µxh via a generalized Polya urns scheme and a dynamic linear model

respectively. Recently, Barrientos et al. (2011) have shown that, however the dependence is

introduced in the model, weights and/or locations, the DDP has full weak support.

Our proposed model is a special case of the general DDP model introduced in MacEachern

(1999). Most definitions of DDP models, including all examples above except for Griffin and

Steel (2006), introduce the desired dependence on the locations µxh. In contrast, we proceed

by introducing the dependence through the weights. We believe dependence on the weights

and common locations to be more natural for time series analysis than common weights

and dependent locations. From a data analysis point of view, the former corresponds to

discretizing the sample space, with a common discretization over the sequence of random
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measures. The latter can be interpreted as a discretization on the probability scale.

In two other independent works, Taddy (2010) and Griffin and Steel (2011) proposed

stick breaking autoregressive models, which include the DP as special case. In particular,

Griffin and Steel (2011) construct correlated RPMs Fd indexed by continuous time d. They

start with a stick breaking construction at time d = 0. As time progresses additional point

masses are added, in a way that leaves the marginal distribution of Fd unchanged and

introduces the desired correlation. The arrival times when new point masses are added are

latent. This is in contrast to the proposed model that will use common locations and time

varying weights only. Taddy (2010) uses a construction that is closer related to our proposed

process. He works with stick-breaking RPMs and introduces the desired dependence via a

beta autoregression on the fractions of the stick breaking constructions by means of two sets

of latent variables. The construction implicitly assumes equally spaced time points. On the

other hand, we will use a latent binomial process to induce the desired correlation and we

can easily accommodate unequal time points.

2.2 Time-Series DDP

We define a probability model for a sequence of dependent measures {F1, F2, . . . ,FD}. Recall

Sethuraman’s (1994) stick breaking representation for an RPM

Fd =
∞∑
h=1

wdh δµdh (2)

for d = 1, . . . , D. The random cumulative distribution function has steps of size wdh at

locations µdh. Let Be(a, b) denote a beta distribution with mean a/(a + b). Sethuraman

showed that a constructive definition of Fd ∼ DP(c,G) is achieved by taking µdh
iid∼ G and

wdh = vdh
∏

j<h(1− vdj) for independent vdh
iid∼ Be(1, c).

We introduce dependence between (Fd, Fd+1) by the following construction. We assume

common locations µdh = µh for all d = 1, . . . , D, and introduce the desired dependence

through the weights. We introduce latent binomial random variables (r.v.) that link vdh and
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vd+1,h, and thus (wdh, wd+1,h).

Specifically, the joint distribution p(F1, . . . , FD) is defined by considering the stick break-

ing representation (2) for each Fd, d = 1, . . . , D, with common locations

µdh = µh
iid∼ G,

together with a joint distribution for (v1h, . . . , vDh) assumed to be a Markov process similar

to the one considered by Nieto-Barajas and Walker (2002). It is defined conditional on latent

variables zdh:

v1h ∼ Be(1, c),

zdh | vdh ∼ Bin(mdh, vdh), vd+1,h | zdh ∼ Be(1 + zdh, c+mdh − zdh) (3)

for d = 1, . . . , D − 1.

We refer to the joint model for (F1, . . . , Fd) as time series DDP. We write (F1, . . . , Fd) ∼

tsDDP(c,G ,m), where m = {mdh} for d = 1, . . . , D and h = 1, 2 . . . Let v = {vdh} and

z = {zdh}. To verify the marginal distribution p(Fd), we note that the Markov process for

(v, z) is fully stationary with p(vdh) = Be(1, c) as the marginal distribution for vdh, which

together with the independent and identically-distributed model on the point masses µh

implies that Fd ∼ DP(c,G), marginally, for d = 1, . . . , D.

Equations (3) define a joint distribution for vdh and zdh. The role of the latent variable

zdh is to introduce dependence between the pair (vdh, vd+1,h). The strength of the dependence

is specified by mdh. A larger binomial sample size mdh implies higher correlation. In fact,

Corr(vdh, vd+1,h) = mdh/(1 + c + mdh). In the limiting case when mdh → ∞, we get equal

weights (i.e., vdh = vd+1,h w.p. 1) and, doing so for all d and h, we obtain identical random

measures Fd = F1 for d = 2, . . . , D w.p. 1. However, if mdh = 0, vdh and vd+1,h become

independent. If we set mdh = md for all h we produce the same degree of dependence

in the pairs (vdh, vd+1,h). In the case of the RPPA data, the observation times td are not
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equally spaced. We address this by considering mdh = mh∆d or simply mdh = m∆d, where

∆d = 1/(td+1−td) and td’s are the actual times at which the ydi’s were observed. If the elapsed

time from distributions d and d+1 is short, then ∆d is large and implies a strong dependence,

whereas a longer elapsed time between distributions implies a weaker dependence.

One way of assessing the dependence structure induced by our model is by considering

the correlation between the probability masses of distributions Fd and Fd+1. This correlation

is shown in the following Proposition.

Proposition 1 Let A ⊂ IR be measurable. For (F1, . . . , FD) ∼ tsDDP(c,G ,m), let ρd(A) ≡

Corr{Fd(A), Fd+1(A)}. Then ρd(A) > 0 and is given by

ρd(A) = (1 + c)
∞∑
h=1

adh

h−1∏
i=1

bdi +
G(A)

1−G(A)

[
∞∑
h=1

{2− (1 + c)adh}
h−1∏
i=1

bdi − (1 + c)

]
,

where for i = 1, 2, . . . , and d = 1 . . . , D − 1,

adi =
2(1 +mdi) + c

(1 + c+mdi)(1 + c)(2 + c)
and bdi =

c− 1

1 + c
+ adi.

See (4) below for a highly simplified expression in an important special case.

The proof is postponed to the Appendix. The correlation between two adjacent RPMs is

larger in regions where the prior mean G assigns more probability. That is, the prior model

places the strongest dependence in the most probable regions according to G. The expression

greatly simplifies when mdh = md for all h. It can be shown that the correlation in this case

simplifies to

ρd(A) =
1 + c

1 + 2c(2 + c+md)/(2 + c+ 2md)
. (4)

Furthermore, if md = 0 then

ρd(A) = (1 + c)/(1 + 2c).

Recall that a value of mdh = 0 implies independence between (vdh, vd+1,h). However, formula

(4) indicates that even if vdh is independent of vd+1,h ∀h, Fd is still correlated with Fd+1 due
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to the common point masses µdh. In fact, for the same simplified case when mdh = md = 0,

if c → 0 implies that ρd(A) → 1, whereas if c → ∞ implies that ρd(A) → 1/2. In other

words, if mdh = 0 then ρd(A) ∈ (1/2, 1). Note that a moderate to strong dependence in the

measures Fd and Fd+1 does not imply a strong dependence in the observations xdi and xd+1,j.

Consider the extreme case when mdh →∞, i.e. Fd = Fd+1 w.p. 1, then xi, xj|Fd
iid∼ Fd, with

Fd ∼ DP(c,G), implies that Corr(xi, xj) = 1/(c+1) which can cover the whole range in (0, 1).

Thus, for finite mdh this correlation should be lower, i.e. Corr(xdi, xd+1,j) ≤ 1/(c + 1). For

most time-course problems one would assume at least moderate correlations in the measures.

The restriction to ρ ≥ 1/2 is therefore reasonable.

Remark 1: The implied correlations ρd(A) of the dependent measures in a DDP model

highlight a fundamental difference between alternative constructions: (1) common weights

and dependent locations (as in MacEachern (1999)); (2) common locations and dependent

weights, as in the proposed model (3). Consider the extreme cases of the two models:

(a) common weights with independent locations; (b) common locations with independent

unstandardized weights vdh. Model (a) implies that ρ(A) = 0. Model (b) implies that

ρ(A) ≥ 1/2. The common locations in the latter model give rise to a natural dependence,

even with independent weights.

In summary we assume

xdi | Fd
iid∼ Fd

(F1, . . . , FD) ∼ tsDDP(c,G ,m). (5)

Since the distributions {Fd}Dd=1 are dependent, adjacent effects (xdi, xd+1,j) are also (marginally)

dependent after integrating with respect to the RPMs Fd’s. Equations (1) and (5) can be

viewed as a dynamic state space model (Harrison and Stevens, 1976).

3. Pathway Dependence
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The second important component in model (1) are the protein-specific effects ui’s. A depen-

dent prior on u = (u1, . . . , un) accounts for dependence of proteins on the common pathway.

We assume known dependence structure, summarized in the consensus pathway shown in

Figure 1. We represent this (known) dependence as a conditional autoregressive (CAR)

model, originally studied by Besag (1974). The general specification of the CAR model for

a vector u′ = (u1, . . . , un) is

u ∼ N (0, Dλ(I − αB)) , (6)

where I is the identity matrix, B is an n × n matrix such that bii = 0, Dλ = diag(λi) and

α is such that αωi < 1 for i = 1, . . . , n, with ωi the eigenvalues of B (Wall, 2004). Different

choices of matrices Dλ and B produce different CAR models. In particular, Cressie (1973)

suggests to use

Dλ = λI and B = W,

where W denotes the adjacency matrix of the protein interaction, such that wii = 0 and

wii′ = 1 if proteins i and i′ are neighbors (i ∼ i′). We will use this latter specification of

Cressie.

We define the proximity matrix W as follows: Considering the pathway diagram in

Figure 1, we first remove the feedback loop from p70 to EGFR to interpret the graph as a

directed acyclic graph (Thulasiraman and Swamy, 1992). We then marginalize with respect

to the proteins that are not recorded in the data and finally use moralization to define a

neighborhood structure for u. Any protein that was recorded in the data, but does not

feature on the pathway, is simply included without neighbors.

To ensure propriety of model (6), the association parameter needs to satisfy the condition

(Cressie, 1973), α ∈ (γ−1min, γ
−1
max), where γmin and γmax are the minimum and maximum eigen-

values of the adjacency matrix W . In our case, the range of values for α is (−0.4374, 0.1734).

We will consider a prior distribution for α in its range of values by translating a beta distri-

bution. That is, if we want α ∈ (c1, c2) we will take α = c1 + (c2 − c1)X with X ∼ Be(a, b).
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In notation we will say that α ∼ TBe(a, b, c1, c2). The model is completed by considering a

prior distribution on the precision parameter λ of the form λ ∼ Ga(αλ, βλ).

4. Posterior inference

An important feature of the proposed model is the easy implementation of posterior MCMC

simulation. The key problem is to sample from the posterior distribution of the random

distributions Fd. To this end we propose a collapsed Gibbs sampler based on marginalizing

with respect to the non-allocated point masses in the stick breaking representation of Fd,

similar to Papaspiliopoulos and Roberts (2008).

Recall that our model is defined by equations (1), (5) and (6) together with its hyperprior

distributions on prior parameters c, m, λ and α. Additionally, a prior distribution is assumed

for the residual precision, τd ∼ Ga(ατ , βτ ).

For the following discussion it is convenient to rewrite xdi|Fd ∼
∑

hwdh δµh with a latent

indicators kdi

Pr(kdi = h) = wdh, and xdi = µkdi .

We also introduce notation that will be helpful. Let k = {kdi, i = 1, . . . , nd, d =

1, . . . , D} denote the set of latent indicators and k∗ = {k∗1, . . . , k∗s} denote the set of unique

values in k. Also, let µ∗ = {µh, h ∈ k∗} denote the set of point masses that are linked with

the latent variables xdi’s. We set H = max{k∗}, i.e., H is the highest index of a point mass

µh that is sampled as a latent xdi. Recall from Proposition 1 that c and mdh control the

level of dependence. Let ∆d = 1/(td+1 − td) and mdh = md = m∆d. We use the data to set

values for the remaining parameters c and m by including them in the unknown parameter

vector and completing the model with a hyperprior on (c,m). We assume c ∼ Ga(αc, βc)

and m ∼ TPo(ξ, κ) independently a priori, where TPo(ξ, κ) denotes a truncated Poisson

distribution with intensity ξ and upper bound κ. Moreover, the centering measure G is

13



considered to be a N(µ0, τ0).

For later reference we denote the complete parameter vector as

θ = (x,k,µ∗, z,v, τ , c,m,u, λ, α) .

Here v = (vdh, d = 1, . . . , D, h = 1, . . . , H). We only include the weights for point masses

1 through H and locations for allocated point masses, h ∈ k∗. The remaining parameters,

including weights beyond H and non-allocated locations µh, h 6∈ k∗, are not required in the

following posterior simulation. In other words, we can analytically marginalize with respect

to these parameters, allowing us to define posterior simulation for p(θ | data). Note that

θ includes s ≤ H locations µ∗, but exactly H weights vdh (for each d), i.e., locations of

allocated point masses only, but weights of all point masses with indices up to H.

Posterior inference is implemented via Markov chain Monte Carlo (MCMC) simulation

(Tierney, 1994). The posterior conditional distributions can be found in the Appendix in the

Supplementary Material. Fortran code for implementing this model can be obtained upon

request from the first author.

Ishwaran and James (2001) proposed a general algorithm for carrying out posterior in-

ference in stick breaking processes that is similar to ours in the sense that it works with

the posterior distribution of the whole process. Their method is called the blocked Gibbs

sampler, which is an approximation to the posterior distribution of the process. Our algo-

rithm involves no approximation and is computationally efficient due to the marginalization

wherever possible.

5. Data Analysis

5.1 MCMC implementation and hyperparameters

We carry out inference for the time-course RPPA data described in the Introduction by

implementing the random effects model (1), (5) and (6). Recall that nd = 30 proteins were
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measured for D = 8 time points. The recorded difference scores ydi are shown in Figure 3.

We implement MCMC simulation and obtain a Monte Carlo posterior samples of all the

parameters in the model, θ, and in particular of the RPM’s Fd. The desired inference on

the overall effect of the intervention on the entire pathway is summarized by E(Fd | data)

over time d = 1, . . . , D.

The eight observation times were 0, 5, 15, 30, 60, 90, 120, and 240 minutes. We use time

units of 5 minutes and took mdh = m∆h with ∆1 = 1, ∆2 = 1/2, ∆3 = 1/3, and ∆d = 1/6

for d = 4, 5, 6, and ∆7 = 1/24. We complete the model specification with µ0 = 0, τ0 = 0.1,

ατ = βτ = αλ = βλ = 0.1. For comparison we consider several choices for the hyperpriors

on c, m and α. In particular, for the parameter m we take truncated Poisson distributions

with upper bound of 5. Remember that the parameter m acts as a binomial sample size

in the conditional distribution of the latent z (see equation (3)), which is turn plays the

role of latent observations in the posterior distribution of the unnormalized weights v (see

conditional distribution (c) in Section 3). So, since the actual sample size for each time

td is relatively small (30 proteins), constraining z to take small values avoids that prior

information swamp the data. On the other hand, according to Carlin and Banerjee (2003),

CAR models have better performance for values of α close to the upper limit. We will

consider noninformative and informative priors for α to compare.

We ran the Gibbs sampler for 300,000 iterations with a burn-in of 50,000. After burn-in

we saved the imputed state every 10th iteration. We assessed model fit using the logarithm of

the pseudomarginal likelihood (LPML) statistic (Gelfand et al., 1992), which is a summary of

the individual conditional predictive ordinates (CPO). Alternative ways of model comparison

rely on the use of Bayes factors. However, according to Basu and Chib (2003), Bayes factors

for Dirichlet processes mixture models are technically difficult to compute and instead they

suggest to compute CPOs for model comparison.

We considered models with combinations of Ga(1, 1) or Ga(0.1, 0.1) priors on c, and
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TPo(1, 5) or TPo(5, 5) for m and TBe(1, 1, c1, c2) or TBe(18, 2, c1, c2) with c1 = −0.43 and

c2 = 0.17 on α. We find LPML values (not shown) between 54 and 61 with the highest LPML

reported for c ∼ Ga(1, 1), m ∼ TPo(1, 5), α ∼ TBe(18, 2, c1, c2). The LPML indicates that

the model fit is not very sensitive to the hyper-prior choices of c and m, however it is sensitive

to the prior choice of α. We find better fit under an informative prior for α, TBe(18, 2, c1, c2),

versus a flat prior TBe(1, 1, c1, c2). This confirms Carlin and Banerjee (2003) who observed

that values of α closer to the upper limit better capture the dependence and result in a

better fit.

5.2 Alternative models

Before we proceed with data analysis, we compare the proposed model versus other alterna-

tives. The first alternative model (Model M1) assumes a temporal random effect common

to all individuals of the form xdi = xd
iid∼ N(0, φ), with φ ∼ Ga(αφ, βφ). Model M2 also

assumes a common temporal effect for all individuals but with a quadratic shape (suggested

by the data) of the form xdi = xd = ω0 + ω1td + ω2t
2
d, with ωk

iid∼ N(0, φ) for k = 1, 2, 3.

Since the proposed model assumes a time series of random distributions {Fd}, a natural sim-

plification could be to consider a common random distribution for all d’s. Thus, the third

alternative model, Model M3, uses Fd ≡ F with F ∼ DP(c,G). The last two competing

models belong to the general class of DDP models (MacEachern, 1999) but in contrast to

our proposal, impose the dependence in the locations instead of the weights. Model M4 is

a linear DDP, a straightforward extension of DeIorio et al. (2004), with xdi = adi + bditd,

where (adi, bdi)|F
iid∼ F and F ∼ DP(c,G), with G = N(0, φa) × N(0, φb). Finally, Model

M5 simplifies the latter model and borrows strength across time by considering a common

intercept and slope in time for each individual, that is, xdi = ai + bitd, where (ai, bi)|F ∼ F

and F ∼ DP(c,G) with G as in Model M4.

For each of the five alternative models we implement posterior MCMC simulation. In all
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cases, the priors for the common parameters are: τd ∼ Ga(0.1, 0.1), for d = 1, . . . , 8, λ ∼

Ga(0.1, 0.1), α ∼ TBe(18, 2,−0.4374, 0.1734). The samplers were run with the same specifi-

cations of length, burn-in and thinning as our model. We also took αφ = βφ = φa = φb = 0.1.

In M2 we fixed φ = 0.1. In M3, M4 and M5 we assumed c ∼ Ga(1, 1). Again, LPML statistics

were computed to assess model fitting. We found LPML = 34.98, 38.17,−1.28, 14.80, 39.75

for models M1 through M5, respectively. The the DDP model M5 provides the best fit.

The second best fitting is the parsimonious quadratic model M2. However, cross examining

the LPML values obtained by our model and the five competing models, reveals that the

proposed new model compares favorably against all alternative models considered.

5.3 Results

We now report posterior inference under the proposed model. In the sequel we consider the

model with prior specifications: c ∼ Ga(1, 1), m ∼ TPo(1, 5) and α ∼ TBe(18, 2,−0.43, 0.17).

For Fd, the most important tuning parameters in the tsDDP model are c and m. They

control the discreteness of and the dependence between the random distributions {Fd} re-

spectively. The posterior distributions of these two parameters are included in Figure A in

the Supplementary Material. The posterior mean of c is 1.24 with a 95% credibility interval

(0.50, 2.37). Having a small value of c means that the random distributions Fd’s have large

variability around the centering measure. At the same time, this value also suggests that

most of the probability mass of Fd is concentrated on a few point masses. In fact, the number

of clusters (different µh’s in the stick-breaking representation (2)) ranges from 6 to 11 with

95% probability and mode in 8.

The posterior distribution of m favors larger values of m with a distinct mode in 5.

Recall that m controls the degree of dependence in the unnormalized weights in the stick-

breaking representation that defines the tsDDP . The larger m, the stronger the dependence.

To better understand the impact of c and m in the posterior inference, we computed the

17



pairwise correlations between adjacent distributions Fd’s, using Proposition 1. Figure 4

shows the evolution of the correlation ρd(A) = Corr{Fd(A), Fd+1(A) | m, c}, for d = 1, . . . , 7,

whose expression in given in (4). For the distributions separated by 5 minutes, F1 and F2,

there is a high correlation of around 0.883, whereas for those distributions with a separation

of 120 minutes, F7 and F8, the correlation reduces to 0.681.

Figure 5 summarizes inference on Fd. Inference on F = {Fd} shows the time varying

effect of the intervention on the entire pathway. The figure plots E(Fd|data), arranged by

td, d = 1, . . . , 8. Two important features are visible in the figure. In panel (a), which

represents Fd(x) over x < 0, we see increasing suppression over the times t1 = 0 through

t5 = 60. Starting with t6 = 90 the effect is wearing off. The treatment does not equally

impact all proteins in the pathway. A sizeable fraction of around 90% of the proteins remains

unaffected. This is represented by the (practically) invariable probability mass around x ≥ 0

(i.e., no difference to baseline t1 = 0) in panel (b).

For the protein specific random effects, there are two parameters which play an important

role in the determination of the CAR model. The parameter λ is the precision of the random

effects around a linear combination of the neighbors’ random effects (Carlin and Banerjee,

2003). The posterior mean of λ is 23.71 with a 95% credible interval (10.49, 46.59), which

suggests a moderate to large precision. The other parameter is α. This parameter is usually

referred to as the spatial association parameter (Carlin and Banerjee, 2003). Remember

that, to ensure the propriety of the prior for u, α is bonded to lie between −0.43 and

0.17, reciprocals of the minimum and maximum eigenvalues of the adjacency matrix. After

assigning an informative prior, the posterior estimate of α is 0.114, with P(α > 0 | rest) =

0.99, which confirms the significance of the association parameter α and implies a positive

dependence among neighbor proteins in the consensus pathway of Figure 1.

To assess model fit we present in Table 1 posterior predictive ordinates (CPOdi) for each

protein i at all observed times d = 1, . . . , 8. This statistic is defined as CPOdi =
∫
p (ydi |
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y(−di)), where y(−di) denotes the data with yid removed. We are interested in finding proteins

with small (large negative) CPO values, which would imply that the expression level of the

protein at the specific time point is extreme. For instance, for the first protein in Table

1, pAKT.S473, Lapatinib shows a short and long term effect, it has a stronger suppressing

effect immediately after the drug was administered (i.e., at times t = 0 and t = 5), then it

vanishes and the effect comes back in time t = 240. On the other hand, for proteins like

pS6, in its two versions, the suppressing effect of Lapatinib is constant, varying smoothly

over time.

From the CPO values (Table 1) together with the evolution of the observed difference

scores (Figures 2 and 3), we deduce that there are some proteins that consistently show

a negative difference score across observation times. To identify such proteins we consider

the (estimated) individual protein-specific effect ui for each of the proteins, i = 1, . . . , 30.

Table 1 (last two columns) lists the posterior means E(ui | data), together with the posterior

probability of the random effect being negative P(ui < 0 | data). If we control the Bayesian

false discovery rate (FDR) (Newton et al., 2004) to be at most 10%, we detect nine proteins

being significantly suppressed by Lapatinib. They have been highlighted in bold face in the

last column of Table 1. In fact, these nine significant proteins correspond to only six different

proteins, since some of them appear with different phosphorylated compositions. Plots for

each protein in separate panels are included in Figures B and C in the Supplementary

Material, together with point and interval prediction from the model.

We now compare these results with the EGF signaling pathway, shown in Figure 1. The

six significantly detected proteins are: p70S6K, s6, AKT, JNK, GSK3, and cJun. The first

three proteins belong to the PI3K pathway, and the last two proteins are involved in cellular

events (e.g., cell cycle glucose metabolism) that are downstream but regulated by the PI3K

pathway (Hennessy et al., 2005). The same authors also show that JNK is regulated by ASK1

which in turn is inhibited by AKT. Proteins p70S6K and s6 were expected to be inhibited
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when phosphorylated since they are controls. AKT is the second protein downstream of

EGFR in the pathway. Therefore, our inference confirms the relationship between EGFR

and AKT.

Considering the pathway diagram, it is surprising that EGFR did not show any significant

suppression. However, in this ovarian cell line, EGFR is not highly expressed in the first

place, and therefore not expected to be significantly suppressed. We see some suppression

in Table 1 but only at low levels, confirming this expectation. For proteins LKB1, PKC and

mTOR, which are also part of the pathway, we found out that the reagents for these proteins

are of poor quality. Therefore, even though they are downstream of EGFR in the pathway,

they are not expected to be suppressed due to technical issues. This is confirmed in Table

1. There are three proteins GSK3, JNK and cJun that were significantly suppressed but are

not part of the pathway. We believe that the suppression of GSK3 and JNK are due to the

suppression of AKT. Specifically, Diehl et al. (1998) and Hennessy et al. (2005) respectively

showed that AKT inhibits GSK3 and JNK. The suppression of cJun is a surprising result

since Lochhead et al. (2001) showed that GSK3 inhibits cJun. Therefore, suppression of the

GSK3 should lead to activation of cJun. The fact that cJun is also suppressed implies that

there could be other unknown mechanism related to the regulation of cJun.

6. Discussion

In pursuing an analysis of functional proteomics data, we proposed a random effects

model with protein-specific and temporal components. For the protein-specific components

we considered a CAR model that accounts for the pathway interaction among proteins. For

the temporal effects, we have introduced a new time series DDP model. The main feature of

this latter model is a non-exchangeable dependence structure for the random distributions

Fd across time d. The correlation between distributions Fd and Fd′ could possible decrease

or increase with |d − d′|; thus the name time series DDP. The marginal model for Fd at
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any given time point remains a traditional Dirichlet process model. Posterior simulation is

reasonably straightforward.

In general, the time series DDP model is suitable whenever a random distribution evolves

over time and a flexible nonparametric model is desired. Additionally, it is particularly useful

when the interest is the identification of subpopulations that might move differently over

time than others, as was the case for the inhibited and non-inhibited proteins in the RPPA

dataset. Additionally, the model is capable of dealing with unbalance designs with different

time points for different samples.

We focused on the random effects, spatial and temporal, since these are the elements

of interest in the motivating application. However, in many other data analysis problems

the investigator might be interested in the clustering that is inherent to the DP mixture

model. Recall the latent indicators kdi that were introduced in the description of the poste-

rior MCMC simulation. The kdi implicitly describe a random partition. Investigators who

are interested in the random clustering of the experimental units (proteins in our case) could

report summaries of the posterior on kdi. Additionally, like any DP based model, the pro-

posed model is not restricted to univariate distributions. The point masses µh can be of

arbitrary dimension without changing any of the discussion. Finally, increasing the number

of observations and/or the time points does not complicate the computations due to the

collapsed Gibbs sampler proposed.

As an overall conclusion from the data analysis, we note that the epidermal growth factor

pathway, presented in Figure 1, has been confirmed, with exceptions in some proteins like

EGFR for the particular case of the ovarian cell line. The most important findings are the new

discoveries of proteins that were not previously thought to be part of the pathway. These

findings shed some light in the understanding of the ovarian cancer that need immediate

attention and further study.

Finally, we did not extensively investigated frequentist operating characteristics for the
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tsDDP model. We expect them to be comparable to the BAR model of Taddy (2010) since

both models allow for dependence of the stick breaking unnormalized weights.
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Table 1: Conditional predictive ordinates CPOdi for each observation, together with posterior

estimates of random effects ûi = E(ui|data) and probabilities of being negative P(ui < 0|data).

Bold numbers correspond to those detected to be inhibited with a 10% of Bayesian FDR.

Elapsed time
ID Protein t = 0 t = 5 t = 15 t = 30 t = 60 t = 90 t = 120 t = 240 ûi P(ui < 0)
1 pAKT.S473. -1.09 -2.07 0.20 0.44 0.23 0.14 0.61 -0.67 -0.34 1.00
2 pAKT.T308. 0.60 0.69 0.96 0.75 0.21 0.35 0.70 -0.78 -0.04 0.71
3 AKT 0.52 0.71 0.92 0.62 0.44 0.51 0.50 0.47 0.11 0.05
4 pGSK3a.b.S9.21. 0.44 0.16 0.81 0.57 0.77 0.59 0.78 0.47 -0.09 0.91
5 GSK3a.b 0.54 0.54 0.81 -1.80 0.56 0.19 -0.65 0.39 -0.06 0.80
6 pmTOR.S2448. 0.63 0.72 0.97 0.51 0.46 -0.24 0.32 0.39 -0.01 0.58
7 mTOR 0.58 0.14 0.05 -1.13 -0.57 0.65 0.61 -2.19 0.05 0.23
8 p.p70S6K.T389. -3.33 -1.00 0.73 0.18 0.30 0.10 0.56 -2.30 -0.40 1.00
9 p70S6K 0.62 0.56 0.73 0.47 -1.30 0.25 0.75 0.15 0.13 0.02
10 pS6.S235.236. -4.58 -2.70 -0.75 -2.69 -2.18 -2.09 -2.82 -1.13 -0.67 0.99
11 pS6.S240.244.204769 -0.70 0.02 -1.03 -2.91 -1.67 -1.81 -1.22 -3.32 -0.30 0.95
12 s6 0.69 0.68 0.97 0.63 0.30 0.56 0.80 0.58 0.08 0.11
13 LKB.1 0.66 0.76 0.85 0.56 0.52 0.70 0.74 0.34 0.09 0.09
14 pAMPK.T172. 0.45 0.69 0.94 0.57 0.53 -0.23 0.77 0.43 0.21 0.00
15 pTSC2.T172. 0.59 0.50 0.93 0.64 0.42 0.29 0.98 0.46 -0.01 0.59
16 pTSC2 0.59 0.72 0.89 0.63 0.78 0.66 0.76 0.61 0.01 0.43
17 TSC2 0.69 0.68 0.52 0.42 0.40 0.59 0.80 -0.37 0.06 0.20
18 pMEK1.2.S217.221. 0.68 0.59 1.05 0.77 0.24 0.37 0.77 0.49 0.00 0.49
19 p.p38.T180.Y182. 0.38 0.65 0.84 0.49 0.75 -0.41 0.93 0.38 0.07 0.14
20 p38 0.56 0.65 0.67 0.73 0.75 0.51 0.78 0.47 0.09 0.09
21 pJNK.T183.Y185. -0.36 0.18 0.44 0.28 0.45 0.36 0.13 0.20 -0.23 1.00
22 pc.Jun.S73. 0.69 0.54 0.77 0.67 0.40 0.46 0.42 0.60 0.00 0.52
23 C.Jun 0.59 -0.76 0.72 0.05 0.09 -0.86 0.87 0.46 -0.05 0.79
24 pEGFRR 0.38 0.15 -0.20 0.46 0.36 0.33 0.80 0.08 0.01 0.46
25 EGFR 0.48 0.77 0.87 0.80 0.41 0.35 0.37 0.59 0.14 0.02
26 pSrc.Y527. 0.64 0.76 1.02 0.44 0.40 0.74 0.86 0.47 0.06 0.20
27 CyclinB1 0.53 0.69 0.48 0.68 0.46 0.74 0.48 0.46 0.08 0.12
28 B.Catenin 0.65 0.76 0.63 0.45 0.31 0.76 0.79 0.36 0.09 0.08
29 PKCa 0.52 0.76 0.69 0.88 0.67 0.49 0.57 0.61 0.10 0.07
30 p.PKC.S567. 0.45 0.76 0.92 0.70 0.50 0.63 0.90 0.53 0.09 0.10
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Figure 1: EGFR/PI3K Pathway. The study drug, Lapatinib, targets EGFR (epidermal growth

factor), which in turn elicits downstream activation and signaling by several other proteins. The

diagram is a stylized representation of the consensus molecular pathways.
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Figure 2: Histogram of the pre- versus post-treatment differences in the expression levels of proteins

in the EGF pathway after treatment with the EGF inhibitor Lapatinib.
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Figure 3: Time series plot of the pre- versus post-treatment differences in the expression levels of

proteins in the EGF pathway after treatment with the EGF inhibitor Lapatinib.
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for d = 1, . . . , 7, given by expression (4).
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Figure 5: Plots of F̂d = E(Fd|data), d = 1, . . . , 8, as a c.d.f. Panel (a) plots F̂d(x) over x < 0,

corresponding to proteins that respond to the initial Lapatinib treatment. Panel (b) presents F̂d(x)

over the full support, showing that the remaining probability mass for x ≥ 0 stays practically

unchanged.
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