
Rubbery Polya Tree

Luis E. Nieto-Barajas
1,2 and Peter Mueller

1

1Department of Biostatistics, M.D. Anderson Cancer Center, USA

2Department of Statistics, ITAM, Mexico

Abstract

Polya trees (PT) are random probability measures (RPM) which can assign proba-
bility one to the set of continuous distributions for certain specifications of the hyper-
parameters. This feature distinguishes the PT from the popular Dirichlet process (DP)
model which assigns probability one to the set of discrete distributions. However, the
PT is not nearly as widely used as the DP prior. Probably the main reason is an awk-
ward dependence of posterior inference on the choice of the partitioning subsets in the
definition of the PT. We propose a generalization of the PT prior that mitigates this
undesirable dependence on the partition structure, by allowing the branching proba-
bilities to be dependent within the same level. The proposed new process is not a PT
anymore. However, it is still a tail free process and many of the prior properties remain
the same as those for the PT.

Key words: Bayes nonparametrics, Markov beta process, partition model, Polya tree, random

probability measure, tail free distribution.

1 Introduction

Since Ferguson (1973) introduced the Dirichlet process (DP) prior model it has become the

by far most popular model in nonparametric Bayesian inference. Nonparametric Bayesian

inference implements statistical inference with minimal assumptions similar to classical non-

parametric methods. The DP prior is used as a prior model for unknown distributions. It

allows inference for unknown distributions without the restriction to parametric families.

See for example Walker et al. (1999) for an overview of nonparametric Bayesian methods.

However, a critical limitation of the DP is the restriction to the space of discrete dis-

tributions, complicating the use for applications with continuous data. Antoniak (1974)
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considered mixtures of DP models by defining mixtures with respect to the hyperparame-

ters of the centering measure (mixture of DP). In a different approach towards overcoming

discreteness, Lo (1984) and Escobar and West (1995) used the DP as a mixing distribution

to convolute a continuous (usually normal) kernel and introduced the DP mixture model

(DPM). Since then many authors have developed applications in a variety of fields. Exam-

ples are Kottas et al. (2005) or Do et al. (2005), among many others.

In contrast, the Polya tree (PT) which could be arguably considered the simplest RPM

for continuous data, has not seen much use since the early papers by Lavine (1992, 1994)

who studied the properties of the Polya tree. Perhaps the main reason for the limited use of

the model is the dependence of inference on the arbitrarily chosen partitioning subsets which

are required in the definition of the PT prior. The density of the posterior estimated RPM

is discontinuous at the boundaries of the partitioning subsets. To overcome this awkward

dependence on the partitions, Lavine (1992, 1994), Hanson and Johnson (2002) and Hanson

(2006) have considered a mixture of Polya trees by mixing over the centering measure that

defines the tree (and thus the partitions). With the same objective, Paddock et al. (2003)

considered a randomized Polya tree allowing the partitions to be jittered. More recent

applications of PT models include, among others, Branscum et al. (2008) for inference with

ROC curves, Branscum and Hanson (2008) for meta-analysis, Hanson and Johnson (2002)

for regression residuals, Li et al. (2008) for genetic association studies, Hanson and Yang

(2007) for survival data, Zhang et al. (2009) for survival data with longitudinal covariates,

Yang et al. (2010) for repeated measurement data, Zhao and Hanson (2010) for spatially

dependent survival data, Paddock (2002) for multiple imputation in missing data problems,

and Jara et al. (2009) for multivariate PTs in mixed effects models. But the model is nowhere

near as commonly used as the DP prior.

Polya tree priors are members of a more general class of tail free processes (Freedman,

1963; Fabius, 1964). In words, PTs are essentially random histograms with the bins deter-

mined by recursive binary splits of the sample space. Figure 1 illustrates the nested binary

partitions created by these splits. Starting with the sample space B, a tree of nested parti-
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tions is defined by Bε1···εm = Bε1···εm0∪Bε1···εm1. The partitioning sets for the partition at leve

m of the tree are indexed by binary sequences (ε1 · · · εm), i.e., πm = {ε1 · · · εm; εj ∈ {0, 1}}

is a partition of the sample space B.

For a formal definition, let Π = {πm;m = 1, 2, . . .} be a tree of measurable partitions

of (IR,B); that is, let π1, π2, . . . be a sequence of measurable partitions such that πm+1 is a

refinement of πm for each m = 1, 2, . . ., and ∪∞
m=1πm generates B. Let E = ∪∞

m=1{0, 1}
m be

the infinite set of binary sequences, such that, if ε = ε1 · · · εm ∈ E then Bε defines a set at

level m, i.e. Bε ∈ Πm. Without loss of generality we assume binary partitions, i.e., a set

Bε ∈ πm is partitioned as Bε = Bε0 ∪Bε1 in πm+1. Partitioning subsets in πm are indexed by

dyadic sequences ε = ε1 · · · εm.

Definition 1 (Ferguson, 1974). A random probability measure P on (IR,B) is said to have

a tailfree distribution with respect to Π if there exists a family of non-negative random

variables Y = {Yε; ε ∈ E} such that

i. The families

Y1 = {Y0},Y2 = {Yε10}, . . . ,Ym = {Yε1···εm−10}, . . . are independent, and;

ii. For every m = 1, 2, . . . and every ε = ε1 · · · εm,

P(Bε1···εm) =
m
∏

j=1

Yε1···εj ,

where Yε1···εj−11 = 1− Yε1···εj−10.

In words, Yε are random branching probabilities P (Bε0 | Bε) in the tree of nested partitions.

If we further assume that the random variables in Ym are all independent with beta

distributions then the random probability measure (RPM) P has a Polya tree distribution

(Lavine, 1992).

We propose a generalization of the PT that reduces the undesirable sensitivity to the

choice of Π. In order to reduce the impact of the partition on statistical inference, we allow
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the random variables Y to be dependent within the same level m, but keeping the indepen-

dence assumption between different levels. This defines a new RPM that still belongs to the

class of tailfree processes, and thus inference will still depend on the choice of partitions.

But the random probabilities P (Bε1···εm) of the partitioning subsets vary in a smoother fash-

ion across the sets in each level of the partition tree. The only tailfree process invariant to

the choice of partitions is the DP. To keep the new prior comparable to the original Polya

tree we continue to use beta distributions as the marginal distributions for each Yε. This is

achieved by considering a stochastic process with beta stationary distribution as prior for

Ym. The construction of the process is defined in such a way that for a specific choice of the

hyper-parameters we recover independence of the Yε’s within the same level and thus having

the regular Polya tree as particular case.

It is convenient to introduce a new notation for indexing of the partitioning subsets.

This and the actual definition of the RPM is introduced in Section 2. The properties of

the rubbery Polya tree are studied in Section 3. Posterior inference is discussed in Section

4. Section 5 includes some simulation studies and comparisons with the Polya tree. Finally

Section 6 contains a discussion and concluding remarks.

Throughout we use [x] and [x | y] to generically indicate the distribution of a random

variable x and the conditional distribution of x given y.

2 The Rubbery Polya Tree

2.1 The rPT model

As in the PT, the proposed prior relies on a binary partition tree of the sample space. For

simplicity of exposition we consider (IR,B) as our measurable space with IR the real line and B

the Borel sigma algebra of subsets of IR. The binary partition tree is denoted by Π = {Bmj},

where the index m denotes the level in the tree and j the location of the partitioning subset

within the level, with j = 1, . . . , 2m and m = 1, 2, . . .. The sets at level 1 are denoted by

(B11, B12); the partitioning subsets of B11 are (B21, B22), and B12 = B23 ∪ B24, such that

(B21, B22, B23, B24) denote the sets at level 2. In general, at level m, the set Bmj splits into
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(Bm+1,2j−1, Bm+1,2j), where Bm+1,2j−1 ∩Bm+1,2j = ∅ and Bm+1,2j−1 ∪Bm+1,2j = Bmj.

Like in the Polya tree, we associate random branching probabilities Ymj with every set

Bmj. Let P denote the RPM. We define Ym+1,2j−1 = P (Bm+1,2j−1 | Bmj), and Ym+1,2j =

1 − Ym+1,2j−1 = P (Bm+1,2j | Bmj). We denote by Y = {Ymj} the set of random branching

probabilities associated with the elements of Π. Instead of independent, as in the Polya tree,

we assume them to be positively correlated within the same level. Specifically, at level m,

the set of variables Ym = {Ym1, Ym3, . . . , Ym,2m−1} follow a Markov beta process, similar to

the one introduced in Nieto-Barajas and Walker (2002). This process is defined through a

latent process Zm = {Zmj} in such a way that we have the Markov structure

Ym1
Zm,1

−→ Ym3
Zm,3

−→ Ym5
Zm,5

−→ · · ·
Zm,2m−3

−→ Ym,2m−1,

where

Ym1 ∼ Be(αm,1, αm,2),

and for j = 1, 2, . . . , 2m−1 − 1

Zm,2j−1|Ym,2j−1 ∼ Bin(δm,2j−1, Ym,2j−1)

and

Ym,2j+1|Zm,2j−1 ∼ Be(αm,2j+1 + Zm,2j−1, αm,2j+2 + δm,2j−1 − Zm,2j−1).

Let Am = {αmj, j = 1, . . . , 2m} and Dm = {δm,2j−1, j = 1, . . . , 2m−1}. We say that

(Ym,Zm) ∼ BeP(Am,Dm) is a Markov beta process with parameters (Am,Dm). The bi-

nomial sample size parameters δmj determine the degree of dependence between the Ymj’s.

In particular, if δmj = 0 for all j then Zmj=0 w.p.1. Therefore the Ymj’s in the set Ym

become independent. Moreover, if αmj = αm for all j then the process Ym becomes strictly

stationary with Ym,2j+1 ∼ Be(αm, αm) marginally. With these definitions we are now ready

to define the proposed RPM.

Definition 2 Let Am = {αmj, j = 1, . . . , 2m} be non-negative real numbers, and Dm =

{δm,2j−1, j = 1, . . . , 2m−1} be non-negative integers for each m, m = 1, 2, . . . , and let A =
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⋃

Am and D =
⋃

Dm. A random probability measure P on (IR,B) is said to have a rubbery

Polya tree prior with parameters (Π,A,D), if for m = 1, 2, . . . there exist random variables

Ym = {Ym,2j−1} and Zm = {Zm,2j−1} for j = 1, . . . , 2m−1, such that the following hold:

i. The sets of random variables (Y1), (Y2,Z2), . . . are independent across levels m.

ii. Y1 = Y11 ∼ Be(α11, α12), and (Ym,Zm) ∼ BeP(Am,Dm) for m = 2, 3 . . ..

iii. For every m = 1, 2, . . . and every j = 1, . . . , 2m

P(Bmj) =
m
∏

k=1

Ym−k+1,r(m−k+1),

where r(k − 1) = dr(k)/2e is a recursive decreasing formula, whose initial value is

r(m) = j, that locates the set Bmj with its ancestors upwards in the tree. d·e denotes

the ceiling function, and Ym,2j = 1− Ym,2j−1 for j = 1, . . . , 2m−1.

The Ymj are random branching probabilities. The Zmj are latent (conditionally binomial)

random variables that induce the desired dependence. We write P ∼ rPT(Π,A,D).

Comparing Definitions 1 and 2, it is straightforward to verify that the rubbery Polya tree

is a tailfree distribution with respect to the partition Π. We recall that tailfree processes are

conjugate, in the sense that if P is tailfree with respect to Π then is P|x (Ferguson, 1974).

Moreover, being a tailfree distribution is a condition for posterior consistency (Freedman,

1963; Fabius, 1964). A special case of the rubbery Polya tree is obtained when setting

δmj = 0 for all m and all j, reducing the prior to a Polya tree. In short, P ∼ rPT(Π,A,0) ≡

PT(Π,A).

The Markov beta process [Ym,Zm] can be characterised by the conditional distribution

[Ym|Zm], and the marginal distribution of the latent process [Zm]. It can be shown that

Ym1, . . . , Ym,2m−1 are conditionally independent given Zm with beta distributions that only

depend on the neighboring latent variables, that is,

Ym,2j+1|Zm,2j−1, Zm,2j+1 ∼ Be(αm,2j+1 + Zm,2j−1 + Zm,2j+1 ,

αm,2j+2 + δm,2j−1 − Zm,2j−1 + δm,2j+1 − Zm,2j+1), (1)
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for j = 0, 1, . . . , 2m−1 − 1, with δm,−1 = 0 and Zm,−1 = 0 w.p.1. Furthermore, the marginal

distribution of the latent process Zm is another Markov process with

Zm1 ∼ BeBin(δm1, αm1, αm2),

and beta-binomial transition distributions for j = 1, . . . , 2m−1 − 1:

Zm,2j+1|Zm,2j−1 ∼ BeBin(δm,2j+1, αm,2j+1 + Zm,2j−1, αm,2j+2 + δm,2j−1 − Zm,2j−1). (2)

The above characterisation of the Markov beta process implies that if P ∼ rPT(Π,A,D),

then conditionally on Z, P is a Polya tree PT(Π,AZ) with the parameters AZ being a

function of Zmj. Therefore the rubbery Polya tree can be seen as a particular AZ−mixture

of Polya trees with the mixing distribution determined by the law of Z. In other words,

P ∼

∫

PT(Π,AZ)L(dZ)

where AZ = {αz
mj} such that αz

m,2j+1 = αm,2j+1 +Zm,2j−1 +Zm,2j+1 and αz
m,2j+2 = αm,2j+2 +

δm,2j−1 − Zm,2j−1 + δm,2j+1 − Zm,2j+1, for j = 0, 1, . . . , 2m−1 − 1 and m = 1, 2, . . .. This is

in contrast with mixtures of Polya trees defined in Lavine (1992) or Hanson and Johnson

(2002) where the mixing is with respect to the partition Π rather than A, and thus produce

processes which are not tail free anymore. Even though the nature of the mixture is different,

the general theory for mixtures, presented in Lavine (1992) and Lavine (1994), remains valid.

2.2 Finite tree

For practical purposes, inference with a tree-based prior can be simplified if we consider

a finite or partially specified tree (Lavine, 1994; Hanson and Johnson, 2002). A finite

rubbery Polya tree is defined by stopping the nested partitions at level M . We write

P ∼ rPT(ΠM ,AM ,DM).

Lavine (1994) suggests to choose the level M , in a PT, to achieve a specified precision in

the posterior predictive distribution. Alternatively, Hanson and Johnson (2002) recommend

the rule of thumb M
.
= log2 n such that the number of partitioning sets at level M is
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approximately equal to the sample size n, trying to avoid empty sets in the updated tree.

We will use the latter to determine the level M for defining a finite rubbery Polya tree.

Finally, for the sets in level M , we may consider P to be either uniform (on bounded

sets) or to follow P0 restricted to the set. It is worth noting that the latter option has to be

used if it is desired to center the tree on P0.

3 Centering the prior and further properties

For statistical inference, it is desirable to center the process around a given (usually para-

metric) distribution. Centering the process frees the researcher from the need to explicitly

specify A and D element by element and is usually sufficient to represent available prior

information. Walker et al. (1999) discuss several ways of centering a Polya tree process. The

simplest and most used method (Hanson and Johnson, 2002) consists of matching the par-

tition with the dyadic quantiles of the desired centering measure and keeping αmj constant

within each level m.

More explicitly, let P0 be the desired centering measure on IR with cdf F0(x). At each

level m we take

Bmj =

(

F−1
0

(

j − 1

2m

)

, F−1
0

(

j

2m

)]

, (3)

for j = 1, . . . , 2m, with F−1
0 (0) = −∞ and F−1

0 (1) = ∞. If we further take αmj = αm for

j = 1, . . . , 2m, and for any value of δmj, we get E{P(Bmj)} =
∏m

k=1 E(Ym−k+1,r(m−k+1)) =

2−m = P0(Bmj).

The proof is straightforward. If we fix the parameters αmj ≡ αm constant within each

level m, then we are in the stationary setting of the Markov beta process (for any choice of

D). As mentioned in the previous section, Ymj ∼ Be(αm, αm) marginally for all m and all j,

and therefore E(Ymj) = 1/2. This leads us to an interesting property of the proposed prior.

Proposition 1 Let P ′ ∼ rPT(Π,A,D) and P ∗ ∼ PT(Π,A) be a rubbery Polya tree and a

Polya tree, respectively, with common partitions Π and common set of parameters A. If for

each level m = 1, 2, . . ., we take αmj = αm for j = 1, . . . , 2m, then for any measurable set
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Bmj ∈ Π,

P ′(Bmj)
d
= P ∗(Bmj),

where
d
= denotes equality in distribution.

Proof. The result follows from part (iii) of Definition 2. Note that the product only involves

one variable Ymj from each level m and exploit stationarity to conclude the claim. ¦

Proposition 1 says that the processes rPT and PT share the same marginal distribution.

For the default choice of the A parameters being equal within each row, we can marginally

generate the same measure for single sets with both processes. However, the joint distribution

of the measure on two disjoint sets, say (P (Bmj), P (Bmj′)), for j 6= j ′ is different under the

rPT and PT. The following two corollaries provide more interesting properties of our prior.

Corollary 1 Let P ∼ rPT(Π,A,D) be a rubbery Polya tree with αmj = αm, for j =

1, . . . , 2m, and m = 1, 2, .... All the conditions on the A parameters needed for a Polya

tree to be a.s. continuous are inherited by the rubbery Polya tree. That is,
∑∞

m=1 α
−1
m < ∞

implies that P is absolutely continuous a.s.

Proof. We write fm(x) = {
∏m

k=1 Ym−k+1,r(m,x)}2
mf0(x), where r(m,x) = j if x ∈ Bmj.

Noting that this product involves only one Ymj from each level m and when αmj = αm then

Ymj ∼ Be(αm, αm) marginally. Therefore by taking the limit when m → ∞ we can use the

Theorem from Kraft (1964) and its corollary to obtain the result. ¦

In particular, αm = a/2m defines an a.s. discrete measure, whereas αm = am2 an a.s.

continuous measure. Alternative choices of αm can also be used to define continuity. For

instance, Berger and Guglielmi (2001) considered αm = am3, a2m, a4m, a8m. In all these

choices the parameter a controls the dispersion of P around P0. A small value of a implies

a large variance and thus a weak prior belief, i.e., a plays the role of a precision parameter.

Next we consider posterior consistency. Denote by K(f, g) the Kullback-Leibler diver-

gence measure for densities f and g as K(f, g) =
∫

f(x) log{f(x)/g(x)}dx. Assume an i.i.d.
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sample Xi|P ∼ P, i = 1, . . . , n with an rPT prior P ∼ rPT(Π,A,D). The following re-

sult states conditions for posterior consistency as n → ∞ when data is generated from an

assumed fixed model f ?.

Corollary 2 Let Xi, i = 1, . . . , n be i.i.d. observations from f ?. We assume that Xi |

P
iid
∼ P, where P ∼ rPT(Π,A,D) is a rubbery Polya tree centered at P0 (with density f0) with

partitions as in (3) and with αmj = αm, for j = 1, . . . , 2m, and m = 1, 2, .... If K(f ?, f0) <∞

and
∑∞

m=1 α
−1/2
m <∞, then as n→∞ P achieves weak posterior consistency. Furthermore,

if αm increases at a rate at least as large as 8m then P achieves posterior strong consistency.

Proof. From Cororally 1, the softer condition
∑∞

m=1 α
−1
m < ∞ implies the existence of a

density f of the RPM P, that is, f(x) = limm→∞{
∏m

k=1 Ym−k+1,r(m,x)}, where r(m,x) = j if

x ∈ Bmj. By the martingale convergence theorem, there also exists a collection of numbers

{ym−k+1,r(m,x)} ∈ [0, 1] such that w.p.1 f ?(x) = limm→∞{
∏m

k=1 ym−k+1,r(m,x)}. Now, since

Ymj ∼ Be(αm, αm) marginally, then resorting to the proof of Theorem 3.1 in Ghosal et al.

(1999) we obtain the weak consistency result. As for the strong consistency, we rely on the

same derivations from Section 3.2 in Barron et al. (1999) to obtain the result. ¦

In Barron et al. (1999)’s terminology, Corollary 2 ensures that the rPT is posterior

consistent as long as the prior predictive density f0 is not infinitely away from the true

density f ∗.

In the previous paragraphs we have presented several properties that are similar to the

PT, however an important question remains unanswered. What is the impact of introducing

dependence in the random variables within the levels of the tree? To respond to this question

we study the correlation in the induced measures for two different sets in the same level,

say P(Bmj) and P(Bmj ′). For that we consider a finite tree rPT(Π2,A2,D2) that consists of

only M = 2 levels, say

B11 | B12

B21 | B22 | B23 | B24 (4)

For each Bmj there is a random variable Ymj, which in the stationary case are defined by
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1) Y11 ∼ Be(α1, α1), Y12 = 1− Y11, for level 1, and

2) Y21 ∼ Be(α2, α2), Y22 = 1 − Y21, Z21|Y21 ∼ Bin(δ21, Y21), Y23|Z21 ∼ Be(α2 + Z21, α2 +

δ21 − Z21), Y24 = 1− Y23, for level 2.

The marginal variance for the random measure of any partitioning sets at level 2 is the

same, that is, Var{P(B2j)} = {2(α1 +α2)+3}/{16(2α1 +1)(2α2 +1)} for all j = 1, . . . , 4. It

is straightforward to show that the correlation of the measures assigned to two sets at level

2 are:

ρ12 = Corr{P(B21),P(B22)} =
2(α2 − α1)− 1

2(α1 + α2) + 3
,

ρ13 = Corr{P(B21),P(B23)} =
δ21(2α1 − 1)− 2α2(2α2 + δ21 + 1)

(2α2 + δ21){2(α1 + α2) + 3}
and

ρ14 = Corr{P(B21),P(B24)} =
−δ21(2α1 + 1)− 2α2(2α2 + δ21 + 1)

(2α2 + δ21){2(α1 + α2) + 3}
.

Finally due to symmetry in the construction, Corr{P(B22),P(B23)} = ρ14, Corr{P(B22),

P(B24)} = ρ13 and Corr{P(B23),P(B24)} = ρ12.

For illustration we concentrate on two cases for αm, namely a/2m to define a discrete

measure, and am2 to define a continuous measure for m = 1, 2. In both cases a > 0. We

write ρij(a, δ21) to highlight the dependence on a and δ21.

Figure 2 depicts the correlation function ρij(a, δ21) for a ∈ (0, 20) and δ21 = 0, 1, 10, 100.

The panels in the first row correspond to the case when the rubbery Polya tree defines a

discrete measure. The solid line in the three panels, obtained by taking δ21 = 0, shows the

correlation in a Dirichlet process, this turns out to be constant for all a > 0 and takes the

value of −1/3. Starting from this Dirichlet case, as we increase the value of δ21 we see that

the correlation ρ13 (first row, middle panel) increases as δ21 increases, even becoming positive

for δ21 = 10, 100 and for approximately a > 3, whereas ρ14 becomes more negative as δ21

increases. This complementary effect between ρ13 and ρ14 simply reflects the fact that the

measures P (B2j), j = 1, . . . , 4 need to add up to one. Note that there is only one (solid)

line in the two panels of the first column. This is because the two measures for this case,

only involve one variable Ymj for each row and the value of δ21 does not change the marginal
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Be(αm, αm) distribution in the stationary case.

The second row in Figure 2 corresponds to a continuous rubbery Polya tree. If we take

δ21 = 0 (solid line in the three panels) the correlation in the rPT correspond to that of

a continuous PT. We can see that the second and third panels show negative correlation

functions, whereas the first panel (ρ12) presents a positive correlation except for values of a

close to zero. In this continuous setting (second row) the effect of δ21 > 0 on the correlations

is not as evident as in the discrete case (first row). However, a similar behavior as in the

discrete case exists. A larger value of δ21 increases the correlation ρ13, making it less negative,

and decreases the correlation ρ14, making it more negative. This effect is stronger for smaller

values of a.

Differences in the correlations of random probabilities over the first two levels are key to

understand the differences in posterior inference under the PT and the rPT. In the continuous

case with αm = am2, the correlation ρ12 in a PT can take positive values for certain values

of the parameter a (see bottom left panel in Figure 2). In fact ρ12 > 0 for a > 1/6. This is

in contrast to the DP, for which the correlation is always negative between any disjoint pair

of sets.

In the remaining of this section let us concentrate in the continuous case αm = am2.

Consider a PT in levels beyond m = 2, and focus on the sibling pair of partitioning subsets

{Bm,2j−1, Bm,2j} of a parent set Bm−1,j , for j = 1, . . . , 2m−1. It is straightforward to show

that the covariance in the random measures for any two sibling subsets is the same for all

pairs in the same level m, and is given by

σ
(m)
sib = Cov{P(Bm,2j−1),P(Bm,2j)} =

αm

2(2αm + 1)

m−1
∏

k=1

αk + 1

2(2αk + 1)
−

(

1

2

)2m

, (5)

for m > 1. It is not difficult to prove that if a > 1/(4m− 2) then σ
(m)
sib > 0. In other words,

the correlation between sibling subsets is positive for sufficiently large precision parameter

a. Moreover, from levels m = 3 onwards the correlation in the measure for any two pair of

subsets under the same first partition (either B11 or B12) is positive, regardless of whether or

not the sets are siblings. In complement, the correlation between any two sets in the same
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level, one descendant of B11 and the other descendant of B12, is negative.

Since the rPT does not change the covariance between sibling subsets, σ
(m)
sib in (5) remains

valid for the rPT implying that the correlation between siblings is positive. Focus now on the

two sets at level m that are next to each other at the right and left boundaries of B11 and B12

respectively, in notation Bm,2m−1 and Bm,2m−1+1. In the PT the correlation in the measures

assigned to these two sets is always negative for all m ≥ 1. In the rPT this correlation

becomes more negative. If we now concentrate on the left neighbor of the set Bm,2m−1 , say

Bm,2m−1−1, and the set Bm,2m−1+1, their correlation induced under the PT is also negative for

allm ≥ 1, however, under the rPT the same correlation is less negative only in the sets at level

m = 2 (see ρ13 in Figure 2), for m ≥ 3 the correlation is more negative. Therefore, the sets

B21 and B23 have increased (less negative) correlation. Furthermore, two descendants on the

same level of the tree, one from B21 and another from B23 have also increased correlation.

Something similar happens between B22 and B24 and all its descendants. In general, as

mentioned before, descendants of B11 (or B12) on the same level, have positive correlation

under the PT for sufficiently large a, and in the rPT the correlation is increased between

every other set (1-3, 2-4, etc.) and the correlation is slightly decreased, otherwise. This

differences between continuous PT and rPT are summarized in Figure 3. This elaborated

correlation structure leads to the desired smoothing across random probabilities.

In summary, the PT and the rPT share many prior properties as random probability

measures. However, the rubbery Polya tree imposes a correlation of the random branching

probabilities that induce a tighter structure within each level. In contrast, the PT prior

assumes independence. The positive correlation in the pair (Ym,j, Ym,j+2) is achieved by

adding the latent variables Z which allow for borrowing of information across partitioning

subsets within each level. An increment in Ymj favors a corresponding increment in Ym,j+2.

This in turn smooths the abrupt changes in probabilities in neighboring partition sets. We

will later discuss the details of the posterior updating in the following Section. In particular,

Figure 4 illustrates this desired effect.
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4 Posterior inference

We illustrate the advantages, from a data analysis perspective, of the rubbery Polya tree

compared to the simple Polya tree. Recall from Section 1 that the rPT can be characterized

as an A−mixture of Polya trees with the mixing distribution given by the law of the latent

process Z. Thus, posterior inference for the proposed process is as simple as for the Polya

tree model.

4.1 Updating the rubbery Polya tree

Let X1, . . . , Xn be a sample of size n such that Xi|P
iid
∼ P and P ∼ rPT(Π,A,D). Then the

likelihood for Y1,Y2, . . . ,YM , given the sample x, is:

n
∏

i=1

M
∏

m=1

2m
∏

j=1

YmjI(xi ∈ Bmj) =
M
∏

m=1

2m
∏

j=1

Y
Nmj

mj ,

where Nmj =
∑n

i=1 I(xi ∈ Bmj) for j = 1, . . . , 2m.

By Theorem 2 of Ferguson (1974), the posterior distribution P|x is again tailfree. The

updated process [(Ym,Zm)|x] is not a Markov beta process as in equations (1) and (2). It is

a new Markov beta process with a different distribution for the latent process Zm. This pos-

terior distribution can be characterized by the conditional posterior distribution [Ym|Zm,x]

and the marginal posterior distribution [Zm|x]. As in the prior process, Ym1, . . . , Ym,2m−1 are

conditionally independent given Zm and x with (updated) beta distributions given by

Ym,2j+1|Zm,2j−1, Zm,2j+1,x ∼ Be(αm,2j+1 + Zm,2j−1 + Zm,2j+1 +Nm,2j+1 ,

αm,2j+2+δm,2j−1−Zm,2j−1+δm,2j+1−Zm,2j+1+Nm,2j+2), (6)

for j = 0, . . . , 2m−1 − 1. The conditional independence structure of the model implies that

also the posterior latent process Zm follows again another Markov process. Unfortunately

the appropriate transition probabilities for Zm are not easily seen. This makes it impossible

to exploit the representation as Markov beta process for posterior simulation.

Instead, a straightforward Gibbs sampling posterior simulation scheme (Smith and Roberts,

1993) can be implemented. For that we require the conditional distribution [Ym|Zm,x]
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given in (6) together with the conditional distribution [Zm|Ym,x]. Since the likelihood does

not involve Zm, the latter full conditional does not depend on the data. Moreover, the

Zm,1, . . . , Zm,2m−1−3 are conditionally independent given Ym with probabilities given by

Zm,2j−1|Ym,2j−1, Ym,2j+1 ∼ BBB(αm,2j+1, αm,2j+2, δm,2j−1, pm,2j−1), (7)

with pm,2j−1 = ym,2j−1ym,2j+1/{(1−ym,2j−1)(1−ym,2j+1)} for j = 1, . . . , 2m−1−1. BBB stands
for a new discrete distribution called Beta-Beta-Binomial whose probability mass function
is given by

BBB(z|α1, α2, δ, p) =
Γ(δ + 1)Γ(α1)Γ(α2 + δ)

2H1(−δ,−δ + 1 − α2;α1; p)

p zI{0,1,...,δ}(z)

Γ(1 + z)Γ(1 + δ − z)Γ(α1 + z)Γ(α2 + δ − z)
,

where 2H1(−δ,−δ+1−α2;α1; p) =
∑δ

k=0(p
k/k!)(−δ)k(−δ+1−α2)k/(α1)k is the hyperge-

ometric function, which can be evaluated in most statistical software packages, and (α)k is

the pochhammer number.

The conditional distribution (6) is of a standard form. The conditional distribution (7)

is finite discrete. Therefore sampling is straightforward. We illustrate the proposed prior by

considering two small examples:

Example 1.

As a first example we consider an extreme case with only one observation, say X = −2. For

the prior specification we centered the rPT at P0 = N(0, 1), with the partitions Bmj defined

as in (3). We use αmj = αm = am2, and set a = 0.1. The parameters D were taken to be

constant across the tree, that is, δmj = δ for all m and j. A range of values for δ was used

for illustration.

We considered a finite rPT with M = 4 levels for illustration and defined P to be uniform

within sets B4j for j = 1, . . . , 24. The partitioning sets were bounded to lie in (−3, 3). A

Gibbs sampler was run for 10,000 iterations with a burn-in of 1,000. Figure 4 presents the

posterior predictive distributions, that is, posterior means for the probability assigned to the

elements of the partition at level 4 divided by the length of the set. The top left graph (δ = 0)

corresponds to the posterior estimates obtained by a PT prior. The choice of δ > 0 in the rPT

clearly makes the posterior estimates to be a lot smoother. In particular for δ = 10 (bottom
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right graph) the mass has been shifted to the left towards the observed point producing

a smooth density (histogram). The counterintuitive seesaw pattern following the partition

boundaries in the PT has disappeared. The extreme outlier in this example exacerbated the

differences between the two models.

Example 2.

As a second illustration we consider a simulated data set of size n = 30 taken from a normal

distribution with mean −0.5 and standard deviation 0.5. We used a rPT process with prior

mean P0 = N(0, 1). The parameters satisfy αmj = am2 and δmj = δ for all m, j, and we used

a = 0.01, 0.1, 1 and δ = 0, 20 for comparison. Since log2(30) = 4.90, a finite tree with M = 5

levels is used. The measure P is distributed uniformly within the sets at level 5. The Gibbs

sampler was run for 20,000 iterations with a burn-in of 2,000.

Figure 5 shows summaries of the posterior distribution. For the graphs in the first column

we took δ = 0, which corresponds to a PT, and for the second column we took δ = 20. For the

first, second and third rows we took a = 0.01, 0.1, 1 respectively. The solid line corresponds

to the posterior predictive density, the dotted lines are 95% posterior probability intervals

and the dashed line corresponds to the N(−0.5, 0.52) simulation truth.

The scale in the right panels was kept the same as in the left panels to facilitate com-

parison. There are two aspects that can be seen from Figure 5. The predictive distribution

(solid lines) obtained with the rPT smooths out the peaks when compared with that of the

PT, and is closer to the true density (dashed line). Additionally, there is a huge gain in

precision when using a rPT instead of a PT. This increment in precision is more marked

for smaller values of a (first and second rows). The advantages of the rPT versus the PT

can be explained by the borrowing of strength across partitioning subsets in the rPT. Of

course, if the simulation truth were a highly irregular distribution with discontinuous density

and other rough features, then the borrowing of strength across partitioning subsets could

be inappropriate and would lead to a comparison that is less favorable for the rPT. See

model number 5 in the simulation study reported later, in Section 5.1. for an example when
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borrowing of strength might be undesireable.

From these examples we can see that the effect of δ in the rPT is to smooth the posterior

probabilities and decrease the posterior variance.

4.2 Mixture of rubbery Polya trees

For actual data analysis, when more smoothness is desired, an additional mixture can be

used to define an rPT mixture model. For example, let N(x|µ, σ2) denote a normal kernel

with moments (µ, σ2). Consider G(y) =
∫

N(y|µ, σ2) dP(µ) with the rPT prior on P as

before.

Alternatively, a mixture can be induced by assuming that the base measure that defines

the partition is indexed with an unknown hyperparameter θ. Let Pθ denote the base measure

and Πθ = {B
θ
mj} the corresponding sequence of partitions. A hyperprior θ ∼ π(θ) leads to a

mixture of rPT’s with respect to the partition Πθ. If we consider a finite tree and define the

measure on the sets at level M according to Pθ, then the posterior conditional distribution

for θ has the form

[θ|Y ,x] ∝

{

M
∏

m=1

2m
∏

j=1

Y
Nθ
mj

mj

}{

n
∏

i=1

fθ(xi)

}

π(θ),

where N θ
mj =

∑n
i=1 I(xi ∈ Bθ

mj) for j = 1, . . . , 2m and fθ the density corresponding to Pθ.

Sampling from this posterior conditional distribution can be achieved by implementing a

Metropolis-Hastings step as suggested by Walker and Mallick (1997).

5 Numerical studies

In this section we carry out two numerical studies to further illustrate inference under the

proposed rPT.

5.1 Simulation Study

We consider the set of mixtures of normal densities originally studied by Marron and Wand

(1992), which are often used as benchmark examples for density estimation problems. The

examples include unimodal, multimodal, symmetric and skewed densities. We concentrate
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on the first ten of these benchmark examples. The ten densities are shown as the solid lines

in Figure 6.

From each of the ten models we simulated n = 50 and 100 observations, and repeated

this experiment fifty times. For all repetitions of the experiment and all models we assumed

a rPT with prior specifications: P0 = N(0, 1), αmj = am2, δmj = δ for all m and j.

Several choices for the precision and rubbery parameters were considered for comparison.

Specifically, a = 0.01, 0.1, 1 and δ = 5, 20. In this case, log2(50) = 5.64 and log2(100) = 6.64,

so the rule of thumb suggests 6 or 7 levels to define a finite tree. We used M = 6 for both

sample sizes.

For each experiment we computed (by Monte Carlo integration) the integrated L1 error

defined as L1 =
∫

|f̂(x) − f(x)|dx, with f̂(x) the posterior mean density based on 20,000

iterations of a Gibbs sampler with a burn-in of 2,000, and f(x) the true density that was

used to simulate the data. The L1 error for the rPT was compared with that under a simple

PT with the same prior specifications. The ratio of the integrated L1 errors (RL1) was then

averaged over the 50 experiments. The mean RL1 and the numerical standard deviations

are presented in Table 1.

The numbers reported in Table 1 highlight the differences in inference under the PT

versus the rPT. The effect of the rubbery parameter δ is relative to the value of the precision

parameter a. For smaller a, the rPT shows a better performance than the simple PT, except

perhaps for density 5, which has a sharp spike around zero (see, Figure 6). For larger values

of a, the effect of δ vanishes for most of the models, as the prior becomes increasingly more

informative. The effect worsens for the spiked model 5 and the the well separated bimodal

model 7. Regarding the sample size, the rPT performs slightly better for smaller sample

sizes together with larger values of δ. This is explained by the fact that the latent process

Z can be seen as additional latent data that compensate the lack of observations in some

regions by borrowing strength from the neighbors.

The optimal degree of dependence (δ) varies across different data sets. One may therefore

allow δ to be random by assigning a hyper-prior distribution, say π(δ), and let the data
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determine the best value. The complete conditional posterior distribution for δ is

[δ | Y , . . .] ∝

[

M
∏

m=1

2m−1−1
∏

j=1

Γ(δ + 1)Γ(2αm + δ) {(1− Ym,2j−1)(1− Ym,2j+1)}
δ

Γ(δ − Zm,2j−1 + 1)Γ(αm + δ − Zm,2j−1)

]

π(δ)I(δ ≥ z∗),

where z∗ = max{Zm,2j−1 : j = 1, . . . , 2m−1 − 1,m = 1, . . . ,M} and “. . .” behind the condi-

tioning bar stands for all other parameters. In particular we propose a truncated geometric

hyper prior distribution of the form π(δ) ∝ p(1− p)δI{0,...,20}(δ). We implemented this extra

step in the simulation study with p = 0.5 and concentrated on the case with a = 0.01 and

n = 100. The relative integrated L1 errors with respect to the simple PT are shown in Table

2. As can be seen, the RL1 errors favor the rPT against the simple PT. The only exception

is model 5, for which, if we consider the standard error, the performance is the same for both

RPMs. Figure 6 shows the density estimates obtained with this setting of the rPT.

For actual data analysis, PT models are often replaced by mixture of PT models to reduce

the dependence on the partitions. The mixture is with respect to the centering measure.

We therefore include also mixture of PT models in the comparison and report relative L1

error, relative to a simple PT. The prior specifications for the mixture are: Pθ = N(θ, 4) and

θ ∼ N(0, 1). We ran a Gibbs sampler for 20,000 iterations with a burn in of 2,000. Again, we

took samples from the 10 models and repeated the experiment fifty times with n = 50, 100

sample sizes.

The average RL1 together with their numerical standard deviations are reported in the

last two columns of Table 1. As can be seen, for a small precision parameter, a = 0.01,

mixtures of Polya trees present a similar error as the simple PT for small sample size (n = 50)

and slightly better performance for n = 100. However, the rPT outperforms the mixture of

Polya trees in 7 out of 10 models. On the other hand, the mixture of Polya trees compare

favorably for larger values of the precision parameter, say a = 1.

In general, for small values of a, the posterior RPMs (PT, rPT or mixtures of PT’s)

depend almost entirely on the data, whereas setting a larger a would mean that the prior

RPM is more informative and that there is more shrinkage to the centering measure Pθ. On

the other hand, a small value of a implies a rough RPM, due to a larger variance. In the
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latter case the relative advantage of the rPT comes to bear.

Finally, additional simulations (not reported here) show that the number of levels M in

the finite tree prior has an important effect on the RL1 values. Larger values of M clearly

benefit the rPT with respect to a simple PT.

5.2 Nuclear Waste Data

Draper (1999) presented an interesting discussion about what he called “the small print on

Polya trees”. He considered highly skewed data that were collected to assess the risk of

underground storage of nuclear waste. The observations are radiologic doses for humans on

the surface. There are n = 136 positive values, 134 of which ranging from 0 to 0.8522 with

two outliers at 3.866 and 189.3. Since the complete original data is not available, we use

simulated data that replicates all important features of the original data by including the two

outliers with known values and simulating the remaining 134 observations from a lognormal

distribution in such a way that they are mostly within the interval (0, 0.8522), as in Draper

(1999). That is, let Xi = exp(Wi) with Wi ∼ N(−1, 0.52) for i = 1, . . . , 134 together with

X135 = 3.866 and X136 = 189.3. The simulated sample, on log-scale, is shown in Figure 7.

We analyzed this data with both the rPT and the PT models. We worked on the log-

scale and centered the prior measures at P0 = N(0, 4) with the partitions defined by (3).

We defined continuous measures with parameters αmj = am2 and took a = 0.1 as in Draper

(1999). Finite trees were defined for M = 7 and M = 8 levels. The former is the number

of levels suggested by the sample size and the rule of thumb and the latter is the number of

levels actually used by Draper (1999). The rubbery parameter was fixed at δ = 20.

We ran the Gibbs sampler for 20,000 iterations with a burn-in of 2,000. We computed

the logarithm of the pseudo-marginal likelihood (LPML) statistic to assess the goodness of

fit for the models. The LPML is defined as the sum of the logarithm of the conditional

predictive ordinate for each observation. See, for example, Gelfand et al. (1992). These and

some other posterior summaries are presented in Table 3. The LPML statistics for the PT

and rPT models have almost the same values for the same M , showing a minimally better fit
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for the rPT. In general, models withM = 8 have better fit than those withM = 7. However,

posterior inference for the quantities reported in Table 3 do not change much when going

from 7 to 8 levels.

Posterior credible intervals were obtained for the mean radiologic dose µX . From Table

3 we can see that the posterior distribution of µX is narrower under the rPT prior, for both

values of M , resulting in a shorter credible interval for µX . Perhaps the most important

aspect in the context of the application, is the amount of mass assigned to large radiologic

doses (upper tail), where the two outliers are present. We computed the posterior probability

of the event {X > 1.65}, on the original scale. These probabilities, with M = 8, were

estimated at 0.035 under the PT and 0.101 under the rPT priors, that is, the rPT is assigning

considerably more probability to the possibility of an outlier than the PT.

We finish our study by comparing with inference under a mixture of PT and a mixture

of rPT model. The mixture is with respect to the centering measure. In particular, the

centering measure was Pθ = N(θ, 9) with θ ∼ N(0, 1). The rubbery parameter for the rPT

was δ = 20. Model comparison and posterior summaries are reported in the last block of

rows in table 3. The additional mixture improves the model fit with a modest advantage for

the mixture of rPT. As before, the 95% posterior credible interval for µX is narrower for the

mixture of rPT, which also assigns a larger probability to the tail beyond 1.65, compared

with the mixture of a simple PT.

6 Discussion

We have introduced a new tail free random measure that improves the traditional Polya tree

prior by allowing the branching probabilities to be dependent within the same level of the

tree, defining a tightened structure in the tree. Our new prior retains the simplicity of the

Polya tree for making nonparametric inference. Centering our prior around a parametric

model is achieved in the same way as in the simple Polya tree. However, posterior estimates

obtained by the rubbery Polya tree are improved by the borrowing of information within the

levels which produce an spreading of information everywhere in the tree.
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Although the rubbery Polya tree prior greatly reduces the mass jumps on neighboring

partitions, inference for density estimation might still be desired to be even smoother. For

example, the density estimates shown in Figure 5 might be unreasonable for a distribution

that is known to be smoother. This could easily be addressed by adding an additional con-

volution in the sampling model. The resulting rPT mixture model generates much smoother

random densities.

Another critical issue for implementations of PT and rPT models is the computational

effort that is required to track the number of observations in each of many partitioning

subsets and to update the random probabilities. The problem is exacerbated in higher

dimensions when partitions become multivariate rectangles. This difficulty is not addressed

by the rPT and remains exactly as in the PT. Hanson (2006) and Jara et al. (2009) propose

efficient implementations of PT models for multivariate distributions. Using a marginalized

version of the model, marginalizing with respect to the random probability measure, it is

possible to implement efficient posterior simulation. However, these constructions can not

be naturally used for the rPT. The rPT remains useful only for univariate distributions.
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Table 1: Relative integrated L1 errors (RL1): rPT over PT for δ = 5, 20, and MPT over PT. Fifty

data sets of size n = 50, 100 were simulated for each of the 10 models in Marron and Wand (1992).

Average over the 50 repetitions as well as the standard deviation in parenthesis are reported.

rPT(δ = 5) rPT(δ = 20) MPT
n = 50 n = 100 n = 50 n = 100 n = 50 n = 100

Model a = 0.01
1 0.72 (0.06) 0.72 (0.04) 0.54 (0.09) 0.55 (0.06) 1.03 (0.13) 0.98 (0.12)
2 0.72 (0.06) 0.74 (0.05) 0.58 (0.10) 0.60 (0.07) 0.75 (0.13) 0.62 (0.15)
3 0.87 (0.12) 0.86 (0.11) 0.96 (0.14) 0.87 (0.13) 0.76 (0.19) 0.56 (0.11)
4 0.77 (0.07) 0.81 (0.06) 0.72 (0.08) 0.79 (0.09) 1.01 (0.19) 0.95 (0.21)
5 1.21 (0.17) 1.10 (0.13) 1.99 (0.30) 1.94 (0.36) 0.81 (0.38) 0.83 (0.47)
6 0.71 (0.07) 0.76 (0.05) 0.59 (0.08) 0.61 (0.07) 1.00 (0.15) 1.02 (0.16)
7 0.85 (0.07) 0.86 (0.05) 1.01 (0.11) 0.95 (0.08) 1.02 (0.19) 0.96 (0.10)
8 0.72 (0.06) 0.74 (0.05) 0.57 (0.08) 0.62 (0.07) 0.98 (0.12) 0.95 (0.14)
9 0.73 (0.07) 0.77 (0.06) 0.60 (0.07) 0.65 (0.08) 1.01 (0.12) 0.98 (0.14)
10 0.75 (0.07) 0.79 (0.05) 0.64 (0.08) 0.69 (0.08) 1.05 (0.17) 1.06 (0.20)

Model a = 0.1
1 0.93 (0.07) 0.93 (0.05) 0.82 (0.11) 0.81 (0.08) 0.83 (0.22) 0.86 (0.21)
2 0.94 (0.06) 0.94 (0.05) 0.86 (0.11) 0.85 (0.11) 0.56 (0.23) 0.63 (0.22)
3 1.03 (0.08) 1.00 (0.06) 1.22 (0.11) 1.23 (0.15) 0.55 (0.10) 0.45 (0.09)
4 1.04 (0.09) 1.01 (0.07) 1.15 (0.13) 1.13 (0.12) 0.77 (0.21) 0.69 (0.19)
5 1.55 (0.20) 1.32 (0.14) 2.45 (0.44) 2.35 (0.38) 0.36 (0.12) 0.56 (0.31)
6 0.95 (0.07) 0.96 (0.06) 0.93 (0.12) 0.89 (0.10) 0.92 (0.17) 0.96 (0.18)
7 1.10 (0.10) 1.03 (0.06) 1.46 (0.16) 1.29 (0.15) 0.97 (0.10) 0.95 (0.11)
8 0.95 (0.06) 0.96 (0.04) 0.89 (0.10) 0.88 (0.09) 0.79 (0.22) 0.88 (0.17)
9 0.99 (0.06) 0.96 (0.05) 0.96 (0.15) 0.92 (0.08) 0.96 (0.19) 0.95 (0.14)
10 0.99 (0.06) 0.98 (0.05) 1.02 (0.09) 1.00 (0.09) 0.85 (0.18) 0.96 (0.18)

Model a = 1
1 1.00 (0.05) 1.00 (0.03) 0.94 (0.14) 0.95 (0.08) 0.57 (0.19) 0.51 (0.23)
2 0.97 (0.03) 0.98 (0.03) 0.96 (0.07) 0.95 (0.06) 0.57 (0.29) 0.86 (0.26)
3 1.00 (0.01) 1.00 (0.01) 1.01 (0.01) 1.02 (0.02) 0.48 (0.10) 0.41 (0.06)
4 1.04 (0.03) 1.06 (0.03) 1.16 (0.09) 1.21 (0.08) 0.60 (0.13) 0.54 (0.08)
5 1.12 (0.02) 1.14 (0.02) 1.33 (0.05) 1.46 (0.05) 0.59 (0.09) 0.53 (0.11)
6 1.05 (0.04) 1.02 (0.03) 1.20 (0.09) 1.15 (0.09) 0.66 (0.20) 0.85 (0.21)
7 1.12 (0.02) 1.09 (0.02) 1.39 (0.07) 1.37 (0.06) 0.83 (0.07) 0.93 (0.04)
8 1.01 (0.04) 1.00 (0.04) 1.03 (0.10) 1.03 (0.08) 0.51 (0.27) 0.86 (0.12)
9 1.07 (0.06) 1.04 (0.03) 1.29 (0.12) 1.19 (0.10) 0.77 (0.24) 0.94 (0.12)
10 1.02 (0.02) 1.03 (0.01) 1.06 (0.04) 1.09 (0.04) 0.67 (0.17) 0.57 (0.12)
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Table 2: Relative integrated L1 errors for the rPT over the PT for the 10 models of Marron and

Wand (1992). Same specifications as in Table 1 but with π(δ) ∝ (0.5)δ+1I{0,...,20}(δ), n = 100 and

a = 0.01.

Model 1 2 3 4 5 6 7 8 9 10
Ave. RL1 0.75 0.78 0.88 0.84 1.27 0.78 0.89 0.79 0.78 0.78
Std. RL1 (0.061) (0.070) (0.045) (0.088) (0.358) (0.074) (0.050) (0.063) (0.053) (0.066)

Table 3: Posterior inference summaries for the PT model, rPT model with δ = 20, and mixtures

of PT and rPT with respect to the centering measure. In all cases a = 0.1.

Levels Model LPML 95% CI for µX P (X > 1.65|x)
PT -133.30 (0.48, 2.16) 0.030

M = 7
rPT -132.61 (0.51, 1.63) 0.120
PT -130.28 (0.49,2.15) 0.035

M = 8
rPT -129.91 (0.51,1.66) 0.101
MPT -126.42 (0.47, 1.97) 0.016

M = 7
MrPT -124.91 (0.52, 1.71) 0.096

B

B0 B1

B00 B01 B10 B11
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m=0
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m=2
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Y1 = p(B1 | B) = 1−Y0Y0=p(B0 | B) 

Y00=P(B00 | B0) Y01=P(B01 | B0) Y10 Y11

Y000 Y001 Y010 Y011 Y100 Y101 Y110 Y111

Figure 1: Nested partition of the sample space B into partitions πm = {Bε1···εm , εj ∈ {0, 1}},
m = 1, 2, . . .. The random variables Yε1···εm determine the random probabilities P (Bε1···εm |
Bε1···εm−1

) under a PT distributed RPM P .
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Figure 2: Correlation function ρij(a, δ21): First row αm = a/2m, second row αm = am2, m = 1, 2.
First column ρ12, second column ρ13 and third column ρ14. (——) δ21 = 0, (· · ·) δ21 = 1, (-·-)
δ21 = 10, and (---) δ21 = 100.
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Figure 3: Changes in correlations Corr{P(Bmj),P(Bmj ′)} for some pairs of partitioning
subsets from a PT prior to a corresponding rPT prior. A solid curve indicates increased
correlation. From m ≥ 2, any other pair of sets in the same level with no linking curve have
decreased correlation.
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Figure 4: Posterior predictive distributions for a rPT with a sample of size 1 at X = −2: Top left
δ = 0, top right δ = 1, bottom left δ = 5 and bottom right δ = 10.
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Figure 5: Posterior distributions from a rPT with δ = 0 (first column) and δ = 20 (second column)
with 30 simulated data points from N(−0.5, 0.52). First row (a = 0.01), second row (a = 0.1) and
third row (a = 1). Posterior predictive (solid line), 95% CI (dotted line) and true density (dotted
line).
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Figure 6: Benchmark models of Marron and Wand (1992). True density (solid line), rPT estimate
with a hyper prior on δ (dashed line).
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Figure 7: Histogram of the simulated data, mimicking Draper (1999). In logarithmic scale.
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