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Abstract

We review some aspects of nonparametric Bayesian data analysis with discrete

random probability measures. We focus on the class of species sampling models (SSM).

We critically investigate the common use of the Dirichlet process (DP) prior as a

default SSM choice. We discuss alternative prior specifications from a theoretical,

computational and data analysis perspective. We conclude with a recommendation

to consider SSM priors beyond the special case of the DP prior and make specific

recommendations on how different choices can be used to reflect prior information and

how they impact the desired inference. We show the required changes in the posterior

simulation schemes, and argue that the additional generality can be achieved without

additional computational effort.

1 Introduction

Bayesian methods have become increasingly popular over the past few decades. This

has been largely due to work by Geman and Geman (1984), Tanner and Wong (1987)

and Gelfand and Smith (1990), which revolutionized the way Bayesian inference is

carried out. The availability of Markov Chain Monte Carlo (MCMC) simulation-based
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methods allows researchers to implement Bayesian inference in problems that were oth-

erwise intractable. As an example, the technically convenient restriction to conjugate

posterior analysis (Bernardo and Smith 1994), has been mostly replaced by the use of

richer families of prior distributions that reflect subjective beliefs and/or prior infor-

mation more accurately. In recent years a similar revolution in Bayesian data analysis

has been related to the increasing use of non-parametric models.

When the probability model is assumed to belong to a family of candidate distribu-

tions that can be indexed by a d-dimensional parameter vector, a parametric Bayesian

model is obtained. In many cases, however, this could be judged to be too restric-

tive, particularly in the case where some of the motivating questions in the study have

answers that critically depend on the specific parametric form chosen. A richer and

potentially more realistic class of models is obtained by letting the family of prior dis-

tributions be indexed by an infinite-dimensional hyperparameter. Such constructions

are typically used to express uncertainty on a distribution function. Probability mod-

els for infinite-dimensional random parameters are known as non-parametric Bayesian

models. Data analysis based on such models is known as non-parametric Bayesian in-

ference. When used to describe uncertainty about a distribution function, the models

are called random probability measures (RPMs) and can be thought of as probability

distributions defined on the space of distribution functions.

It is customary to make a distinction between continuous and discrete nonpara-

metric models, depending on whether the RPMs generate distributions almost surely

supported on the set of continuous or discrete distributions. The distinction, how-

ever, is not a clear-cut separation. Some of the continuous models admit discrete

distributions as (extreme) special cases. Such is the case, for example, for the Polya

trees discussed in Lavine (1992, 1994). See also Hanson and Johnson (2002), Pad-

dock et al. (2003) and Hanson (2006). Additional RPMs of the continuous type in-

clude beta processes (Hjort 1990), beta-Stacy processes (Walker and Muliere 1997),

extended and weighted Gamma processes (Dykstra and Laud 1981, Nieto-Barajas and

Walker 2002, Ishwaran and James 2004), Gaussian processes (O’Hagan 1992, Angers

and Delampady 1992), random Bernstein polynomials (Petrone, 1999a, 1999b), and

logistic normal processes (Lenk 1988). For a review of these and other nonparametric
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priors and additional references, see Dey, Müller and Sinha (1998), Walker et al. (1999),

Ghosh and Ramamoorthi (2003), and Müller and Quintana (2004).

The focus of this article is on discrete RPMs and their applications. Specifically,

we consider the class of RPMs that can be represented as

F (·) =

∞
∑

h=1

whδµh
(·), (1.1)

where w1, w2, . . . are weights that verify 0 ≤ wh ≤ 1 for all h, P (
∑

h wh = 1) = 1 and

µ1, µ2, . . . are random locations of the point masses, independent of the {wh} collection.

The rest of this article is organized as follows. Section 2 reviews the class of species

sampling models (SSMs), the main focus of this article, discussing some special and

well-known cases. We emphasize the clustering structure induced by the discreteness

of SSMs. Section 3 discusses some issues underlying nonparametric Bayesian models

using SSMs. Aspects of MCMC implementation are described in Section 4. Section 5

illustrates the ideas in an example. In particular, we explore sensitivity to various

specifications of the prior SSM. Some final remarks are given in Section 6.

2 Species Sampling Models and Some Special Cases

A very flexible collection of models based on discrete RPMs is given by the class of

species sampling models (SSMs), discussed by Pitman (1996), Ishwaran and James

(2003a) and Quintana (2006). Suppose a random sample θ1, θ2, . . . is collected from

a large population and that θn is the tag assigned to the species of the n-th selected

individual. We use the term species to generically identify the variable θi, keeping in

mind that θi need not literally identify a biological species. Having observed θ1, . . . , θn,

denote by θ∗1, . . . , θ
∗
k the unique values that have been recorded, in order of appearance,

where k ≡ k(n) is the number of such items. Thus, θ∗j represents the j-th sampled

species. Let the indicators s = (s1, . . . , sn) be defined as θi = θ∗si
for i = 1, . . . , n. The

set of observations sharing a common tag value is referred to as a cluster. The clusters

define a partition of {1, . . . , n} as ρ = (S1, . . . , Sk), where Sj = {i ∈ {1, . . . , n} :

si = j}. We explicitly note the implied sequential order, i.e. clusters are numbered
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consecutively, with 1 ∈ S1 and there is a “no-gaps” restriction in the sense that si =

` > 1 for some i implies that the set of unique values of s1, . . . , si is exactly 1, . . . , `.

The cluster sizes are denoted by mj(n) =
∑n

i=1 I{θi = θ∗j}, where I{A} = 1 if A occurs

and 0 otherwise. Let F0 be a fixed probability model (baseline). Consider a prediction

rule of the form P (θ1 ∈ B) = F0(B) and

P (θn+1 ∈ B | θ1, . . . , θn) =

k(n)
∑

j=1

ρj(m(n)) δθ∗j
(B) + ρk(n)+1(m(n)) F0(B), (2.1)

where m(n) = (m1(n), . . . , mk(n)(n)) is the vector of cluster sizes, and the collec-

tion of functions ρj(·) are weights that add up to 1, i.e., 0 ≤ ρj(m(n)) ≤ 1 and
∑n+1

j=1 ρj(m(n)) = 1 for all n and m(n). To avoid practical complications (see Sec-

tion 3 below) we will assume F0 to be continuous. The predictive distribution (2.1) is

a mixture of point-masses at the already observed tags and the baseline distribution

F0. The weights of the mixture are given by the ρj(m(n)) functions. Assuming that

the sequence {θn} is exchangeable, it follows (Pitman 1996) that Fn+1(B) = P (θn+1 ∈

B | θ1, . . . , θn) as defined in (2.1) converges in variation norm to a RPM F of the form

F (B) =

∞
∑

h=1

whδθ∗
h
(B) +

(

1 −

∞
∑

h=1

wh

)

F0(B), (2.2)

where the {θ∗h} are i.i.d draws from F0, independent of {wh}, and wh represents the

weight of the h-th species to appear. Also, P (limn→∞ mj(n)/n = wj) = 1 for all

j ≥ 1 and given F , {θn} is a random sample from F . A RPM of the form (2.2)

together with a random sample {θn} from F is referred to as SSM. The continuity of

F0 implies that (2.2) defines a discrete distribution provided that P (
∑

h wh = 1) = 1.

Furthermore, if the predictive probabilities {ρj} are such that P (limn→∞ k(n)/n =

0) = 1 then P (
∑

h wh = 1) = 1. In this case the model is said to be proper, and

the RPM is of the form (1.1). This property depends primarily on the specification of

{ρj}. Thus, SSMs can be defined by means of the predictive probabilities ρj(m(n))

and the baseline distribution F0. The choice of ρj is not arbitrary. See below. The

almost sure convergence result P (limn→∞ mj(n)/n = wj) = 1 allows us to give an

interpretation of the weights wh in (1.1) as limit proportions of the recorded tags.

Letting ρ generically denote the collection of predictive probabilities {ρj}, we use the
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notation F ∼ SSM(ρ, F0) to designate the limit RPM in (2.2). It follows (Pitman 1996)

that for any SSM, marginalizing over the RPM F leads to a joint distribution p(θ)

that can be expressed as the product of conditional distributions as in (2.1). This

observation will turn out to be quite important later in Section 4. See additional

general properties of SSMs in Pitman (1996).

A pragmatic use of SSMs might involve specifying the predictive probabilities and

carrying out the analysis without ever worrying about the specific form of the limit

RPM (2.2). However, one must make sure that the resulting sequence {θn} is indeed

exchangeable. To do so, it is useful to consider the exchangeable partition probability

function (EPPF), defined for a partition ρ = (S1, . . . , Sk) as

P

(

k
⋂

j=1

{θ` = θ∗j for all ` ∈ Sj}

)

= p(m(n)). (2.3)

If {θn} is exchangeable then p(·) is a symmetric function of all possible k-tuples of

positive integers summing up to n ≥ 1, constrained to satisfy a coherence condition

p(1) = 1 and p(m(n)) =

k(n)+1
∑

j=1

p(m(n)+j).

Here, m(n)+j represents m(n) with the j-th component increased by 1 (Pitman 1996).

EPPFs are important because SSMs can be alternatively defined by an EPPF plus the

baseline measure F0. In this case, the predictive probability functions are easily shown

to be given by

ρj(m(n)) =
p(m(n)j+)

p(m(n))
, 1 ≤ j ≤ k(n) + 1.

An interesting example of a EPPF is that corresponding to the Pitman-Yor (PY)

process (Pitman and Yor 1987). Let [x]` =
∏`

j=1(x + j − 1). The EPPF for the PY

process is

pα,M(m1(n), . . . , mk(n)(n)) =

(

∏k−1
j=1(M + jα)

)(

∏k(n)
j=1 [1 − α]mj(n)−1

)

[1 + M ]n−1

,

for α = −κ and M = `κ for some κ > 0 and ` = 2, 3, . . ., or 0 ≤ α < 1 and M > −α.

The corresponding predictive probability functions are given by

ρj(m(n)) =
1

M + n

{

mj(n) − α if 1 ≤ j ≤ k(n)

M + k(n)α if j = k(n) + 1.
(2.4)
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The special case α = 0 and M > 0 corresponds to the Dirichlet process (DP) introduced

by Ferguson (1973). Sethuraman (1994) showed that the DP corresponds to (1.1) with

µ1, µ2, . . . being i.i.d. from a baseline distribution F0 and with weights defined as

w1 = V1 and wh =
∏h−1

j=1 (1− Vj)Vh for h > 1, where V1, V2, . . .
iid
∼ Beta(1, M), for some

M > 0 called total mass parameter. We denote it as F ∼ DP (M, F0) and note that

the corresponding predictive probabilities reduce to

ρj(m(n)) =
1

M + n

{

mj(n) if 1 ≤ j ≤ k(n)

M if j = k(n) + 1.

These probabilities have been interpreted as the Chinese restaurant process by Arratia,

Barbour and Tavaré (1992).

Due to its simplicity and the availability of efficient posterior simulation schemes

(Bush and MacEachern 1996, MacEachern and Müller 1998, Neal 2000, Jain and

Neal 2004), the DP is the most popular non-parametric Bayesian model. DP-based

models have been considered in an ever growing range of applications and settings.

See details on computation in Section 4 below. A survey of applications involving

the DP can be found in MacEachern and Müller (2000). Some recent applications

include accelerated failure time (AFT) models (Hanson and Johnson 2004), analysis

of developmental toxicology data (Dominici and Parmigiani 2001), animal breeding

(van der Merwe and Pretorius 2003), competing risks models (Tiwari et al. 1997),

homogeneity assessments in contingency tables (Kuo and Yang 2006), linear mixed

models (Ishwaran and Takahara 2002), median regression (Kottas and Gelfand 2001),

meta-analysis (Müller et al. 2004, Doss and Burr 2005), modeling differential gene ex-

pression (Dahl 2003, Do et al. 2005), modeling matched case-control studies (Sinha et

al. 2004), multivariate ordinal data analysis (Kottas et al. 2005), regression for count

data (Carota and Parmigiani 2002), spatial modeling (Gelfand et al. 2004), sports data

(Quintana and Müller 2004), and many others. Discussions of properties and applica-

tions of DPs can be found in Ferguson (1973), Korwar and Hollander (1973), Antoniak

(1974), Diaconis and Freedman (1986), Cifarelli and Regazzini (1990), Rolin (1992),

Diaconis and Kemperman (1996), Florens et al. (1999), Cifarelli and Melilli (2000),

Regazzini, Guglielmi and Di Nunno (2002), James (2005), Hanson et al. (2005), Hjort
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and Ongaro (2005) and in other references therein.

The class of SSM models admits several other important special cases. These

include the Dirichlet-multinomial process (Muliere and Secchi 1995), the beta-two pro-

cess (Ishwaran and Zarepour 2000) and the stick-breaking priors (Ishwaran and James

2001, 2003b). Additional properties of SSMs can be found in Pitman (1996). For a

related class of RPMs see Lijoi, Mena and Prünster (2006).

3 Nonparametric Bayesian Modelling

A primary motivation for the use of nonparametric Bayesian models is their inherent

flexibility. The SSM allows extensive flexibility in the specification of the predictive

rule (2.1). However, there are limitations to the use of the SSM in data analysis.

One important limitation arises from the fact that (2.1) implies positive probability

for ties. This makes it inappropriate, for example, to use a SSM prior for density

estimation with continuous outcomes. This limitation motivated Ferguson (1983) to

consider mixtures of DPs, i.e., a convolution of a DP RPM F with a continuous kernel.

This approach became very popular for non-parametric Bayesian data analysis. (see,

e.g. Lo 1984, Escobar 1988, MacEachern 1994, Escobar and West 1995). Extending

this idea to SSMs, a typical non-parametric model based on SSMs is expressed as

Xi ∼ F (x) =

∫

p(x | θ) dG(θ), (3.1)

where G ∼ SSM(ρ, G0), for a suitable continuous kernel p(x | θ) and a continuous

distribution G0. The continuity of G0 guarantees that clusters are defined only in terms

of the different values sampled from G0 (i.e. the tags); otherwise different clusters may

have a common tag value, complicating the interpretation. Model (3.1) can be thought

of as the mixture of a continuous distribution with respect to a discrete RPM. The

mixture generates a continuous distribution F (x). Introducing latent parameters θi,

the mixture can be written as a hierarchical model:

Xi | θi
ind
∼ p(Xi | θi), θi

iid
∼ G, G ∼ SSM(ρ, G0). (3.2)

Optionally, G0 and/or the likelihood may include additional hyperparameters. The

flexibility of a model like (3.1) is reflected in the fact that many distributions can be
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well approximated by such a construction. For instance, Lo (1984) points out that the

closure of the family of distributions defined as F (x) =
∫

p(τ(x − µ)) dG(µ, τ) with

G ∼ DP (M, G0) contains all continuous distributions on the real line for reasonable

choices of p and G0. A similar result can be shown to hold for the more general (proper)

SSMs with RPMs as in (1.1).

The latent variables θi in (3.2) are interpreted as subject-specific random effects.

The use of these random effects allows for great flexibility but also entails complexity.

The SSM prior assumption includes the possibility of ties among the θi values. In

practice this means that a priori some individuals share a common parameter value

θ∗j , their differences being explained by sampling variability in the likelihood.

From a data analysis perspective it is interesting to note that model (3.2) allows

for two extreme cases: all the θi parameters are equal, and all of them are distinct,

reducing inference to parametric models. But more generally, a discrete RPM prior

for the unknown distribution represents an intermediate choice between models with

all parameters equal or different. By adequately choosing the predictive probabilities

{ρj} the analyst can favor different partition structures. In the DP case, for instance,

a large value of M implies many clusters, while small values of M favor a reduced

number of clusters. The prior expectation and variance of the number of clusters are

given by (Liu 1996)
n
∑

i=1

M

M + i − 1
and

n
∑

i=1

M(i − 1)

(M + i − 1)2
.

The extreme cases mentioned earlier follow by letting M → 0 and M → ∞, respec-

tively. Some authors (e.g. Escobar and West 1995) treat M as an unknown parameter

itself, choosing a prior distribution (usually Gamma) to reflect uncertainty. The above

expressions for prior mean and variance can be used for prior elicitation purposes

(Kottas et al. 2005). In contrast, the PY process has a more flexible partition struc-

ture, where an increased number of clusters may be attained by increasing within the

valid ranges either M or α.

In a typical application of RPM priors based on SSMs one would consider a model

like (3.2) regarding the θi parameters as random effects. The posterior process of

G would seldom be of interest itself. In that sense, the modeling flexibility would
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be seen as a useful device to account for variability among subjects and to model

the heterogeneity of the underlying population of experimental units. An important

consequence of this is that other population-level parameters or hyperparameters can

be better understood, because much of the underlying noise has thus been considered.

4 Posterior Computation

A crucial aspect of any modeling effort is the availability of efficient posterior simulation

schemes that facilitate the implementation. This is particularly true for nonparametric

Bayesian models. To fix ideas, consider the following variation of model (3.2)

Xi | β, θi
ind
∼ p(Xi | β, θi), θi

iid
∼ G, G | φ ∼ SSM(ρ, G0(· | φ)), (4.1)

where β ∼ p(β) and φ ∼ p(φ) represent additional parameters and hyperparameters

in the likelihood and baseline distribution, respectively. The need for such additional

(hyper-)parameters is a very common feature in applied data analysis. Assume for

now that the likelihood p(x | β, θ) is conjugate with respect to G0(· | φ). Let g0(· | φ)

denote the density of G0 for any fixed value of φ.

We describe an implementation of posterior inference by MCMC simulation. The

MCMC scheme is described by specifying the Markov chain transition probabilities.

Conditional on currently imputed values for all other parameters and the data we

describe how each of the parameters in the model is updated.

The conditional posterior distribution of θi given all other model parameters can be

explicitly derived to find a mixture between point masses at the already imputed θj,

j 6= i and a distribution gi(θi | β, φ) ∝ p(Xi | β, θi)g0(θi | φ). The assumed conjugacy

of the sampling model and the base measure g0 imply that gi(·) can be worked out

analytically. By the exchangeability of θ1, . . . , θn built in the SSMs, we find that

θi | θ−i, β, φ, X ∝
k−

∑

j=1

ρj(m(n − 1))p(Xi | θ∗−j , β)δθ∗−j
(θi)

+ ρk−+1(m(n − 1))

[
∫

p(Xi | θ, β)g0(θ | φ) dθ

]

gi(θi | β, φ), (4.2)
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where X = (X1, . . . , Xn), θ−i = (θj)j 6=i, and k− ≡ k(n)− and θ∗−1 , . . . , θ∗−
k−

represent

the number of clusters and the locations left after removing the i-th observation.

A basic Gibbs sampler can then be defined as follows:

Step 1. Updating locations θ: For i = 1, . . . , n resample θi from (4.2). After sampling

each θi, update k(n), ρj(m(n)), j = 1, . . . , k(n) + 1 and θ∗1, . . . , θ
∗
k.

Note that updating θ implicitly changes s and θ
?.

Step 2. Resampling locations: As noted by Bush and MacEachern (1996) it is advis-

able to include a step to resample θ
? conditional on the imputed configuration

s. This greatly increases the mixing of the Markov chain. Therefore, conditional

on s, we consider draws

θ∗j ∼ p(θ∗j | . . .) ∝
∏

i∈Sj

p(Xi | β, θ∗j )g0(θ
∗
j | φ), j = 1, . . . , k,

which can be obtained exactly by the conjugacy assumptions. Then define θi =

θ∗si
, i = 1, . . . , n.

Step 3. Updating the remaining parameters: The remaining parameters are resampled

according to their complete conditional posterior distributions:

p(β | . . .) ∝

n
∏

i=1

p(Xi | β, θi)p(β) and p(φ | . . .) ∝

k
∏

j=1

g0(θ
∗
j | φ)p(φ).

A Metropolis within Gibbs step might be required in case any of these is not

available in closed form.

However, it is usually even more efficient, in the sense of a faster mixing Markov

chain, to consider updating the configurations vector s with respect to a reduced

model resulting after analytically marginalizing with respect to the θi parameters

(MacEachern and Müller 2000). Representing the vector θ = (θ1, . . . , θn) as (θ∗, s),

and marginalizing with respect to the RPM G we find that the joint distribution of

(X, θ∗, s, β, φ) is

p(X, θ∗, s, β, φ) =

k(n)
∏

j=1







∏

i∈Sj

p(Xi | β, θ∗j )







·

k(n)
∏

j=1

g0(θ
∗
j | φ) · p(s)p(β)p(φ). (4.3)
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The joint prior p(s) is evaluated by writing p(s) = p(s1)
∏n

i=2 p(si | s1, . . . , si−1) and

noting that the definition of SSM implies P (s1 = 1) = 1 and

P (si = ` | s1, . . . , si−1) = ρ`(m(i − 1)).

Exploiting exchangeability we note that P (si = ` | s−i = s̃) = P (sn = ` | s−n = s̃),

i.e., the complete conditional prior for the i-th configuration indicator is the same as

for the last, n-th configuration indicator. For instance, in the case of the PY process,

the latter is just (2.4) substituting n−1 for n. The assumed conjugacy of the sampling

model and the base measure allows us to analytically marginalize with respect to θ
∗

in (4.3), leading to

p(X, s, β, φ) =

k(n)
∏

j=1

p(XSj
| β)p(s)p(β)p(φ), (4.4)

where XSj
= (Xi : i ∈ Sj) and p(XSj

| β) =
∫
∏

i∈Sj
p(Xi | β, θ∗j )g0(θ

∗
j ) dθ∗j . In

summary, posterior updating proceeds by replacing Step 1 in the basic algorithm by

Step 1′ below:

Step 1′ Updating cluster indicators s: For i = 1, . . . , n update si from the conditional

distribution

P (si = ` | s−i, β, φ) =

{

p(Xi | X−i, si = `, β)ρ`(m(n − 1)) if ` = 1, . . . , k−

p(Xi | β)ρk−+1(m(n − 1)) if ` = k− + 1,

(4.5)

where k− ≡ k(n)− is the number of clusters left after removing the i-th observa-

tion. When recording the newly imputed value si by generating from (4.5) note

the following convention about labelling:

(a) If msi
(n) > 1 then we resample si directly from (4.5).

(b) If msi
(n) = 1 then removing the i-th observation also eliminates a cluster.

Consequently, we first set k− as k− − 1 and relabel clusters so as to avoid

gaps and keep the ordering, and then resample according to (4.5).
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Also, we note p(Xi | X−i, si = `, β) depends on X−i only through those obser-

vations with index in S−
` = (t : t ∈ S` − {i}), that is

p(Xi | X−i, si = `, β) = p(Xi | XS−

`
, si = `, β) =

p(XS−

`
∪{i} | β)

p(XS−

`
| β)

,

which by hypothesis can be evaluated analytically.

The algorithms just described can be modified and/or adapted in a number of

ways. For instance, in the special case of assuming the RPM to be a finite-dimensional

version of stick-breaking priors, the blocked Gibbs sampling described in Ishwaran and

James (2001) may be used. Other alternative approaches to various cases are sequential

importance sampling (Liu 1996, MacEachern et al. 1999, Quintana and Newton 2000,

Ishwaran and James 2003a) and Metropolis-Hastings moves (Neal 2000, Dahl 2003, Jain

and Neal 2004, Dahl 2005).

The algorithm relies on the conjugacy of the sampling model and the base measure

g0. In the absence of this conjugacy, the algorithm by MacEachern and Müller (2000)

can be used, for example. Alternatively, Dahl (2005) has described a nonconjugate

version of his Metropolis-Hastings algorithm.

5 Illustrations

We illustrate some of the concepts discussed earlier using the galaxy dataset presented

in Roeder (1990). The same example has been analyzed by a number of authors,

including Escobar and West (1995), Richardson and Green (1997), Stephens (2000),

Ishwaran and James (2003a) and Quintana (2006). The dataset includes n = 82

measured velocities (in 103 km/s), relative to our own galaxy, of galaxies from six

well-separated conic sections in space. We consider a model based on SSMs using

various choices of predictive probabilities {ρ} defining special cases of the PY process.

We assess the impact of such choices on the density estimate, given by the posterior

predictive density p(Xn+1 | X1, . . . , Xn).
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We assume the model

Xi | (µi, Vi) ∼ N(µi, Vi)

(µ1, V1), . . . , (µn, Vn) | F ∼ F

F ∼ PY (α, M, F0(φ)),

where F0(φ) is a normal-inverse Gamma distribution with hyperparameters φ. That

is, (µ, V ) ∼ F0(φ) means µ | V ∼ N(η, τV ) and V −1 ∼ Γ(r/2, R/2) with φ = (η, τ)

and assuming r and R to be fixed. Finally, we assume the components of φ to be a

priori independent, with η ∼ N(m0, V0) and τ−1 ∼ Γ(w/2, W/2) for known values of

m0, V0, w and W .

The PY predictive probabilities are given in (2.4). In what follows we assign the

following values to the hyperparameters: m0 = 20, V0 = 1000, w = 1, W = 100,

r = 4 and R = 2, matching the choices in Escobar and West (1995), except for the

prior assumptions for M . We start by considering the case α = 0 and M > 0, i.e.

the specification that leads to the DP. We alternatively treat M as a fixed and known

constant or as an additional parameter, with prior density given by M ∼ Γ(a0, b0),

so that the prior mean and variance are a0/b0 and a0/b
2
0. The posterior predictive

density is presented in Figure 1 for each of four cases: (i) M=1 fixed; (ii) a0 = 2 and

b0 = 4, matching the choices in Escobar and West (1995); (iii) a0 = 10 and b0 = 2;

and (iv) a0 = 20 and b0 = 2. In (ii) through (iv) the prior mean increases from 1/2 to

10, thus favoring the creation of more clusters. In all cases the resulting distributions

can be interpreted as mixtures, concentrated on essentially the same region, but with

weights that vary slightly according to the prior. In that sense, model (iv) appears to

make a more marked distinction between the two central mixture components. In fact,

the corresponding posterior density of M for models (ii) through (iv), presented in

Figure 2, simply reflect a kind of stochastic monotonicity of the posterior with respect

to the prior. Nevertheless, the impact of such prior definitions, including the extreme

case (i) for which P (M = 1) = 1, seems minor.

Next we consider specifications of PY predictive probabilities with the following

parameter choices: (i) α = 0 and M = 1 (the usual DP); (ii) α = 0.3 and M = 1; (iii)

α = 0.9 and M = 1; and (iv) α = 0.9 and M = 5. By increasing α we decrease the

13



predictive probability of joining an already formed cluster (uniformly across cluster),

while increasing the probability of creating new clusters. The posterior predictive

densities are shown in Figure 3, left panel, together with the corresponding histograms

for the posterior distribution of number of clusters (right panel). The effect of increasing

α is clearly reflected in the posterior distribution of k(n). However, it is also found

that increasing α tends to slightly oversmooth the posterior predictive density.

Finally, we consider the effect of moving both parameters as follows: (i) α = −1 and

M = 2; (ii) α = −1 and M = 4; and (iii) α = −5 and M = 20. These represent some

widely varying specifications. The corresponding posterior predictive and posterior

distribution for the number of clusters are presented in Figure 4. We observe some

substantial variability in the posterior predictive densities. Unlike all other cases,

choice (i) produces unimodal shapes, and case (iii) nearly misses the rightmost mode,

which is best captured by case (ii). The effect on the posterior distribution of the

number of clusters is also dramatic. All these choices lead to a distribution that is

strongly concentrated on a few small values.

6 Discussion

We have reviewed some aspects of nonparametric Bayesian modeling, specifically in the

context of discrete random probability measures as contained in the class of species

sampling models. We discussed some critical considerations in the modeling process,

together with appropriate posterior simulation schemes for the conjugate case.

We focused our comparison on the special case of the PY process, which contains

the DP as a particular case, exploring the effect of various specifications on density esti-

mation. Our results suggest that the posterior predictive density is strongly influenced

by such specifications, as reflected by the number of implied mixture components. The

problem of formally selecting or estimating the number of such components is beyond

the scope of this article. A possible solution can be implemented via the clustering

algorithms discussed in Quintana (2006). For the purpose of data analysis with SSM

priors in general and with PY priors in particular, we recommend to select the predic-

tive probabilities on the basis of the desired number of clusters and the relative sizes of

14



clusters. For example, if the goal is to identify a large subpopulation of normal cases and

smaller subsets of outliers, then the choice of a prior that favors a skewed distribution

of cluster sizes is reasonable. If, however, the intention is to identify subpopulations

that are a priori expected to be likely of comparable size, then we recommend to use a

prior that favors approximately equal cluster sizes. The choice of the hyperparameters

α and M in the PY process control the a priori expected number of clusters. In sum-

mary, we recommend against using the DP as an unreflected default choice. Instead

we suggest to use the flexibility of SSM priors to reflect prior information about the

number and nature of clusters. The additional flexibility allows the analyst to improve

the data analysis by including more relevant prior information. This can be done with

essentially no additional computational cost.
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Figure 1: Posterior predictive distribution for each of four prior specifications.
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Figure 2: Posterior distribution of M for each of three prior specifications.
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Figure 3: (a) Posterior predictive distribution and (b) posterior distribution of the

number of clusters for four prior specifications of the PY process. Note that for α = 0

and M = 1 the PY process becomes the DP.
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Figure 4: (a) Posterior predictive distribution and (b) posterior distribution of the

number of clusters for three prior specifications of the PY process.
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