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Summary. This paper develops a simulation-based approach to sequential parameter learning and filtering in
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1. Introduction

Modern-day applications of filtering in general state-space models also require sequential parameter learning.
Common examples include financial time series and spatio-temporal models. However, combined sequential
parameter learning and state filtering provides many computational challenges. Standard particle filter-
ing methods such as sampling-importance resampling (SIR, Gordon, Salmond and Smith, 1993; Liu and
Chen, 1995; Kitagawa, 1996) and auxiliary particle filters (APF, Pitt and Shephard, 1999) can lead to un-
balanced weights for the particles and degeneracy in the presence of outliers, model misspecification and
high-dimensional systems. Furthermore, the degeneracy problem is typically exacerbated when sequential
parameter estimation is also required (see, for example, Andrieu, Doucet and Tadi¢, 2005). Our approach
avoids the degeneracy problem and provides a straightforward approach to the combined filtering and se-
quential parameter learning problem.

Sequential parameter learning algorithms have been proposed within the particle filter framework. In
particular, Gordon, Salmond and Smith (1993) augment the state vector to include the static parame-
ters; Berzuini, Best, Gilks and Larizza (1997) use Markov chain Monte Carlo (MCMC) approaches within
the particle filter; Liu and West (2001) propose a kernel density approach, whereas Hiirzeler and Kiinsch
(2001) and Pitt (2002) use likelihood-based methods. Andrieu and Doucet (2003) and Andrieu, Doucet and
Tadi¢ (2005) consider recursive and batch maximum likelihood methods based on stochastic gradients and
expectation-maximisation (EM) approaches. Our approach is most closely related to Storvik (2002) who
proposes a Bayesian approach based on sufficient statistics.

Our approach uses a rolling-window MCMC algorithm. The basic assumption is that at each time ¢,
there exists a lag k such that the joint distribution of the initial ¢ — k states is unaffected by all observations
after time ¢, conditional on the intermediate observations. The advantage of our methodology is that it is
straightforward to implement and effective in many situations, particularly for conditionally Gaussian models
with unknown parameters where MCMC smoothing methods have been well developed. By recasting the
filtering problem as a sequence of small smoothing problems we can use standard MCMC approaches (Carlin,
Polson and Stoffer, 1992; Carter and Kohn, 1994) to provide a simulation-based solution. The algorithm
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does not reweight or resample particles and hence it avoids the degeneracy problem. The key features of
our approach are the inclusion of static parameters, a linear computational effort, and a clever mechanism
to exploit sufficient statistics to update parameter inference.

Following Storvik (2002), we update sequential parameter posterior distributions by exploiting a sufficient
statistic structure. While Storvik’s APF algorithm works well for sequential parameter learning when there is
no model misspecification, it can degenerate in the presence of outliers. Choosing good proposal distributions
in these cases is necessary to alleviate these problems (see Kiinsch, 2005). We avoid these problems and our
methodology also has the flexibility for learning parameters in the observation equation.

An alternative approach to reduce the effect of outliers is fixed-lag particle filtering (see Clapp and
Godsill, 1999; Pitt and Shephard, 2001). The key difference here is that we do not reweight the initial
samples. This also allows our approach to be more efficient for sequential parameter learning in higher-
dimensional problems. On the other hand, by avoiding reweighting, certain parameters such as the evolution
variance in autoregressive and stochastic volatility models are still hard hard to learn as with standard
particle filtering methods (see Stroud, Polson and Miiller, 2004).

Filter implementation requires a number of choices. First, the researcher needs to specify a fixed number of
state paths N to be simulated. Secondly, we must choose the number of MCMC iterations G to be performed
at each step. In many cases this number can be reduced by using standard MCMC blocking methods and
the forward-filtering backward-sampling (FFBS) algorithm (Carter and Kohn, 1994; Frithwirth-Schnatter,
1994). We describe these methods in detail in Section 2.2. Finally, the length k of the block of state variables
for fixed-lag smoothing must be chosen and we provide diagnostics to do this.

The methodology is illustrated using two applications. First, we consider a benchmark autoregressive plus
noise model with sequential parameter learning. In a simulation study we find that there is little difference
between our approach and Storvik’s method for pure state filtering. However, when sequential parameter
estimation is added, we show that Storvik’s algorithm can degenerate and give poor inference in the presence
of outliers. Secondly, we consider a three-dimensional stochastic Lorenz model from the atmospheric science
literature. Recent research for known parameters such as Bengtsson, Snyder and Nychka (2003) uses mixture
ensemble filtering for the Lorenz model. We use a block Gibbs sampling implementation of FFBS, which
takes account of the nonlinearities in the system equation and works well for both known static parameters
and sequential parameter learning.

The rest of the paper is outlined as follows. Section 2 discusses filtering using the practical filter. We
describe diagnostic approaches for choosing the lag-length k. Section 3 shows how to incorporate sequential
parameter learning into the algorithm. Section 4 applies our methodology to the autoregressive and Lorenz
models. Finally, Section 5 concludes.

2. Filtering and Sequential Parameter Learning

The combined state and parameter estimation problem can be described as follows. Consider a dynamic state-
space model with an observation y;, an unobserved state vector x;, and a parameter vector 8. The initial
state distribution xg ~ p(xo) is assumed to be known. Throughout we use the notation x5 = {Xs,..., %}
and ys.t = {¥s,.-., ¥t} to denote the block of states and observations from time s to t.

The model is specified in terms of the densities

(Observation) y; ~ p(ye|xs)
(Evolution) x; ~ p(x¢|x¢—1,0)
(Prior) 6 ~ p(8).

The Bayesian approach to combined filtering and parameter learning requires calculation of the joint posterior
distribution p(x1.;, @|y1.¢). From this, we can provide marginal state and parameter distributions, p(x;|y1.:)
and p(0|y1:t). In most cases, the joint filtering distribution is unavailable in closed form, and must be
approximated using Monte Carlo methods (see Doucet, de Freitas and Gordon, 2001, for recent methods).
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2.1. Filtering with Fixed Parameters

First consider the filtering problem with fixed parameters. Now, we can exploit the representation of the
filtering distribution as a mixture of lag-k smoothing distributions where the filtering distribution is a
marginal of the form

P(X¢|yie) = /p(Xt—k+1:t|}’1:t)dXt—k+1:t—1-

In order to sequentially compute the filtering distribution p(x¢|yi.:) we can use the identity above and
marginalise with respect to a constant window of lagged states. To do this we propose to re-use earlier
simulations in an efficient manner. From an algorithmic perspective, this provides the equivalent of the
popular FFBS algorithm for normal dynamic linear models (Anderson and Moore, 1979) for general state
space models, replacing the single state lag of the FFBS algorithm by a sliding window, but still of fixed
length k. At the heart of the proposed algorithm is the representation of the lag-k smoothing distribution
as a mixture with respect to the distribution p(x¢_x|y1:+), namely

p(xt7k+1:t|YI:t) = /p(xt7k+1:t|xt7k;)'1:t)dp(xt7k|)’1:t)

/ DKttt Xe s Ve patee) dp(Xe_rly1c). (1)

The second identity exploits the Markov property of the state-space model. To resolve the integral with
respect to p(X¢—k|y1:t) we require samples from p(x;_|y1.:). The basic assumption is that for each ¢, there
exists a lag k such that joint distribution of the prior states is unaffected by all observations after time ¢.

Under this assumption, we can use the samples from p(x;_r|y1::—1) as approximate samples from
P(X¢—k|y1:¢).- This approach will be reasonable when the predictive distribution p(y¢|y:—r+1:t—1,X¢—r) is
conditionally independent of x; . To see this, note the identity

p(Ytlxtfk; Yt7k+1:t—1)
P(Xe—p|y1e) = P(X¢—k|y1:0—1)- (2)
P(Ye|Yi—kt1:t—1)

In many instances, the sensitivity of the predictive distribution to the initial state will decay quickly and
in many cases at an exponential rate (see LeGland and Mevel, 1997; Kiinsch, 2001; Cappe, Moulines and
Ryden, 2005).

The filtering algorithm for fixed parameters proceeds as follows. During an initial warm-up period
(t=1,...,k—1) a full MCMC smoothing algorithm is run on p(xo.t|y1.t), and the filtering distribution is
approximated by samples of x;. The algorithm then proceeds (for ¢ = k,...,T) by drawing joint samples
from p(X¢—pt1:¢|Xe—k, Ye—k+1:¢) using an MCMC scheme. Finally, samples of x;_j, are stored for use at the
next stage of the algorithm, and the filtering distribution is approximated by the marginal draws of x;.

A description of the filtering algorithm with fixed parameters is given below.

Algorithm 1: Filtering with Fixed Parameters

At each time period t =k,...,T:
For each sample path i =1,..., N: .
Step 1: Run an MCMC with stationary distribution p(xt_k+1:t|x§’2k,yt_k+1:t).
Step 2: Define xgi—)k-i-l:t as the last iteration of x; 1.4 in the MCMC.

Step 3: Store X§?k+1 as a draw from p(X¢— g1 |y1:¢)-

Step 4: Report xgi) as a draw from p(x¢|y1:¢).

The parameter N is the number of saved histories. The histories are independent draws from p(x;_|y1.t)
and as such can be used to compute filtered estimates or perform density estimation using standard Rao-
Blackwellisation.

The parameter G is the number of MCMC iterations used to obtain samples from the smoothing distri-
bution at each stage. Samples from p(X¢—gt1:¢|X¢—k, Ye—k+1:t) can be drawn in several ways, depending on
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the model, as described below. When the MCMC algorithm mixes rapidly, we can choose G to be small. For
linear Gaussian models, independent samples can be drawn directly without using MCMC, although when
parameters are fixed, this is clearly unnecessary since the filtering density is available in closed form.

The parameter k is the width of the rolling window used for state updating. In models where there is
weak posterior dependence between state variables over time, we can choose a relatively small value of k. In
the next subsection, we suggest a number of diagnostic approaches to selecting k. In the case of sequential

parameter learning, the common static parameter induces additional dependence, requiring a larger choice
of k.

2.2. Methods for State Generation
Generating states in an efficient manner given the parameters is essential for the fast implementation of
our filtering approach. In this section, we describe various Monte Carlo smoothing algorithms for common
classes of state-space models that can be used within our algorithm.

For linear Gaussian models, samples can be easily generated using the efficient forward-filtering backward-
sampling (FFBS) algorithm of Carter and Kohn (1994) and Frithwirth-Schnatter (1994). The FFBS algo-
rithm exploits the factorisation of the joint distribution p(xX¢—jt1:¢|Xt—k, Yt—k+1:¢) used in Algorithm 1 as

t—1

p(xt7k+1:t|xt7k;Yt7k+1:t) = p(xt|xt7k;}’t7k+1:t) H p(xj|xj+1;thk;Yt7k+1:j)-
j=t—k+1

This allows for a recursive approach to drawing x;_41.¢. Specifically, we first sample from p(x¢|X¢—k, Y¢—k+1:t)
and then sample iteratively from p(x;|X;41,X¢—k,Ye—k+1:5)- This provides direct draws of the state vector
given the parameters without requiring MCMC.

In multivariate state-space models, the state vector can often be decomposed into sub-blocks x; 5, b =

1,..., B, such that, conditional on x;_p = {xs,p, b' # b}, x4, has a Gaussian state-space form
Yep = HipXep + e, eis ~ N(0,Ry ) (3)
Xep = MipXe 16 +agy +Wep, Wep ~N(0,Qep), (4)

where y; 5, Hy 5, Re 5, My p, a5, and Qq p are known functions of y; and x;,_p. In such cases, MCMC sampling
is performed by iterating through the full conditional distributions Xs.tp ~ pP(Xs.tp|Xs:t,—b,¥s:¢) for b =
1,..., B, where each sub-block is sampled efficiently using FFBS. This method is illustrated in the Lorenz
example of Section 4.2.

MCMC sampling schemes can often be improved by introducing an extra block of latent state variables.
While this increases the dimensionality of the state vector it poses little extra computational burden on
our approach assuming that state sampling can be done efficiently. Examples of latent variables in state-
space models include Carlin, Polson and Stoffer (1992) for non-Gaussian errors, Carter and Kohn (1994);
Frithwirth-Schnatter (1994); Shephard (1994) for conditionally Gaussian models, Kim, Shephard and Chib
(1998) for stochastic volatility models, and Stroud, Miiller and Polson (2003) for state-dependent variance
models.

Monte Carlo smoothing algorithms for other types of state-space models have also been developed. For
discrete state and hidden Markov models, see Lindgren (1978), Geman and Geman (1984) and Kiinsch
(2001), and Scott (2001) provides efficient MCMC methods for these models. For nonlinear state-space
models, Carlin, Polson and Stoffer (1992) and Geweke and Tanizaki (2001) provide single-state and block
updating MCMC schemes. For log-concave observation densities, Shephard and Pitt (1997) use an efficient
block-updating Metropolis algorithm, and Gamerman (1998) provides algorithms for dynamic generalised
linear models.

2.3. Comparison to Fixed-Lag Particle Filtering
Our approach can be contrasted with fixed-lag particle filtering, as described in Clapp and Godsill (1999),
Pitt and Shephard (2001), and Gilks and Berzuini (2001). The fixed-lag APF approach starts with parti-

cles xgi) x ~ P(Xt—k|Y1:t—k) and then selects an index 29 with probability proportional to p(z|y¢—kt1:¢) o
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t-: oy P(¥i|p?) where p# are forecasts of the states x;. Then, given a sampled index 29, we draw a
j=t—k+1 VALl J J

. , O
path of new states xgz_) kglo- - ,xgl_) 1> conditional on xgz_ & ). Finally, this path is re-sampled with probability

Lo oply )
PO
j=t—k+1 P(Y; |ll§ ))

This approach leads to efficiency gains in terms of reducing bias but still has the problem of particle degen-
eracy in higher dimensions. Our approach avoids degeneracies by not reweighting.

2.4. Diagnostics for Practical Filtering

An important choice for filter implementation is the lag length k. The basic assumption is that the samples

xi’_) i from the previous step can be thought of as approximate samples for the next step, specifically, that

the samples x,@ e ~ P(X¢—k|y1:4—1) are approximate samples from p(x;_|y1:¢). Therefore, we have to choose
k large enough for this to be a reasonable approximation in practice. As alternative way to think about
this assumption is that the choice of k£ depends on the sensitivity of the predictive distribution to the initial

value and how quickly the initial state is dissipated.

To choose k, we use a simple diagnostic measure Dy comparing the distance between the two predictive
distributions plotted as a function of k. Distance metrics Dy, can be chosen based on theoretical considera-
tions; for example, a Kullback-Leibler divergence metric can be used as Kitagawa (1996).

Another possibility is to perform MCMC smoothing for the distributions p(xo:t—1|y1:t—1) and p(Xo:¢|y1:¢)
and compare the marginal distributions p(x:—k|y1:¢—1) and p(x;—|y1:¢) for a particular value of k. If the
densities are close, then x;_; and y; are approximately independent given y;_j41.¢.—1. We can estimate the
predictive distribution using

N

1 (i)
P(Yet1]y1:e) = N;p(ytH'XHl)
where x§i21 is generated from p(xt+1|x§i)) and xgi) ~ p(x¢|y1:+)- Then we can generate a predictive sample
for as we increase the lag and find out when the sensitivity to ¥ decays. We can also look at differences in
smoothed means, and in the case of parameter learning, we can look at the sensitivity of these measures to
different parameter values. We use such an approach on the autoregressive example in Section 4.1.

Clearly, there are a number of cases where our approach is inappropriate. For example, in some non-
stationary environments or long memory processes a fixed choice of k leads to a poor approximation. Possible
remedies include using a stochastic choice of k, maybe even as a function of historical MCMC draws, or the
use of periodic refreshing, where the entire state trajectories are updated using MCMC moves. Although
these strategies increase the computational time, in many situations the practical filter is the only available
methodology.

3. Sequential Parameter Learning and Filtering

One of the main advantages of our algorithm is the ability to incorporate sequential parameter learning.
Combined state filtering and sequential parameter learning requires the computation of the joint distribution
of the states and parameters, p(xy, B|y1.¢), for each value of . We need to generate samples {xgi), O(i)}éil
from these joint distributions. The natural extension of the algorithm in Section 2 is the following algorithm
for sequential parameter learning.
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3.1. Sequential Parameter Learning with Saved Histories
In the combined state and parameter learning case, we will view p(x¢, O|y1.¢) as a marginal from the joint
smoothing distribution, p(X¢—k+1:t, @|y1:¢), which can be decomposed as

p(xt—k+1:t;0|YI:t) = /p(xt—k+1:t70|x0:t—k:YI:t) dp(XO:t—k|Y1:t)

Q

/p(xt7k+1:t; 0|%0:t—k, Y1:t) AP(Xo:t—k [Y1:6—1)- (5)

Notice that, in contrast to the fixed parameter case, we now average over the joint distribution of the initial
t — k states, Xg.;—x, whereas in the pure filtering case, due to the Markov property we only needed to average
over the marginal draws of x; . We make the assumption that the samples p(xg.;_|y1:+—1) are approximate
draws from p(xg.tk|y1:t), i-e., that the joint distribution of x¢.;_ is unaffected by y;, given the values of
Yt—k+1:t—1- )

The algorithm is as follows. First, assume that x(()f)tfk are samples from p(Xg.t—x|y1:¢—1) which are
approximately samples from p(xo.t—|y1:t). Next, we generate samples from the joint distribution

P(Xt—kt1:¢5 0|x§f)t_k, Vit)-

This is achieved by using MCMC and iterating between draws from the following distributions:

P(Xt—k+1:t|x,§i_)k7 0,yi—krt+1:¢) and P(9|X(()f)t_k, Xt k1t Y1:t)- (6)

Here, we have exploited conditional independence of x;— 1.+ and (Xg:t—k—1,y1:t—k) given (x¢—k, @), that is,
the Markov property of the dynamic model given the static parameters. Repeated sampling from (6) provides
a two-block Gibbs sampler to simulate from p(x;—g41:¢, 0|x(()’;)t_ B> v1:t). We then take the last imputed values
x; as a sample from the filtering density, and store the last imputed value X;_4+1 as XEQ 41 fOr use in the
next step of the algorithm.

The combined state and parameter filtering algorithm can summarised as follows.

Algorithm 2: Filtering with Sequential Parameter Learning

At each time period t = k,...,T:
For each sample path ¢ =1,..., N: .
Step 1: Run an MCMC with stationary distribution p(x¢—g41:¢, 0|x(()’:17k,y1:t).
Step 2: Define (J.cgi_)kﬂzt, 6)) as the last iteration of (X¢_41:¢,6) in the MCMC.
Step 3: Store xi’_)kﬂ as a draw from p(X¢— g1 |y1:¢)-
Step 4: Report (xgi), O(i)) as a draw from p(xi, 8|y1.¢).

For each sample x(()g_ > we will typically require multiple MCMC iterations G' > 1 to obtain a joint draw
of (x¢, 0). The required number of MCMC iterations G will depend on the dependence between x;_p41.¢+ and
0 as in the MCMC smoothing case. Block updating should be used wherever possible to reduce the number
of required MCMC iterations.

Finally, the choice of k£ has to be determined to ensure a good approximation to the underlying filtering
distributions. For static parameter this was discussed this in detail in Section 2.2. For the parameter learning
case, the choice of the lag-length k is related to how the parameter @ introduces dependence into the state
equation. If @ enters the model only in the evolution equation then the choice of appropriate lag & could
be highly dependent on the posterior range of 8. In other words, in trying to find a value of k£ such that
x;— and y; are approximately conditionally independent given y; fy1.4—1 could critically depend on the
distribution of 8. If necessary we suggest an adaptive choice of k, for example, periodic refreshing with k& = ¢,
to reduce the approximation error.
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The filtering distribution p(x¢|y1.:) can then be approximated by the empirical distribution of the imputed

xgi). Alternatively, depending on the nature of the lag smoother applied in Step 1 of Algorithm 2, we can
use Rao-Blackwellisation and evaluate the filtering distribution as an average across filtering distributions

given the imputed histories x((]gf B

p(Xt|Y1;t) = //p(xt|xo:t7k;OJYt7k+1:t)p(0|x0:t7k;Y1:t)dap(XO:tfk‘YLt)dXO:tfk

Q

N

1 i i

N Z /p(xt|x((];35_k7 07 ytfk-l—l:t) p(0|xg;1_k, yl:t) de. (7)
i=1

where the second line is the Monte Carlo approximation.

The sequential parameter posterior distribution can similarly be approximated either by the empirical
distribution of the imputed B(i), or Rao-Blackwellisation. Now we describe simulation methods for generating
parameters given states.

3.2. Methods for Parameter Generation

Generating parameters in an efficient manner (see Step 1 of Algorithm 2) requires sampling from the full
conditional distributions of the parameter vector conditional on the states. This can often be achieved as
follows. Many state-space models, conditional on the states, can be written in the following form.

y¢ = Hia+e, e ~N(0,7°1) (8)
it = Fiﬂ—}—wt, WtNN(O,O'zl). (9)

Here the parameter vector is @ = (a, 8, o, 7), and the observations and states can enter in a possibly nonlinear
way through §: = Y (y¢,%¢), Xt = X (x¢,%x¢—1), Hy = H(x¢), and F;, = F(x;_1). We assume these are given
functions of the observations and states.

This leads to an important class of algorithms where sequential parameter learning can be efficiently
achieved by exploiting a sufficient statistic structure. More explicitly, if we assume the standard normal-
inverse gamma, priors for (a,72) and (8, 0?) for the parameters we obtain full conditional posteriors that
depend on a sufficient statistic structure, namely

plalm, %04, ¥1:4) = N(ag, T2 A7), (72 [X0:t, Y1) = ZG (&1, €t), (10)
p(Blo”, X0, y1:) = N(by,0”B; ), p(0”[Xo:t, ¥1:¢) = TG (v, dy). (11)

where T; = (as, by, Ay, By, &, v, €4, dy) is the vector of sufficient statistics. To reduce computational cost
notice that we can recursively compute the sufficient statistics T; via

A=A, ;+HH, a, = A7 (Ar_rari + H'Y), (12)
B, =B;_; +F'F, b; = B (Bi—1bi— + F'%), (13)
& =&—k +kn/2, er = ek + (a,_pAv_par_r +3'y —a;Asay) /2, (14)
Vg =V + kp/?, dt = dt_k + (bikat—kbt—k + )~(I)~( - b;Btbt)/Q, (15)
where H is the horizontal catenation of H;_g41,...,H; and likewise for F, X, and ¥, and where n and p

denote the dimension of §; and %X, respectively. In the next subsection we explicitly describe our algorithm
that exploits this sufficient statistic structure.

Many other types of state-space models also lead to natural sufficient statistic structures that can lead
to fast convergence, for example, change-point models (Chib, 1998) and dynamic categorical time series
models (Carlin and Polson, 1992). Again this is the key to obtaining a fast filtering algorithm with a linear
computational cost.

We now describe the sequential parameter learning algorithm with sufficient statistics.
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3.3. Sequential Parameter Learning with Sufficient Statistics

Sequential parameter learning with sufficient statistics will now track the state and sufficient statistic pair
(xi’_) P Tg'_) ) as a draw from its probability distribution. This alleviates the problem of having to store the
full state trajectory x(()flf > and leads to a computationally efficient algorithm. Conditional on (xg? k> Tg’j )
we run an MCMC algorithm to sample from

D(X¢—k41:t5 0|X§i,)k, T,Ei,)k, Vié—kt1:t)-

This is achieved by iterating between the following conditional distributions

p(xt7k+1:t|xgz_)k;0>Yt7k+1:t) and p(0|T§Z_)k;Xt7k+1:t;thk+1:t)-

After convergence, the sufficient statistics are updated through their recursion

ng—)k-',-l = f(ng—)w ng—)k+1’3’tfk+1)

such as those given in (12)—(15), and where xgi) (© (9

k41 is the newly imputed state. Then we store (xti_kﬂ, k1)
as a draw from p(x; 41, Tt k+1|y1:). Finally, we take (xi”,e(")) as a draw from the desired joint filtering
distribution p(x¢, 8]y1:¢)-

The sequential parameter learning algorithm with sufficient statistics is described below.

Algorithm 2a: Filtering with Sufficient Statistics

At each time period t = k,...,T:
For each sample path ¢ =1,..., N:

Step 1: Run an MCMC with stationary distribution p(x¢—g41:¢, 0|x§i)k, Tg?k, Vi—kt1:t)-
Step 2: Define (xgi_)kJrl:t, 6)) as the last iteration of (X¢_41:¢,6) in the MCMC.

Step 3: Compute Tgi_)k+1 = f(Tgi_)k,xgi_)kH,yt,kH).

Step 4: Store (xgi_)kH,Tii_)kH) as a draw from p(X¢— g1, Tt k41|Y1:2)-

Step 5: Report (xgi), O(i)) as a draw from p(x, 0]y1:¢)-

This algorithm has a number of key advantages. Primarily, it provides a fast algorithm for sequential
parameter learning, as it only has to track the state and sufficient statistics instead of the full state trajec-
tory. While algorithms such as Storvik (2002) and Fearnhead (2002) exploit sufficient statistic structure,
our approach does not reweight particles, so it does not degenerate, and it also allows for straightforward
estimation of parameters in the observation equation. SIR particle filters require additional MCMC steps to
generate these parameters, making them far less computationally efficient.

4. Applications

In this section, we analyze the empirical performance of our algorithm and compare the results to the SIR
algorithm of Storvik (2002). First, we consider a benchmark autoregressive model with parameter learning.
Here we show that Storvik’s algorithm and our approach handle both state and sequential parameter learning
efficiently on simulated data. However, the SIR algorithm degenerates with the addition of a large outlier
whereas the practical filter does not. Secondly, we consider a three-dimensional stochastic Lorenz model,
which illustrates the application of practical filtering to nonlinear and higher-dimensional models.

4.1. Autoregressive AR(1) with Noise
The benchmark model for studying filtering methods in the presence of outliers and sequential parameter
learning is an autoregressive process with noise (see, for example, Pitt and Shephard, 1999; Storvik, 2002).
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We consider the following AR(1) plus noise model

Y¢ = Tyt € e ~ N(0,7%),
T = a+pfzy+w, we~N(0,0%),

with initial distribution zg ~ A(0,.1) and 72 = .1. Data are simulated from the model using parameters
a=0,3=0.9and 0 = .04, corresponding to a fairly persistent time series.

We first consider generating the states conditional on parameters. The full conditional distribution
P(X¢—g+1:t|6, Te—k, y1.¢) is multivariate normal where the prior on z;_ 41 is given by the transition density,
N(a + Bxi_k,0?). Since this is a linear state-space model, the states x;_jy1.; can be efficiently generated
using the FFBS algorithm.

Next we consider generating the parameters. Following Section 3.2, we define 8 = («, ), X; = x; and
F; = (1,2:1)', and so the evolution equation is conditionally Gaussian of the form (9). A normal inverse-
gamma prior is selected with hyperparameters by = (0,0.9), By = diag(10,5), vo = 10 and do = .4, and
direct simulation of (3, 0?) is possible from the full conditional distributions given in (11).

In order to provide some guidelines for the choice of lag-length, k, Figure 1 compares the smoothed means
E(iL‘gg_k|y1;100) and E(.’L‘gg_k|y1;99), and the densities p(wgg_k|y1;100) and p(.’lfgg_k|y1;99), as a function of k.
The data are simulated using (a, 3,02) = (0,.9,.04), and the differences in means and densities are computed
over a range of plausible parameter values: 3 € (0.7,0.9,1.1) and o2 € (0.01,0.04,0.07). The results are
obtained analytically through the Kalman filter and smoother. We see that a choice of k = 25 is ample for
the problem at hand.

To test the accuracy of our approach, we compare the filtered moments with the true values obtained from
a full MCMC. Table 1 compares the filtered mean and standard deviations for the states xz; and parameters
(a, B) at times t = 0,200, ...,1000. The evolution variance is held fixed at its true value of 0® = .04. Here
the practical filter was run using (N, G, k) = (10000, 10, 25) while the MCMC was run using 10000 iterations.
Notice that in the case of known evolution variance, the filtered moments for the states and parameters for
the two algorithms are all within Monte Carlo sampling error.

However, when the evolution variance o2 is treated as unknown, the algorithm performs poorly. In Table
2, we see that while the posterior mean for full MCMC starts at 0.5, decreases to 0.43 and returns to 0.5 at
the end of the sample, the practical filter has a posterior mean that is approximately constant at 0.57 and
has difficultly tracking the movement in the true posterior mean. This is due to the fact that learning the
sufficient statistic d; of Section 3.2 is hard given the choice of k. This is consistent with a similar finding
about the evolution variance in a stochastic volatility model (see Stroud, Polson and Miiller, 2004).

Addressing the sensitivity of the algorithms to outliers is important. In this case, the practical filter has
an advantage over standard particle filtering methods, particularly for sequential parameter learning. Figure
2 includes an outlying data point y59 = 6 and tracks the same sequential parameter distributions and state
filtering distributions. Now we see the difference in parameter estimation after the outlier. The practical
filter with (N, G, k) = (2000, 5,25) matches full MCMC whereas Storvik’s SIR algorithm with N = 10000
particles underestimates the shift in p(a|yi.50) and hence overestimates p(8|y1.50) after the outlier.

Figure 3 illustrates the problem more dramatically by plotting histograms of the state and parameter
posteriors at time t = 50. We can now see that the main problem with the SIR algorithm is that it suffers
from particle degeneracies in the state filtering distribution, which in turn leads to poor estimation of the
posterior distributions for the parameters.

4.2. Stochastic Lorenz Model
The Lorenz model is a three-dimensional coupled system of nonlinear differential equations to explain dy-
namic flow. Specifically, Lorenz (1963) proposed a deterministic system:

z = sly—=x)
) = rr—y—I2
z = xy-—bz

where the dot denotes a time derivative. Here the state vector x = (x,y, 2)’ represents a particle’s position
in phase space. For our analysis, we take a first-order Euler discretisation of the model with a time step
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of A and add an evolution noise term. For each ¢t = 0,1,...,T, let x; denote the state vector at time At,
and x2* = A7!(x; — x; 1) denote the finite difference, and define similar quantities for z, y and z. The
discretised evolution equation is given by

oy = sy —m) +wf (16)
ytA_H = rx— Y — Tz +wy (17)
ztA_H = 2y — bz + wf (18)
where wy = (w?, w}, w?)' ~ N (0, A~'¢I) is a Gaussian white noise process. At each time step t = 1,...,7,

we collect noisy observations, y; = (:1:;', y;r , z;' ), which are generated through the observation equation
Yi =X¢ + e, e ~N(0,7°0)

where I is the identity matrix, and the errors e; are uncorrelated in time.

Currently, most filtering approaches for this model are based on ensemble filters (see, for example,
Bengtsson, Snyder and Nychka, 2003). Our combined state and parameter filtering algorithm with sufficient
statistics (Algorithm 2a) can also provide sequential posterior parameter distributions. We provide sequential
estimates of the system parameters as well as the observation and evolution variances. Furthermore, we show
that a natural block sampling approach applies for state generation in our filtering algorithm. This provides
a computationally efficient approach for implementing our method.

We first need to design a fast MCMC smoothing algorithm for the states. The evolution equation is
nonlinear, but if we define the sub-blocks x;1 = z; and x4 = (¢, 2:) as in Section 2.2, the model is
conditionally Gaussian with two sub-blocks (the model matrices are defined in Appendix A). An efficient
two-block Gibbs sampler based on FFBS can then be used to generate the states.

We now turn to the problem of sequential parameter learning. Defining the parameter vector 8 = (s, r,b)’,
we can write the evolution equation as in (9), where

N y—z 0 0
X1 = | Y1 T+ 2z |, Fepa = 0 z¢ 0 ,
ztA—i-l — TtYt 0 0 —2t

which leads to normal-inverse gamma posteriors for (3,0?) as given in (11). For the unknown observation
variance, 72, we assume an inverse-gamma prior, leading to the full conditional p(72|x1.¢,y1.t) = ZG (&, et).
The lag-k updating recursions for the hyperparameters are given by & = &_j + 3k/2 and e; = e;_y +
S k1 (Vi — %) (v — %5) /2.

To study our filtering algorithm, we generate T' = 500 observations from the model using a time step of
A = .02, variances of (¢2,72) = (0.5,2) and an initial state vector of xo = (=5.9,—5.5,24.6)'. The model
parameters are set to 8 = (s,7,b) = (10, 28,2.67), corresponding to the original parameters used by Lorenz
(1963), and producing the butterfly-shaped phase-space trajectory shown in Figure 4. For filter implemen-
tation, we choose diffuse but proper priors for the parameter and the initial state. For the parameters, we
set bg = (10,28,2.67)', By = diag(.01,.01,.01), vy = 2, dy = .5, & = 2 and e¢g = 1, while for the initial
states, we set xo ~ N ((0,0,0)’, diag(100,100,100)).

Figure 5 shows the filtered paths for the state variables along with sequential learning plots for the
parameters. First, notice the close agreement with the true simulated values for the state estimation. There
is little error with the practical filter. Moreover, as we learn the true parameter values over time, we see
that the Lorenz parameters, (3, are the easiest to learn. The observation and evolution variances take longer
to converge to the true values but again after T = 500 time steps, our marginal posteriors are in agreement
with the underlying parameter values.

5. Conclusions

In this paper we provide a filtering algorithm that also incorporates sequential parameter learning. Our
approach requires the choice of a fixed-lag and a fast MCMC algorithm to draw the states, for example, in a
conditionally Gaussian model. The algorithm does not suffer from particle degeneracies which hinder particle
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filtering methods. Moreover it is robust to outliers and can be applied to higher dimensional problems. The
requirement for a real-time filtering algorithm is that it runs in O(t) time and doesn’t degenerate. We achieve
this by exploiting a lag-k mixture representation of the filtering distribution and rely on a sufficient statistic
structure as in Storvik (2002) for updating parameters conditional on states.

From an empirical perspective, these filtering methods have achieved recent success in financial appli-
cations, including sequential portfolio allocation and stochastic volatility jump diffusion models (Johannes,
Polson and Stroud, 2002, 2005a,b). However, sequential parameter learning still poses a number of compu-
tational challenges. Evolution parameters are notoriously hard to estimate sequentially and more research
is required to understand this problem. Another avenue for future research is filtering in continuous-time
models with discretely sampled data, where filling-in-the-missing-data estimators have been proposed in an
MCMC smoothing framework (see Eraker, 2001; Elerian, Shephard and Chib, 2001). Such approaches can
be extended to the filtering context using the methodology proposed here.

References

Anderson, B. and Moore, J. (1979) Optimal Filtering. Englewood Cliffs: Prentice Hall.

Andrieu, C. and Doucet, A. (2003) On-line expectation-maximization type algorithms for parameter estima-
tion in general state space models. Proc. IEEE ICASSP.

Andrieu, C., Doucet, A. and Tadié, V. (2005) Online simulation-based methods for parameter estimation in
nonlinear non Gaussian state-space models. Proc. IEEE CDC.

Bengtsson, T., Snyder, C. and Nychka, D. (2003) Toward a nonlinear ensemble filter for high-dimensional
systems. Journal of Geophysical Research, 108, 8775.

Berzuini, C., Best, N., Gilks, W. and Larizza, C. (1997) Dynamic conditional independence models and
Markov chain Monte Carlo methods. Journal of the American Statistical Association, 92, 1403-1412.

Cappe, O., Moulines, E. and Ryden, T. (2005) Inference in Hidden Markov Models. New York: Springer.

Carlin, B., Polson, N. and Stoffer, D. (1992) A Monte Carlo approach to nonnormal and nonlinear state-space
modeling. Journal of the American Statistical Association, 87, 493-500.

Carlin, B. P. and Polson, N. G. (1992) Monte Carlo Bayesian methods for discrete regression models and
categorical time series. In Bayesian Statistics 4 (eds. J. M. Bernardo, J. O. Berger, A. P. Dawid and
A. F. M. Smith). Oxford: Oxford University Press.

Carter, C. and Kohn, R. (1994) On Gibbs sampling for state space models. Biometrika, 81, 541-553.

Chib, S. (1998) Estimation and comparison of multiple change point models. Joural of Econometrics, 86,
221-241.

Clapp, T. and Godsill, S. (1999) Fixed-lag smoothing using sequential importance sampling. In Bayesian
Statistics 6 (eds. J. Bernardo, J. Berger, A. Dawid and A. Smith), 743-752. Oxford: Oxford University
Press.

Doucet, A., de Freitas, J. and Gordon, N. (eds.) (2001) Sequential Monte Carlo Methods in Practice. Kluwer.

Elerian, O., Shephard, N. and Chib, S. (2001) Likelihood inference for discretely observed non-linear diffu-
sions. Econometrica, 69, 959-993.

Eraker, B. (2001) MCMC analysis of diffusion models with application to finance. Journal of Business and
Economic Statistics, 19, 177-191.

Fearnhead, P. (2002) MCMC, sufficient statistics and particle filter. Journal of Computational and Graphical
Statistics, 11, 848-862.



12 N. G. Polson, J. R. Stroud, and P. Miller

Friihwirth-Schnatter, S. (1994) Data augmentation and dynamic linear models. Journal of Time Series
Analysis, 15, 183-202.

Gamerman, D. (1998) Monte Carlo Markov chains for dynamic generalised linear models. Biometrika, 85,
215-227.

Geman, S. and Geman, D. (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration
of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721-741.

Geweke, J. and Tanizaki, H. (2001) Bayesian estimation of state-space model using the Metropolis-Hastings
algrorithm within Gibbs sampling. Computational Statistics and Data Analysis, 37, 151-170.

Gilks, W. and Berzuini, C. (2001) Following a moving target — Monte Carlo inference for dynamic Bayesian
models. Journal of the Royal Statistical Society, Series B, 63, 127-146.

Gordon, N., Salmond, D. and Smith, A. (1993) Novel approach to nonlinear/non-Gaussian Bayesian state
estimation. In TEE Proceedings, vol. F-140, 107-113. IEE.

Hiirzeler, M. and Kiinsch, H. (2001) Approximating and maximizing the likelihood for general SSM. In
Sequential Monte Carlo Methods in Practice (eds. A. Doucet, J. de Freitas and N. Gordon). Springer.

Johannes, M., Polson, N. and Stroud, J. (2002) Sequential optimal portfolio performance: Market and
volatility timing. Tech. rep., Graduate School of Business, University of Chicago.

— (2005a) Optimal filtering of jump diffusions: Extracting latent states from asset prices. Tech. rep.,
Graduate School of Business, University of Chicago.

— (2005b) Sequential parameter estimation in stochastic volatility models with jumps. Tech. rep., Graduate
School of Business, University of Chicago.

Kim, S., Shephard, N. and Chib, S. (1998) Stochastic volatility: Likelihood inference and comparison with
ARCH models. Review of Economic Studies, 65, 361-393.

Kitagawa, G. (1996) Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. Journal
of Computational and Graphical Statistics, 5, 1-25.

Kiinsch, H. (2001) State space and hidden Markov models. In Complex Stochastic Systems (eds. D. C. O.E.
Barndorff-Nielsen and C. Kliippelberg). Boca Raton: Chapman and Hall.

— (2005) Recursive Monte Carlo filters: Algorithms and theoretical analysis. Annals of Statistics.

LeGland, F. and Mevel, L. (1997) Exponential forgetting and geometric ergodicity in hidden Markov models.
In 36th IEEE Conference on Decision and Control (CDC), 537-542.

Lindgren, G. (1978) Markov regime models for mixed distributions and switching regressions. Scandinavian
Journal of Statistics, 5, 81-89.

Liu, J. and Chen, R. (1995) Sequential Monte Carlo methods for dynamic systems. Journal of the American
Statistical Association, 93, 1032-1044.

Liu, J. and West, M. (2001) Combined parameter and state estimation in simulation-based filtering. In
Sequential Monte Carlo Methods in Practice (eds. A. Doucet, J. de Freitas and N. Gordon). Springer.

Lorenz, E. (1963) Deterministic non-periodic flow. Journal of Atmospheric Science, 20, 130-141.

Pitt, M. (2002) Smooth particle filters for likelihood evaluation and maximization. Tech. rep., Department
of Economics, University of Warwick.

Pitt, M. and Shephard, N. (1999) Filtering via simulation: Auxiliary particle filter. Journal of the American
Statistical Association, 94, 590-599.



Practical Filtering with Sequential Parameter Learning 13

— (2001) Auxiliary variable based particle filters. In Sequential Monte Carlo Methods in Practice (eds.
A. Doucet, J. de Freitas and N. Gordon), 273-293. Springer.

Scott, S. (2001) Bayesian methods for hidden Markov models. Journal of the American Statistical Associa-
tion, 97, 337-351.

Shephard, N. (1994) Partial non-Gaussian state space. Biometrika, 81, 115-131.

Shephard, N. and Pitt, M. (1997) Likelihood analysis of non-Gaussian measurement time series. Biometrika,
84, 653-667.

Storvik, G. (2002) Particle filters in state space models with the presence of unknown static parameters.
IEEE Trans. on Signal Processing, 50, 281-289.

Stroud, J., Miiller, P. and Polson, N. (2003) Nonlinear state-space models with state-dependent variances.
Journal of the American Statistical Association, 98, 377-386.

Stroud, J., Polson, N. and Miiller, P. (2004) Practical filtering for stochastic volatility models. In State Space
and Unobserved Component Models (eds. A. Harvey, S. Koopmans and N. Shephard), 236-247. Oxford
University Press.



14 N. G. Polson, J. R. Stroud, and P. Miller

Appendix A: State Generation in the Lorenz Model

Here, we define the Gibbs sampling algorithm for state generation in the Lorenz (1963) model. We partition
the state vector into two sub-blocks, x¢1 = 2; and X2 = (y¢,2:)'. Given the initial state x;—, and the
parameter @, the state update iterates between the two blocks:

o Generate X;—p+1:6,1 ~ P(Xt—bt1:,1 [Xe—k,1, Xt—k:t,2, 0, Yi—kt1:¢)-
o Generate x¢j41:t,2 ~ P(Xt—k+1:t,2|xt—k,2,Xt—k:t,l;07 Vi kti:t)-

Each block has a conditionally Gaussian state-space form (3)—(4), with model matrices defined below.

e The observation and evolution matrices for Block 1 are given by

Pl 1 ™ 0 0
vii=| vP+ry— |, Hgi=| r—2z-1 |, Ryi= 0 o?/A 0 ;
28 + bz Y1 0 0 o’ /A

and
M;;=1-As, a;;=Asy;_1, Qi1=02/A,

and the initial prior for x; 41,1 is

N(zi—k + As(yi—k — Ti—k), Ac”).

e The model matrices for Block 2 are given by

Xy + ST_1 s 0 o?/A 0 0
Yt,z = yz y Ht,2 = 1 0 ; Rt’2 = 0 7'2 0 5
P 0 1 0o 0 7

and

M _ 1-A —Az't_l a ., = Ar:ct_l _ 0'2/A 0
t,2 — Amt—l 1—AD t,2 — 0 ) t,2 — 0 0'2/A )

and the initial prior for x; 41,2 is

Yik TTi_k — Yi—k — Tt—kTt—k Ag? 0
N [( Zi—k ) +A ( Te—kYi—k — b2—p ) ’ ( 0 Ao? )] )
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Table 1. AR(1) plus noise model. Filtered mean (m) and standard deviation (s) for (z:,«, ) at times
t = 0,200, ...,1000. Here 02 = .04 is held fixed, and we use the priors given in Section 4.1. Results are
obtained using MCMC with 10000 iterations, and practical filter with (N, G, k) = (10000, 10, 25). The true
parameter values are (a, 8,0%) = (0, .9, .04).

Tt «a B

t MCMC Practical MCMC Practical MCMC Practical

m S m S m S m S m S m S
0 -.003 .317 .002 .313 .000 .064 .001 .063 900 .090 .899 .090
200 463 205 467  .207 .006 .014 .006 .014 .864 .036 .867 .036
400 340 206 .338  .205 .007 .010 .007 .010 873  .025 .874 .026
600 -.703 .206 -.697 .206 -.001 .008 -.001 .008 894  .019 .892 .020
800 -.481 .204 -.480 .205 .002 .007 .003 .007 .893 .017 .891 .017
1000 076 206 .076  .208 .002 .006 .002 .006 .887 .015 .886 .016

Table 2. AR(1) plus noise model. Filtered mean (m) and standard deviation (s) for (o, 8,0?) at times
t = 0,200,...,1000. We use the priors given in Section 4.1. Results are obtained using MCMC with
10000 iterations, and practical filter with (N, G, k) = (10000, 10,25). The true parameter values are
(@,8,0%) = (0,.9,.04).

«a B o?

t MCMC Practical MCMC Practical MCMC Practical

m S m S m S m S m S m S
0 .001 071 .001 .075 900 .101  .898 .108 .050 .032 .067 .035
200 .006 .015 .009 .018 862 .045 .828 .065 041 .012 .059 .024
400 .007 .011 .010 .013 868 .032 .837 .053 .043 .009 .067 .021
600 -.001 .008 .000 .010 888 .023 861 .044 .043 .007 .057 .019
800 .003 .008 .004 .009 880 .021 .861 .041 .047 .006 .057 .018
1000 .003 007 .003 .008 869 .019 .855 .040 .0560 .006 .057 .018

Fig. 1. AR(1) plus noise model. Left: Difference between smoothed means E(zg9—x|y1:100) and E(zg9—x|y1:90) under
various fixed parameter values. Right: Kullback-Leibler divergence between the smoothing densities p(z99—x|y1:100)
and p(zg9—k|y1:90). Results are obtained analytically through the Kalman filter and smoother.
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Fig. 2. Results for the AR(1) plus noise model with unknown parameters («, ). An outlier of y; = 6 is included at time
t = 50. For each parameter, we plot the filtered mean and 95% intervals (mean plus minus 2 SD). Left: Practical filter
with (N, G, k) = (2000, 5, 25). Right: Storvik’s algorithm with N = 10000.
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Fig. 3. Results for the AR(1) plus noise model with unknown parameters (a, 8). An outlier of y; = 6 is added at
time ¢ = 50. The posterior histogram is plotted for z;, o, 8 at time ¢ = 50, along with the true posterior density curves
obtained by numerical integration using the Kalman filter. Top: Practical filter with (IV, G, k) = (2000, 5, 25). Bottom:
Storvik’s algorithm with N = 10000.
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Fig. 4. Lorenz model: phase-space trajectory. Simulated path of state vector (black squares), and filtered mean (blue
circles & line).
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Fig. 5. Lorenz model. Filtered (5, 50, 95) percentiles for states and static parameters, using the practical filter with
(N, G, k) = (2500, 1, 25). Blue dots represent the true states. Green horizontal lines denote the true parameter values.
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