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Summary. We discuss the analysis of data from single nucleotide polymorphism (SNP) arrays

comparing tumor and normal tissues. The data consist of sequences of indicators for loss of het-

erozygosity (LOH) and involve three nested levels of repetition: chromosomes for a given patient,

regions within chromosomes, and SNPs nested within regions. We propose to analyze these data

using a semiparametric model for multi-level repeated binary data. At the top level of the hier-

archy we assume a sampling model for the observed binary LOH sequences that arises from a

partial exchangeability argument. This implies a mixture of Markov chains model. The mixture is

defined with respect to the Markov transition probabilities. We assume a nonparametric prior for

the random mixing measure. The resulting model takes the form of a semiparametric random ef-

fects model with the matrix of transition probabilities being the random effects. The model includes

appropriate dependence assumptions for the two remaining levels of the hierarchy, i.e., for regions

within chromosomes and for chromosomes within patient.

1. Introduction

In many biomedical studies, investigators collect data on a number of repeat experiments for

a given set of patients or subjects, often involving multiple levels of repetition. We specifically



consider the case where a sequence of binary responses is collected from each experiment. The

discussion is motivated by inference about regions of increased loss of heterozygosity (LOH)

from single nucleotide polymorphism (SNP) arrays comparing tumor and normal tissue samples

from a group of children who experience treatment-related leukemia. The data include three

nested levels of repetition: chromosomes within a patient, regions within a chromosome, and

SNPs within regions. We denote the number of patients by n and the collected data as yicjk = 1

if LOH was recorded (and zero otherwise) in the kth SNP from region j within chromosome c

for patient i, where i = 1, . . . , n; c = 1, . . . , 22; j = 1, . . . , nic; and k = 1, . . . , nicj . In short, the

data consist of binary sequences nested within multiple levels of repeat experiments recorded

for each individual. We generally describe this data structure as “repeatedly repeated binary

measurements.”

Newton et al. (1998) and Newton and Lee (2000) proposed the “instability-selection” model

for the analysis of LOH data. The model assumes that the observed losses (deletion of genetic

material) occur in chromosomes according to a single binary Markov process. An extension of

the instability-selection model to pooled analysis of LOH from several experiments is described

in Miller et al. (2003). Lin et al. (2004) consider permutation-based methods with windows

and hidden Markov models to assess LOH. A related model can be found in Beroukhim et al.

(2006).

Our modeling approach is based on similar assumptions. We deviate from these approaches

in that we consider Markov processes that are specific to regions within chromosomes rather

than one Markov chain for the entire chromosome, and we model the dependence of these

Markov chains across regions and chromosomes. See Section 2 for a description of how regions

are constructed. The use of parameters that are specific to regions allows us to define region-

specific rates of LOH and enables us to report the desired inference about regions of increased

LOH. The instability-selection model was developed for a different inference goal, namely the

mapping of tumor suppression genes.

In summary, we define a model structure with three nested levels of repetition: sequences of

binary indicators for LOH within each region, consecutive regions within each chromosome, and

chromosomes within a patient. We define a hierarchical model over the three levels. For the first

level of repeated measurements we assume that the binary LOH sequence within each region is

partially exchangeable of order `. A probability model for a binary sequence yk, k = 1, . . . , n,

is order-` exchangeable if the joint distribution is invariant under permutations that leave

the initial ` values and all order-` transition counts unaltered (Quintana and Newton, 2000;

Quintana and Müller, 2004). For example, let t(0, 0) =
∑n

k=2 I{yk−1 = 0, yk = 0} and similarly

2



for t(0, 1), t(1, 0) and t(1, 1), denote the order-1 transition counts. An order-1 exchangeable

probability model for the sequence (yk, k = 1, . . . , n), is a probability measure that is invariant

under any permutation that leaves t(0, 0), t(0, 1), t(1, 0), t(1, 1) and the initial response y1

unchanged. Quintana and Newton (1998) show that such sequences can be represented as

mixtures of order-` Markov chains. The mixture is with respect to the Markov transition

probabilities. This assumption is in agreement with the instability-selection model, but we will

allow higher orders of dependence, thus extending the modeling scope.

We complete the description of the mixture of Markov chains model with a nonparametric

model on the mixing measure for the corresponding transition matrices (TM). By including

latent parameters, the mixture model can be written as a hierarchical model, with the latent

TMs interpreted as random effects. Finally, we assume a parametric structure to link the

latent parameters across consecutive regions in a chromosome and across chromosomes within

a patient. See Section 3 for details.

Fully parametric versions of such models are successfully used for Bayesian inference in

multi-level repeated measurement data. Related multi-level models for discrete data are re-

viewed in Goldstein (2003). Heagerty and Zeger (2000) discuss maximum likelihood infer-

ence using a marginal models approach, i.e., regressing the marginal mean, rather than the

conditional mean given the random effects, on covariates. Mixture models with a nonpara-

metric mixing measure to define semiparametric random effects distributions are extensively

used in nonparametric Bayesian inference, including, for example, Müller and Rosner (1997),

Mukhopadhyay and Gelfand (1997) and Kleinman and Ibrahim (1998). The special case of

binary outcomes has been discussed, among many others, by Basu and Mukhopadhyay (2000).

An advantage of the model specification with such mixtures is that models with no random

effects and fully parametric models with a parametric random effects distribution can be seen

as special versions of the nonparametric case.

The nonparametric component in the proposed model is based on the Dirichlet process

(DP) model introduced in Ferguson (1973). The main reasons for choosing the DP model are

the intuitive nature of the prior predictive distributions and computational ease of posterior

simulation. Recent reviews of semiparametric Bayesian inference appear in Walker et al. (1999)

and Müller and Quintana (2004).

The rest of this article is organized as follows. Section 2 describes the LOH dataset. In

section 3, we describe the main features of the proposed model, with emphasis on how we

model dependence of the binary LOH sequence within each region, and dependence across

regions and chromosomes. Posterior simulation schemes are discussed in Section 4. Section
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5 reports the resulting inference, including a comparison with the instability-selection model.

Section 6 concludes with a final discussion.

2. The Data

The motivating dataset comes from a study conducted at the St. Jude Children’s Research

Hospital in Memphis, Tennessee (SJCRH). A full description and discussion of these data can be

found in Hartford et al. (2006). We briefly summarize the study. Some children develop second

cancers after successful treatment for their initial cancer diagnosis. Of particular concern to

the investigators are therapy-related leukemias. Several studies have identified characteristics of

particular anti-cancer therapies that may affect the child’s risk of developing a later secondary

leukemia (Pedersen-Bjergaard, 2005). Some of these treatments may cause genetic alterations

that lead to the patient’s subsequent secondary cancer.

Investigators at SJCRH carried out genome-wide studies of children with secondary leukemia,

in order to learn about genetic factors that may be associated with a patient’s risk of a sec-

ondary leukemia. A genomic alteration of particular interest to the investigators was LOH.

Heterozygosity refers to the presence of two different alleles of a gene at corresponding loci of

a pair of chromosomes (i.e., being heterozygous). LOH is when an allele at a particular locus

is missing. LOH can occur if part or all of one of the paired chromosomes is missing or if there

is a deletion or mutation of part of one of the chromosome pairs. LOH can lead to cancer,

for example, if it occurs at the site of a normal tumor suppressor gene that was keeping a

cancer-susceptibility gene in check.

The investigators used SNP arrays to compare germline (normal) and tumor (secondary

leukemia blasts) samples. The arrays interrogated more than 100,000 SNPs in samples from 13

patients with a diagnosis of treatment-related leukemia. These patients had enrolled in SJCRH

protocols for treatment of their initial diagnosis of acute lymphoblastic leukemia (ALL) (Relling

et al., 2003). Specifically, they amplified, labeled, and hybridized 500 ng of DNA from each

sample to the Affymetrix GeneChip R©Human Mapping100K Set. After scanning the chips,

they applied the GeneChip R©DNA Analysis Software to make the genotype calls for the data.

With the genotype calls, the investigators declared each SNP investigated by the array LOH,

retention, or indeterminate, following the approach of Lin et al. (2004). The germline samples

for these patients came from DNA that the investigators had extracted from normal leukocytes

(white blood cells) at the time the child achieved his or her initial remission. Bone marrow at

the time of diagnosis of secondary leukemia was the source of the leukemic blast samples. The

data consist of n = 13 binary sequences with an outcome y = 1 for a recorded LOH at a given
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SNP, and a zero otherwise. Each sequence is of length 116,204.

The primary objective of this study is the identification of regions of increased LOH, i.e.,

the main event of interest is a property of regions of SNPs. Consequently, we divide the LOH

sequences into regions. A fully model-based approach could consider the choice of regions as a

random element itself, and define a prior probability model for region boundaries. However, as

we will later show the final inference is relatively robust with respect to detail choices in the

definition of the regions. We therefore proceed with an arbitrary definition of regions based

on only the following practical considerations. If regions were too long, then inference about

increased LOH would be too coarse to be practically useful. Also, since overall less than 1%

of the SNPs report LOH we would almost universally report no increased LOH if regions were

to span too many SNPs. On the other hand, if regions were too short, then the SNP sequence

within each region would not provide much evidence about increased LOH within a region.

Also, for many chromosomes and subjects the data records essentially no LOH. Inference about

increased LOH for these portions of the SNP sequence does not require small scale regions.

Based on these considerations we use the following definition. For chromosomes with more

than 0.5% recorded LOH we used regions of length 55 SNPs each. For all other chromosomes

we used regions of length 835. This resulted in a total of 874 regions of lengths either 55

(for chromosomes 5 through 9 and 15, 16 and 17) or 835 (for all other chromosomes). The

first two nested levels of repeated measurements are thus given by regions within chromosomes

and the sequence of recorded indicators for LOH within each region. Besides a general notion

of dependence, little is known about appropriate probability models for such data. In the

process of meiosis, chromosomes cross and genetic material gets shuffled. Nucleotides closer

to each other are less likely to get separated than those that are farther away. This linkage

disequilibrium phenomenon suggests a Markovian dependence, in line with the sampling model

to be described in Section 3.

The context of the data that we analyze here differs from that in the aforementioned papers.

Our data concern patients who were previously treated for cancer and subsequently developed

treatment-related leukemia. The investigators hypothesize that the chemotherapy causes chro-

mosomal damage by mechanisms that may be different from those leading to spontaneous (new)

cancers. We therefore propose a model that is developed for the goal of identifying consistent

regions of high LOH without relying on any assumed mechanism.
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3. A Model for Repeatedly Repeated Binary LOH Measurements

3.1. The Sampling Model

Recall that yicjk represents the binary indicator of LOH for SNP k in region j of chromosome

c for patient i. Let yicj = (yicjk, 1 ≤ k ≤ nicj) be the entire LOH sequence from the j-th

region for chromosome c of the i-th patient. We model correlation at the level of the observed

binary outcomes by assuming the sequences yicj to be partially exchangeable of some order. We

assume a fixed maximum order ` that is common to all sequences. It can be shown (Quintana

and Newton, 1998) that order-` exchangeability implies that p(yicj) can be expressed as a

mixture of homogeneous order-` Markov chains. The mixture is with respect to the order-`

transition probabilities.

Let θicj denote the transition matrix (TM) that defines the Markov model for subject

i, chromosome c and region j. The transition probabilities θicj can be represented as a 2`-

dimensional vector of transition probabilities θicj,m`,...,m1,0 from state (m`,m`−1, . . . m1) to

(m`−1, . . . ,m1, 0), where mk ∈ {0, 1} for all k. Denote by ticj(m`, . . . m1, 0) =
∑nicj

k=`+1 I(yicjk =

0, yicj,k−1 = m1, . . . , yicj,k−` = m`), the count of transitions from state (m`, . . . ,m1) to state

(m`−1, . . . ,m1, 0), for region j in chromosome c of patient i. The likelihood is given by

p(yicj | θicj) =
∏

m`,...,m1∈{0,1}

{
θicj(m`, . . . ,m1, 0)ticj(m`,...,m1,0)

×
[
1− θicj(m`, . . . ,m1, 0)

]ticj(m`,...,m1,1)
}

. (1)

We adopt (1) with fixed order ` = 2. The implied data reduction by sufficiency to a set of

2`+1 = 8 transition counts is critical to facilitate fast likelihood evaluation. The assumption

` = 2 implies that 4 parameters are required to represent each of the 11, 362 TMs (874 per

patient) involved in the likelihood model. The choice of ` = 2 generalizes the order-1 Markov

models used in Newton and Lee (2000) and Lin et al. (2004). It is also supported by exploratory

analysis based on the permutation Monte Carlo tests described in Quintana and Newton (1998).

To this effect, we randomly chose one region within each chromosome and considered the

corresponding binary sequence for every patient. This amounts to a total of 286 sequences of

lengths either 55 or 835. For each sequence we carried out the Monte Carlo test, using a 5%

significance level. For 276 of the sequences we find a selected order of ` = 0, for 7 sequences

we find ` = 1, and for the remaining 3 sequences we find ` = 2. We conclude that ` = 2 is

adequate for all sequences.
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3.2. Random Effects Model

We complete the definition of the order-` exchangeable model (with ` = 2) as a mixture of

Markov chains by adding a probability model for the TMs θicj in (1). In words, we use a

non-parametric prior to define the joint distribution of subject-specific effects, a hierarchical

normal model to define dependence across chromosomes, and a normal autoregression model

to define dependence across regions. The main features of the proposed model are the use of

flexible nonparametric priors for the implied marginal distribution of the random effects at all

three levels, i.e., regions, chromosomes and subjects, and the use of parsimonious parametric

models to define the dependence structure across regions and chromosomes.

We start with a model for the TM θic1 corresponding to the first region, i.e. j = 1 of

chromosome c and patient i. Focusing on only one region (nic = 1) for the moment, we

reduce notation to θic ≡ θic1. We assume a normal hierarchical model across chromosomes,

p(logit(θic) | µic) = N(µic,S) and p(µic | µi) = N(µi,Σ1), independently across c = 1, . . . , 22.

In other words, we define the dependence across chromosomes by assuming an exchangeable

normal model for the TMs on a logit scale. We complete the model, still restricting to the

first region only, by assuming an exchangeable prior on µi across patients, µi ∼ F . Instead of

specific parametric assumptions for F we use a non-parametric prior. Formally, we define F to

be a random probability measure and write F ∼ p(F ). We define the specific choice of RPM

below. In summary, we assume

logit(θic) ∼ N(µic,S), µic ∼ N(µi,Σ1), µi ∼ F and F ∼ p(F ). (2)

The most commonly used prior p(F ) for non-parametric Bayesian inference is the Dirichlet

process (DP) prior (Ferguson, 1973). For a review of the DP model see, for example, Müller

and Quintana (2004). We only briefly review the main implications of the use of the DP prior

in (2). The DP prior is indexed with two parameters, the base measure F0 and the total mass

parameter M , and we write F ∼ DP (M,F0). The base measure defines the prior expectation,

E(F ) = F0, and the total mass parameter is a precision parameter. The baseline F0 may itself

depend on additional hyper-parameters. A key feature of the DP is that F is almost surely

discrete. The discrete nature of F implies a positive probability for ties among the µi values.

The groups of patients sharing a common value can be interpreted as clusters. Let µ∗1, . . . ,µ
∗
L

be the unique values among µ1, . . . ,µn. We define latent indicators si for cluster memberships,

such that si = h if µi = µ∗h, and let mh represent the size of the hth cluster, i.e. the number

of µis equal to µ∗h. The DP model can be best understood by considering the prior predictive

distribution for a sample µi ∼ F , i = 1, . . . , n, generated from a random probability model

with a DP prior. Marginalizing with respect to F , the following prior predictive probabilities

7



apply:

p(µn+1 | µ1, . . . ,µn) =

δµ∗
h
(µn+1), with pr. mh/(M + n), h = 1, . . . , L

F0(µn+1), with pr. M/(M + n)
(3)

The predictive rule (3) implies that with some probability the TMs for a new patient mimic

some of the previous ones (up to residual variation); with the remaining probability, the latent

parameters controlling the TMs are drawn from the baseline distribution F0. A computationally

convenient choice for the baseline measure F0 is a conjugate prior to the kernel in (2). In the

case of the normal kernel we use F0(µ) = N(µ;m,V ).

In summary, we have defined dependence across chromosomes c by the hierarchical model

(2) and dependence across subjects i by (3). A critical feature of the proposed model is that

the subject specific random effects µi are of dimension 2`. A non-parametric prior for the joint

vector of all µic would be of prohibitive dimension. Therefore, we use a parametric model

to specify dependence across c in (2), and a non-parametric prior to define dependence of µi

across i in (3). Note that the marginal model for each µic, marginalizing w.r.t. µi, is also a

semiparametric mixture of normals

p(µic | F ) ∼
∫

N(µ,S + Σ1) dF (µ).

We now complete the model by defining dependence across the second level of repeat experi-

ments in the data structure, i.e., dependence across regions, using a similar modeling strategy.

The only difference is that an appropriate model for dependence across regions is based on

spatial dependence rather than exchangeability. We return to the general case with multi-

ple regions, j = 1, . . . , nic, for each chromosome and patient, as described in Section 2. Let

θic = (θic1, . . . ,θicnic), θi = (θi1, . . . ,θi,22) and θ = (θ1, . . . ,θn). Let also µic, µi and µ be

analogously defined. The likelihood remains as in (1). As in (2) we introduce latent variables

µicj with logit(θicj) | µicj ∼ N(µicj ,S), and replace (2) by an extended model to include de-

pendence across regions. We introduce a vector of autoregressive coefficients α = (α1, . . . , α2`).

The coefficient αh is used to characterize the change of the h-th coefficient of the transition

matrix µicj across regions. Let D(α) = diag(α) denote the 2` × 2` diagonal matrix with α on

the diagonal. We replace (2) by

µi0 ∼ F, µic0 = µi0 +εic0, µic1 = µic0 +εic1 and µicj = µic0 +D(α)(µic,j−1−µic0)+εicj ,

(4)

where εicj and εic0 are independent normal residuals with εic0 ∼ N(0,Σ1), and εicj ∼ N(0,Σ2)

for j ≥ 1. The model assumes first-order stationarity, and includes a strictly stationary model

8



as a special case by appropriate choices of Σ1, Σ2 and α. Marginally for each region j, the

model still implies the nonparametric mixture of normals model for logit(θicj), as before, now

with the kernel N(logit(θic); µic,S) replaced by a normal kernel p(logit(θicj) | µic0,S,α) =

N(µic0, V (S,α)) with the variance-covariance matrix V (S,α) implied by marginalizing (4)

with respect to µic1, . . . ,µic,j−1. The cluster structure on patients remains determined by

the SSM assumption for F . The desired learning about regions of increased LOH is then

accomplished by examining the posterior distributions of an appropriate function of the θicj

parameters. See Section 5 below for details on how we do this.

The structure in (4) highlights how the proposed semi-parametric model relates to a simpler

parametric model. If we were to assume a parametric model for µi0, for example the base

measure of the DP, µi0 ∼ N(m,V ), the model would reduce to a fully parametric hierarchical

model. Besides increased flexibility the advantage of the semi-parametric extension is that it

remains more faithful to the prior judgement about the binary sequences by building on only

the order ` exchangeability assumption.

The model specification is completed by defining hyperpriors on all remaining parameters.

Let η denote the set of all other hyper-parameters. These include the regression coefficients α,

the covariance matrices S, Σ1 and Σ2, and hyper-parameters from the baseline distribution F0,

m and V . For α we use a normal prior, p(α) = N(α; a0,A0). Next, for S we choose an inverse-

Wishart prior, p(S) = IW (S; S0, νS). We also assume independent conjugate inverse-Wishart

priors for the residual variances: p(Σ1) = IW (Σ1; Σ01, ν1) and p(Σ2) = IW (Σ2; Σ02, ν2).

Finally, for the hyper-parameters in F0 we use p(m,V ) = N(m; m0,V /λ0)×IW (V ; V 0, νV ).

In the earlier definitions we assume a0, A0, νA, S0, νS , ν1, Σ01, ν2, Σ02, m0, V 0, λ0 and νV

to be known.

4. Posterior Simulation

Model (2) has the great advantage of conditional independence at various levels. This condi-

tional independence facilitates implementation of a Gibbs sampling algorithm. In particular,

the transition probabilities θicj are conditionally independent across i, c and j, given all other

parameters. As a consequence, the θicj can be updated one at a time. Sampling from the corre-

sponding full conditionals can be accomplished using standard methods for logistic regression,

as discussed, e.g., in Carlin and Louis (1996).

Next, consider updating µi0 in model (4). Details on updating the configurations of ties

among the {µi0, i = 1, . . . , n}, and the unique values µ∗h are described, among others, in

MacEachern and Müller (2000) and Neal (2000). The complete conditional posterior for µicj ,
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j ≥ 1, including conditioning on logit(θicj) and {µics}, s 6= j, is a straightforward normal linear

regression.

Updating the autoregression parameters in (4) proceeds by draws from the complete condi-

tional posterior distribution. Model (4) is linear in α. The conjugate normal prior assumption

for α allows for straightforward posterior simulation for α conditional on imputed values for all

other parameters. Finally, the remaining parameters are easily updated from the corresponding

conjugate-style conditionals. See further details in Quintana and Müller (2004) and in Müller

et al. (2007).

5. Identifying Regions of Increased LOH

We assume model (1) with ` = 2, that is, θicj is of dimension 2` = 4 and represents the full

order-2 TM for the jth region of chromosome c of the ith patient. For the random effects

distribution p(θicj , j = 1, . . . , nic), we use model (4) with a DP (M,F0) prior with M = 1. The

model treats the responses from different regions as conditionally independent given region-

specific parameters.

Figure 1 shows the estimated marginal posterior means plus and minus one posterior stan-

dard deviation for the components of the α and m coefficients. Recall that α parametrizes the

AR model in (4), and m is the mean of the DP base measure F0. The posterior means for αh

are well away from zero, suggesting a significant autoregression effect, except possibly for α3,

which corresponds to the logit of transition probabilities from (1, 0) to (0, 1) (i.e., LOH skipping

a SNP). Also, they are significantly away from 1, except possibly for α1, i.e the coefficient for

(0, 0) to (0, 1) transitions. In other words, the data suggests an autoregressive effect that is not

a random walk-type process. On the other hand, the m coefficients, which control the center

of the baseline measure (on the logit scale), are all well negative. This reflects the fact that

over 99% of all the responses are zero, and so the baseline values for transition probabilities

from any previous two values to an LOH response are very low for any given region. This is

further reflected in Figure 2a which shows the estimated posterior means for the (0,0) to (0,0)

transition probabilities (on the logit scale). The estimated transition probabilities are very high

for almost all regions and patients.

If one wishes to evaluate LOH in any given region, we recommend using the long-run

proportion of LOH in that region. This is based on the fact that chromosome regions are large

enough to justify approximating (ergodic) LOH averages by their corresponding limits. From
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elementary Markov chain theory (Ross, 2002), we find that these are given by

lim
k→∞

P (yicjk = 1) =

lim
k→∞

∑
j1,j2∈{0,1}

P (yicjk = 1|yicj,k−1 = j1, yicj,k−2 = j2)P (yicj,k−1 = j1, yicj,k−2 = j2) =

∑
j1,j2∈{0,1}

P (yicj2 = 1|yicj1 = j1, yicj0 = j2) lim
k→∞

P (yicj,k−1 = j1, yicj,k−2 = j2).

The first term in the last summation is the transition probability from (j2j1) to (j11), while

the limit probabilities in the second part are given by the stationary distribution corresponding

to the appropriate TM, and therefore, easily identified as functions of θicj .

Figure 2b shows the estimated marginal posterior long- run probabilities of LOH on the

logit scale, computed as indicated above. Patients 2, 6, 8, 9, and 10 show some regions with

higher probability of LOH than the other patients. In general we find an overall low percentage

of observed LOH sites.

The estimated marginal probabilities do not yet address the original inference goal of iden-

tifying regions of increased LOH. We address this goal by defining an indicator of “increased

LOH” for patient i and region j as

Iicj =

 1 if limk→∞ P (yicjk = 1) > p0

0 otherwise,
(5)

where 0 < p0 < 1 is a fixed threshold. In other words, we say that a given region has in-

creased LOH if the marginal long-run probability of LOH is greater than p0. As noted earlier,

limk→∞ P (yicjk = 1) is a function of the transition probabilities θicj only. Figure 3a reports

the posterior expectations of Iicj on the logit scale, using p0 = 1%. Patients 2, 6, 8, 9, and 10

stand out again. These five patients have longer stretches of neighboring loci that have high

posterior probability of increased LOH relative to the threshold of 1%.

We still need to relate the reported probabilities to the desired decision of identifying regions

of increased LOH. In carrying out this decision we face a massive multiplicity problem. In the

context of high throughput gene expression data, several procedures have been proposed to

address such decision problems based on the notion of false discovery rates (Benjamini and

Hochberg, 1995; Storey, 2002). Most discussions are for the stylized setup of a two-group

comparison microarray experiment. For each of a large number of genes recorded on the

microarrays, we wish to make a decision about differential expression. Under the same setup

and using a Bayesian decision-theoretic perspective, Müller et al. (2004) show that under a

variety of loss functions the optimal decision is characterized by flagging all those comparisons
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with marginal probability of differential expression beyond a certain threshold. The conclusion

is valid for any probability model. In particular, the probability model can include dependence,

as in the proposed model for LOH indicators. Thus the same solution applies. The optimal

inference about regions of increased LOH is achieved by marking all regions with marginal

probability of increased LOH beyond a threshold. Let δicj ∈ {0, 1} denote an indicator for

reporting increased LOH for region (icj). Let D =
∑

icj δicj denote the total number of

reported regions. Let Iicj = Iicj(θicj) denote the unknown truth, as in (5) and define the false

discovery proportion (FDP) as

FDP =
∑
i,j

(1− Iicj) δicj/D.

The FDP is a function of the unknown parameters Iicj and the data, implicitly through δicj .

Let vicj = E(Iicj | data) denote the marginal posterior probability of increased LOH in region

(icj). These probabilities are reported in Figure 3a. The posterior expected FDP, FDR =

E(FDP | data), is evaluated as FDR =
∑

i,j(1 − vicj) δicj/D. Using a threshold of 0.29, i.e.,

δicj = I(vicj > 0.29), we find FDR = 10%. This inference is reported in Figure 3b, with black

bars indicating the decision to flag a region as exhibiting “increased LOH.” For two patients (2

and 6) we see uniformly increased LOH across all regions. Note the double thresholding that

is implicit in the definition of δ by thresholding the posterior expectation of Iicj , which in turn

is defined by a threshold on the limiting probabilities. This arises because we are interested

in regions of increased LOH, rather than regions of LOH (the latter would be very few for a

comparable FDP).

For comparison we considered three alternative approaches for the desired inference and

compare these with our proposed scheme. We used the methods proposed in Newton et al.

(1998) and Lin et al. (2004) and a fully parametric version of our proposed model. We used

a set of 100 equally spaced loci for the method of Newton et al. (1998). We found all the log

of odds (LOD) scores to be zero, i.e. no region of high LOH was detected. This somewhat

surprising conclusion is explained by the fact that the binary sequences are very long and the

proportion of recorded LOH per sequence is very low. Thus a model that assumes a single

Markovian process across all regions, may not be flexible enough to capture local behavior as

our approach does. In this case, the MLEs required to implement the model in Newton et al.

(1998) are essentially driven by the overwhelming proportion of observed “no loss” and thus

the result.

Results for the approach proposed in Lin et al. (2004) are shown in Figure 4. We used

the implementation in dChip, the public domain software that is introduced in Lin et al.
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(2004). Figure 4a plots the probability of LOH using the hidden Markov model score defined

in dChip. Compare the inference with Figure 2b. While the general patterns are similar under

both methods, inference under the proposed model includes more extensive borrowing strength

within the hierarchical model. Also, the reported inference provides region-specific probabilities

under a coherent joint probability model across regions, chromosomes and samples. This allows

the investigator to report summaries like the inference about regions of increased LOH based

on joint probability models. On the other hand, an important advantage of the approach in Lin

et al. (2004) is the highly reduced reliance on a specific model. In fact the approach includes

an option to compute simple entirely model-independent LOH scores. Their method judges

significance by a permutation test with appropriate multiplicity control.

Finally, we implemented a fully parametric model by replacing the nonparametric model

µi0 ∼ F in (4) with a parametric model µi0 ∼ N(m,V ). All other model choices are left un-

changed. Figure 4b shows the resulting probability of LOH. Compared with Figure 2b we see

less smoothing across regions in the reported probabilities but otherwise similar results. The

additional smoothing in the semi-parametric model arises from the clustering that is implied by

the DP prior. In contrast, the parametric model can be described as assuming all singleton clus-

ters, i.e., all random effects µi0 in (4) are distinct. The main argument for the semi-parametric

model is that it naturally follows from the prior judgement about partial exchangeability of the

binary sequences.

Finally, we assess the sensitivity with respect to the arbitrary definition of regions. We

consider two alternative schemes. First, we construct regions as before, but using lengths of

either 100 or 1000, rather than 55 or 835. In the second alternative scheme that we consider, the

number of base pairs in each region is kept constant and thus the number of SNPs per region is

variable. We chose the number of base pairs such that the number of regions per chromosome

remains the same as before (i.e., when regions were defined by 55 and 835 SNPs, respectively).

The resulting plots (not shown) of probability of LOH, probability of increased LOH, and the

decisions to flag regions for increased LOH remain almost unchanged from Figures 2ab and 3a.

6. Conclusion

Motivated by the analysis of LOH data, we have introduced a semiparametric Bayesian model

for binary measurements with multiple nested levels of repetition. The top-level repetition is

modeled as a mixture of Markov chains. The mixture is defined with respect to the transition

matrix for a given order of dependence ` for SNPs within a given region. Marginally, for each

second level repeated measurement unit (chromosome region), a nonparametric model charac-
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terizes the random effects related to that unit. The proposed approach completes the model

by defining dependence across regions and across chromosomes, using a parametric hierarchical

model.

The data analysis carried out can be extended and complemented in several ways. The goal

of the inference in our motivating application was to detect regions of increased LOH. In other

applications with LOH data, one might be interested in modeling for loss of tumor suppression

genes that are hypothesized to be associated with the observed LOH. Newton and Lee (2000)

propose an instability-selection model that facilitates such inference. The instability-selection

model could be used to replace the partially exchangeable sampling model in our approach,

while still keeping dependence across SNPs as in (4).

For other applications it might be useful to extend the proposed model to include location-

specific covariates in (1). This could be achieved by using a log-linear model for the transition

probabilities. The log-linear model would include the regression on the lagged outcomes as well

as additional location-specific covariates. The regression coefficients in the log-linear model

would then replace logit(θi) in (2).
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Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate: a practical and

powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B.

Methodological, 57, 289–300.

Beroukhim, R., Lin, M., Park, Y., Hao, K., Zhao, X., Garraway, L. A., Fox, E. A., Hochberg,

E. P., Mellinghoff, I. K., Hofer, M. D., Descazeaud, A., Rubin, M. A., Meyerson, M.,

Wong, W. H., Sellers, W. R. and Li, C. (2006) Inferring loss-of-heterozygosity from un-

14



paired tumors using high-density oligonucleotide snp arrays. PLoS Computational Biology,

2. URLhttp://www.citebase.org/abstract?id=oai:pubmedcentral.gov:1458964.

Carlin, B. P. and Louis, T. A. (1996) Bayes and Empirical Bayes Methods for Data Analysis.

London: Chapman & Hall.

Ferguson, T. S. (1973) A Bayesian analysis of some nonparametric problems. The Annals of

Statistics, 1, 209–230.

Goldstein, H. (2003) Multilevel Statistical Models, Third Edition. Kendall’s Library of Statistics,

3. London: Arnold Publishers.

Hartford, C., Yang, W., Cheng, C., Liu, W., Su, X., Pounds, S., Neale, G., Fan, Y., Raimondi,

S. C., Bogni, A., Pui, C.-H. and Relling, M. V. (2006) Genome Scan for Therapy-Related

Myeloid Leukemia. Tech. rep., Department of Pharmaceutical Sciences, St. Jude Children’s

Research Hospital.

Heagerty, P. J. and Zeger, S. L. (2000) Marginalized multilevel models and likelihood inference.

Statistical Science, 15, 1–19.

Kleinman, K. and Ibrahim, J. (1998) A semi-parametric bayesian approach to the random

effects model. Biometrics, 54, 921–938.

Lin, M., Wei, L. J., Sellers, W. R., Lieberfarb, M., Wong, W. H. and Li, C. (2004) dchipsnp: sig-

nificance curve and clustering of snp-array-based loss-of-heterozygosity data. Bioinformatics,

20, 1233–1240.

MacEachern, S. N. and Müller, P. (2000) Efficient mcmc schemes for robust model extensions

using encompassing dirichelt process mixture models. In Robust Bayesian Analysis (eds.

F. Ruggeri and D. R. Insua). New York.

Miller, B. J., Wang, D., Krahe, R. and Wright, F. A. (2003) Pooled Analysis of Loss of Het-

erozygosity in Breast Cancer: a Genome Scan Provides Comparative Evidence for Multiple

Tumor Suppressors and Identifies Novel Candidate Regions. American Journal of Human

Genetics, 73, 748–767.

Mukhopadhyay, S. and Gelfand, A. E. (1997) Dirichlet process mixed generalized linear models.

Journal of the American Statistical Association, 92, 633–639.

15



Müller, P., Parmigiani, G., Robert, C. and Rousseau, J. (2004) Optimal sample size for mul-

tiple testing: the case of gene expression microarrays. Journal of the American Statistical

Association, 99.

Müller, P. and Quintana, F. (2004) Nonparametric Bayesian Data Analysis. Statistical Science,

19, 95–110.

Müller, P. and Rosner, G. (1997) A bayesian population model with hierarchical mixture priors

applied to blood count data. Journal of the American Statistical Association, 92, 1279–1292.

Müller, P., Rosner, G. and Quintana, F. A. (2007) Semiparametric Bayesian Inference for

Multilevel Repeated Measurement Data. Biometrics, 63, 280–289.

Neal, R. M. (2000) Markov chain sampling methods for dirichlet process mixture models. Jour-

nal of Computational and Graphical Statistics, 9, 249–265.

Newton, M. A., Gould, M. N., Reznikoff, C. A. and Haag, J. D. (1998) On the statistical

analysis of allelic-loss data. Stat Med, 17, 1425–45.

Newton, M. A. and Lee, Y. (2000) Inferring the Location and Effect of Tumor Suppressor Genes

by Instability-Selection Modeling of Allelic-Loss Data. Biometrics, 56, 1088–1097.

Pedersen-Bjergaard, J. (2005) Insights into leukemogenesis from therapy-related leukemia. New

England Journal of Medicine, 352, 1591–1594.

Quintana, F. and Müller, P. (2004) Nonparametric bayesian assessment of the order of depen-

dence for binary sequences. Journal of Computational and Graphical Statistics, 13, 213–231.

Quintana, F. A. and Newton, M. A. (1998) Assessing the Order of Dependence for Partially

Exchangeable Binary Data. Journal of the American Statistical Association, 93, 194–202.

— (2000) Computational aspects of Nonparametric Bayesian analysis with applications to the

modeling of multiple binary sequences. Journal of Computational and Graphical Statistics,

9, 711–737.

Relling, M.V.and Boyett, J., Blanco, J., Raimondi, S., Behm, F., Sandlund, J., Rivera, G.,

Kun, L., Evans, W. and Pui, C. (2003) Granulocyte colony-stimulating factor and the risk

of secondary myeloid malignancy after etoposide treatment. Blood, 101, 3862–3867.

Ross, S. M. (2002) Introduction to Probability Models, Eighth Edition. Academic Press.

16



Storey, J. (2002) A direct approach to false discovery rates. Journal of the Royal Statistical

Society, Series B (Methodological), 64, 479–498.

Walker, S. G., Damien, P., Laud, P. W. and Smith, A. F. M. (1999) Bayesian nonparametric

inference for random distributions and related functions (Disc: P510-527). Journal of the

Royal Statistical Society, Series B: Statistical Methodology, 61, 485–509.

17



(a) (b)

Fig. 1. Marginal posterior means and standard deviations for (a) α and (b) m. The horizontal bars

show the marginal posterior mean (a) E(α` | Y ) and (b) E(m` | Y ) (marked by “ | ”) plus/minus one

posterior standard deviation for ` = 1, . . . , 4
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(a) (0, 0) → (0, 0) transition probability (b) probability of LOH

Fig. 2. The left panel reports the marginal posterior means of the transition probability from state “00”

to “00”, on a logit scale. The right panel shows the marginal posterior probability of LOH. Values

are indicated by gray shades with black corresponding to 1.0. From left to right, columns represent

regions 1 through 874. Chromosome boundaries are indicated by dotted vertical lines, and labeled for

chromosomes 1 through 14. The rows correspond to patients 1 through 13.
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(a) Pr(Iicj | data) (b) δicj

Fig. 3. The left panel reports the marginal posterior probability of increased LOH, P (Iicj | data), with

darker gray shades for higher probabilities. On the horizontal axis are regions arranged by chromosomes,

as in Figure 2. The right panel shows the decisions δicj, with a black bar indicating that region (ij) is

reported as increased LOH.
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(a) dChip (b) parametric model

Fig. 4. Probability of LOH under two alternative methods. Panel (a) shows the inference reported by

dChip using the hidden Markov model scores. Panel (b) shows inference under a fully parametric model.

In both panels the horizontal axis shows regions arranged by chromosomes. Compare with Figure 2b.
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