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Abstract

In high-throughput experiments sample size is typically chosen in-

formally. Most formal sample size calculations depend critically on

prior knowledge. We propose a sequential strategy which, by updat-

ing knowledge when new data is available, depends less critically on

prior assumptions. Experiments are stopped or continued based on

the potential benefits in obtaining additional data. The underlying

decision-theoretic framework guarantees the design to proceed in a co-

herent fashion. We propose intuitively appealing, easy to implement

utility functions. As in most sequential design problems, an exact so-

lution is prohibitive. We propose a simulation-based approximation

that uses decision boundaries. We apply the method to RNA-seq,

microarray and reverse phase protein array studies and show its po-

tential advantages. The approach has been added to the Bioconductor

package gaga. Decision theory; Forward simulation; High-throughput

0To whom correspondence should be addressed.
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experiments; Multiple testing; Optimal design; Sample size; Sequen-

tial design.

1 Introduction

In high-throughput studies (HTS) the sample size is usually chosen infor-

mally. The resulting experiment may either be not informative enough or

unnecessarily extensive. To address this problem, we aim to develop a se-

quential design framework for HTS. That is, we investigate the question

whether the currently available data in a typical HTS suffices and, if not,

how to determine the optimal stopping strategy. We focus on experiments

to perform group comparisons, although our ideas remain useful for other

inferential goals. For simplicity we discuss the 2 group case, but our software

allows > 2 groups. The proposal is based on Bayesian decision theory, so

that decisions are coherent with respect to an underlying utility function and

probability model. We emphasize ease of interpretation and use.

Several authors proposed fixed sample size calculations for HTS, i.e. the

sample size is fixed at the beginning of the experiment (Dobbin and Simon;

2007; Lee and Whitmore; 2004; Müller et al.; 2004; Zien et al.; 2003; Pan

et al.; 2002). The main limitations are the lack of flexibility to incorporate

new data and the need for a good prior guess of certain features, e.g. effect

sizes or the proportion of differentially expressed (DE) genes.

In contrast, sequential sample size designs update knowledge and make

decisions as data is collected, i.e. they are robust with respect to prior

choices. A sequential design stops or continues experimentation on the basis

of all available data. A potential drawback is the need to carry out exper-

imentation in batches. The associated increase in time or experimentation
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costs may outweigh the potential advantages. This should not be a major

concern in many HTS, as most high-throughput technologies (e.g. microar-

rays, sequencing or mass-spectrometry) process samples in small batches.

Assessing the promise of continuing experimentation after each batch seems

natural. Also, samples may be costly to obtain or there may be ethical

concerns, e.g. in human studies. These situations offer great potential for

sequential strategies.

Ruppert et al. (2007), Tibshirani (2006) and Ferreira and Zwinderman

(2006) proposed two-step designs focused on microarray differential expres-

sion problems. Two-step designs adapt to the observed data to a limited

extent. Gibbons et al. (2005) and Durrieu and Briollais (2009) propose se-

quential designs that select a single/few genes and stop the trial when dif-

ferences in expression can be estimated with high precision. The focus on a

few genes limits the application to HTS.

Researchers typically use HTS as a screening test to identify candidates,

which are then validated with more precise techniques (e.g. real-time PCR).

The usual goal is not to estimate differential expression accurately but to find

promising targets. The Durrieu and Briollais (2009) model is appropriate for

paired observations, e.g. two-channel arrays.

We propose an approach for unpaired data that screens a large number

of candidates and attempts to maximize the number of promising targets.

The framework is directly applicable to many probability models and exper-

iments, including sequencing, microarrays and reverse phase protein arrays

(RPPA). With minor modifications it can be adapted to other experimental

goals. The main hurdle with decision-theoretic optimal sequential designs

is the prohibitive computational cost, even in single outcome experiments.

Rossell et al. (2006) developed an approach based on the ideas of Müller et al.
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(2006), Brockwell and Kadane (2003) and Carlin et al. (1998). They com-

pute a summary statistic S each time that new data is observed and they use

decision boundaries that partition the sample space. The experiment is ter-

minated when S first falls in the stopping region. The sequential problem is

reduced to the (non-sequential) problem of finding optimal boundaries. The

choice of these boundaries accounts for all future data, which distinguishes

the solution from myopic approximations. Here we extend these ideas to high

dimensional data and apply them to differential expression problems.

Section 2 formalizes the problem and two convenient probability models.

Section 3 describes sequential stopping and the infeasibility of an exact solu-

tion. Section 4 proposes an approximate solution. Section 5 contains several

examples and Section 6 some concluding remarks. The Supplementary Ma-

terial (SM) contains further theoretical and practical considerations, and an

example with R code.

2 Data Format and Model

We motivate the discussion in the context of experiments that study differ-

ential gene expresion, but the proposal remains applicable to other setups.

Let n be the number of outcomes (e.g. genes) and T be the maximum sam-

ple size. T is usually determined by budget constraints, accrual rates, or an

informed guess. Let xij be the measurement for gene i = 1, . . . , n and sample

j = 1, . . . , T , and zj ∈ {0, . . . , nz} be the group of sample j. For simplicity

here we assume zj ∈ {0, 1}, i.e. we compare two groups. Generalization to

nz > 1 is straightforward and is implemented in the gaga package.

A latent variable δi = 1 indicates that gene i is differentially expressed

(DE) across groups and δi = 0 that it is equally expressed (EE). The indicator
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δi represents the unknown truth and is part of the parameter vector. Let θi

be parameters indexing a probability model for (xi1, . . . , xiT ). Optionally, let

ω be additional hyper-parameters. For example, ω could index a regression

on important covariates. Let xt = {xit, 1 ≤ i ≤ n} be the data obtained at

time t and x1:t = {xij, 1 ≤ i ≤ n, 1 ≤ j ≤ t} be all data available up to time

t. Further, let θ = (θ1, . . . ,θn) and δ = (δ1, . . . , δn).

2.1 Probability model

Our proposal requires extensive predictive simulation and model fitting. Hence,

the model must be computationally efficient. For instance, the examples in

Section 5 required posterior inference in millions of simulated datasets. On

the other hand, the model needs to be sufficiently flexible to capture the

important features of the data.

Here we use the GaGa (Rossell; 2009) and log-normal normal with gener-

alized variances (NN) models (Yuan and Kendziorski; 2006) models to illus-

trate the approach. Both offer a reasonable compromise between flexibility

and computational cost. The GaGa model assumes xij ∼ Ga(αi, αi/λizj).

The NN model ueses xij ∼ N(µizj , σ
2
i ). The triple θi = (λi0, λi1, αi) (GaGa)

or θi = (µi0, µi1, σ
2
i ) (in the NN model) incorporates gene-specific variability

and gene-by-group specific means. A hierarchical prior on θi assigns positive

prior probability to means being equal across groups. The GaGa hierarchical

prior is

λ−1
i0 ∼ Ga(α0, α0/ν), αi|β, µ ∼ Ga(β, β/µ)

λ−1
i1 | λi0, δi ∼

Ga(α0, α0/ν) if δi = 1

I(λi1 = λi0) if δi = 0
(1)
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and P (δi = 1) = π, independently across i. The hyper-parameters are

ω = (α0, ν, β, µ, π). The NN hierarchical prior is µi0 ∼ N(µ0, τ
2
0 ), σ−2

i ∼
Ga(ν0/2, ν0σ

2
0/2), also with probability of ties, P (δi = 1) = π, independently

across i. For this model ω = (µ0, τ0, ν0, σ0, π). The GaGa sampling distribu-

tion for xij captures asymmetries that are frequently observed in HTS. The

NN assumptions are similar to those of the popular limma approach (Smyth;

2004), which has been found useful in many applications. The SM (Section

2) proposes goodness-of-fit assessments to help choose the most appropriate

model for a particular dataset.

In terms of computational complexity, conditional on ω the posterior

distributions are available in closed form. We treat ω as fixed, avoiding the

need for Markov Chain Monte Carlo (MCMC) simulation. This substantially

increases computational speed. We estimate ω via expectation-maximization

as in Rossell (2009) and Yuan and Kendziorski (2006). The latter proposed a

method of moments estimate for (ν0, σ
2
0) which can result in over-estimating

π. We illustrate this issue and outline a simple procedure to adjust π̂ in the

SM (Section 3).

While we use these two models in our examples, the upcoming discussion

of the optimal stopping policy remains valid for any alternative probability

model.

2.2 Pre-processing

We assume that the data are suitably pre-processed. This is critical for

meaningful inference. For instance, ignoring batch effects may bias or add

uncertainty to group comparisons. We note that some technologies such

as RNA-seq may be less sensitive to batch effects, and that these can be

partially mitigated by good design, e.g. by balancing the number of samples
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in each group and batch. We recommend jointly pre-processing data after

every batch, as some technical biases (e.g. probe or GC-content biases) may

be better assessed once more data is collected.

Batch effects and other sources of variability may be either addressed in

the pre-processing or in the analysis by including appropriate terms in the

model. Following ? and Durrieu and Briollais (2009), we argue in favor of

the former. As an illustration, let yij be a vector of covariates that are used

in the adjustment, and assume that E(xij|µizj ,yij) = µizj +g(yij). Here, g(·)
captures the effect of yij on the outcome, and could represent a non-linear

adjustment that cannot be captured by the analysis model. One could then

use the partial residuals x̃ij = xij − ĝ(yij) as the pre-processed data, where

ĝ(·) is an appropriate estimate of g(·).
We note that the domain of the data must match the assumptions of

the model. For example, while most technologies deliver positive expression

measurements, pre-processed data may sometimes present negative values

which are not allowed in the GaGa model. A simple strategy to deal with

negative values is to define x̃izj = xizj + k, where the offset k > 0 ensures

that x̃izj > 0. Alternatively, define x̃izj = exizj , but this option may produce

outliers that decrease the model goodness-of-fit. In practice, we recommend

trying several transformations and producing some goodness-of-fit (e.g. see

SM ,Section 2).
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3 Optimal Sequential Stopping

3.1 Decision criterion

We formalize sequential sample size calculation within a Bayesian decision-

theoretic framework. The optimal design is chosen by maximizing the expec-

tation of an appropriate utility function. At each decision time the expected

utility is conditional on all available data (which may be no data at all) and

averaged with respect to uncertainty on the model parameters and future

data, assuming optimal future decisions.

It is convenient to distinguish sequential and terminal decisions. Sequen-

tial decisions correspond to stopping versus continuation and are made after

each batch of observations. Terminal decisions are the classification of genes

into EE (δi = 0) or DE (δi = 1), and are taken only upon stopping. Let

st = s(x1:t) = 1 indicate the sequential decision of stopping at time t and

let st = 0 indicate continuation. Equivalently, st can be described by the

stopping time τ = min{t : st = 1}. We use st and τ interchangeably. Let

di(x1:t) = 1 (0) indicate the terminal decision to report gene i as DE (EE).

Also, let d(x1:t) = (d1(x1:t), . . . , dn(x1:t)). Both st and d(x1:t) depend on all

data available up to time t.

In a fully decision theoretic approach sequential and terminal decisions

are chosen to jointly maximize expected utility. Instead, we assume a fixed

rule for d(x1:t) and focus on the optimal choice of st only. We take terminal

decisions using the Bayes rule of Müller et al. (2004) to control the posterior

expected false discovery rate (FDR) below some specified level. The posterior

expected FDR is 1
D

∑
di(x1:t)[1− E(δi | x1:t)], where D =

∑
i di(x1:t) is the

number of reported positives. We use the 0.05 level throughout.

Sequential stopping decisions st are based on a utility function with sam-
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pling cost c and a unit reward for each correctly identified DE outcome

u(st = 1,d(x1:τ ),x1:τ , δ) = −cτ +
n∑
i=1

δidi(x1:τ ). (2)

The second term in (2) is the number of true positives (TP). The cost c

is the minimum number of TP that make it worthwhile to obtain 1 more

sample. This interpretation allows for easy elicitation of c, without any

reference to the formal mathematical framework. The utility function (2)

focuses on statistical rather than biological significance, as the size of the

effect is not considered. A simple alternative is obtained by substituting

|µi1 − µi2| δidi(x1:τ ) in the summation in (2). See Müller et al. (2004) or Rice

et al. (2008) for other interesting alternatives. The upcoming discussion is

independent of the specified utility.

3.2 Optimal rule

The optimal stopping decision st maximizes u(·), in expectation over all

unknowns, including parameters (θ, δ) and future data xτ+1:T . An exact

solution requires dynamic programming, also known as backward induction

(DeGroot; 1970). At time t, the optimal decision is to stop if the posterior

expected utility for st = 1, denoted ut(st = 1,x1:t), is greater than ut(st =

0,x1:t). Evaluating ut(st = 1,x1:t) is usually straightforward. For (2) we find

ut(st = 1,x1:t) = −ct+
n∑
i=1

P (δi = 1 | x1:t)di(x1:t), (3)

where P (δi = 1|x1:t) is the posterior probability that outcome i is DE. The

expectation is with respect to δ only, as we fix the terminal decision d(x1:t).

The posterior probability P (δi = 1|x1:t) can be computed in closed-form

for some models (including GaGa and NN) or can easily be estimated from
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MCMC output. Evaluating ut(st = 0,x1:t) is more challenging. An exact

solution requires assessing the expected utility for all possible future data

trajectories xt+1, . . . ,xT , substituting the optimal decisions st+1, . . . , sT . The

computational cost is prohibitive.

4 Approximation by Optimal Decision Bound-

aries

Berry et al. (2001), Brockwell and Kadane (2003), DeGroot (2004), and

Müller et al. (2006) discuss alternatives to an exact optimal sequential so-

lution. Following Rossell et al. (2006) we define sequential stopping bound-

aries. We restrict the maximization to rules that depend on the data x1:t

only through a summary statistic St and linear boundaries that partition the

sample space. We propose using St = ∆tU, where

∆tU ≡ Ext+1 [ut+1(st+1 = 1,x1:t+1) | x1:t]− ut(st = 1,x1:t)− c

is the 1-step ahead increase in expected utility and Ext+1 (·|x1:t) conditions

on x1:t and marginalizes with respect to future data xt+1. For (2) we find

∆tU = ∆t(TP) − c, i.e., ∆tU is the expected increase in TP, and decision

boundaries can equivalently be written in terms of ∆t(TP).

Consider the example in Figure 1. The thick black line is a decision

boundary. Every time we observe new data we compute ∆t(TP). If ∆t(TP)

lies above the boundary we continue experimentation, otherwise we stop.

That is, we experiment as long as enough new TP are expected.

Let b = (b0, b1) be the intercept and slope defining the linear boundaries,

and let U(b,x1:t) be the associated expected utility given data up to time t.

In other words, U(b,x1:t) is the expected utility conditional on x1:t when the
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stopping decision is based on a decision boundary indexed by b. Algorithm

1 details a forward simulation algorithm (Carlin et al.; 1998) to evaluate

the required expectations, and a grid search to carry out the maximization

of U(b,x1:t) with respect to b. The algorithm assumes that t samples are

already available. For no data use t = 0 and x1:t = ∅ (see Section 5.3).

Algorithm 1: Optimal sequential boundary determination.

1. Forward simulation. Simulate x
(j)
t+1:T from the posterior predictive P (xt+1:T |

x1:t), j = 1, . . . , B. For each x
(j)
k compute ∆t(TP)(j), k = t+ 1, . . . , T .

2. Grid search. For each b, find the stopping times τ (j) for all saved trajec-

tories ∆t(TP)(j).

3. Optimum. Select b? ≡ arg maxb{U(b,x1:t)}, where U(b,x1:t) = 1
B

∑B
j=1 u(sτ (j) =

1,x
(j)

1:τ (j)
)

Figure 1 shows simulated ∆t(TP) as grey lines. For each boundary b, we

determine the stopping time for each trajectory and average the expected

terminal utilities. At t = T − 1 we do not determine stopping using b but

the optimal rule ∆T−1U > 0.

In principle b? can be re-computed every time that new data is observed.

Re-computation can help to decide between multiple optima and update

P (xt+1:T | x1:t). In our examples we determine b? only once, either based

on a pilot dataset or prior knowledge, but we indicate the usefulness of re-

computation when appropriate.

Besides the intuitive appeal, some theoretical considerations motivate our

approach. First, fixed-sample designs are special cases e.g. b = c(4.5,∞)

results in a fixed sample size of 5. The myopic rule of continuing as long as

∆tU > 0 (Berry and Fristedt; 1985, chapter 7), is the special case b = (c, 0).
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We generalize the idea with an arbitrary boundary on ∆tU. An important

assurance is that ∆tTP converges to 0 as t→∞, which guarantees eventual

stopping. See SM (Section 1) for a formal statement and proof.

5 Examples

We compare our approach and the fixed sample designs of Müller et al.

(2004) in several important experimental conditions. The SM discusses pre-

processing and goodness-of-fit (Section 2) and an additional RNA-seq exam-

ple with R code (Section 3).

5.1 Simulated Microarray Study

We plan collecting data in batches of 2 arrays per group, with a maximum of

20 per group (i.e. T=10 batches). Recall that c is the minimum number of

new DE that compensate the cost of one more batch. We consider c =25, 50

and 100. To keep the simulation realistic we estimated the hyper-parameters

based on data from a study of leukemia microarray data (Armstrong et al.;

2002). We focus on 24 acute lymphoblastic leukemia (ALL) and 18 MLL

trans-location samples. The estimated proportion of DE genes is π̂=0.063

under the GaGa model and 0.05 for the NN model. We find optimal strategies

based on π = π̂, but we assess performance under model miss-specification

by also simulating data under π = 0.5π̂ and π = 2π̂, while leaving π = π̂

unchanged in the analysis model. We obtained 250 simulations under each

scenario.

Figure 1 shows the optimal boundary for c = 50 and simulated ∆t(TP)

(gray lines) under the GaGa model. Table 1 reports expected utilities and

stopping times. The optimal fixed sample sizes for c = 50 under the GaGa
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π = 0.5π̂ π = π̂ π = 2π̂

c t∗F t∗S U∗
S − U∗

F t∗S U∗
S − U∗

F t∗S U∗
S − U∗

F

GaGa

25 7 6.0 7.7 7.1 0.4 10.0 34.2

50 5 4.1 16.6 5.0 0.0 6.9 28.7

100 3 3.0 0.0 3.0 0.0 4.0 58.6

NN

25 7 5.6 11.1 7.2 0 10.0 32.4

50 4 3.2 10.8 4.1 0.1 5.7 51.2

100 3 2.0 41.9 3.0 0.1 3.0 0

Table 1: Simulated data. t∗F : fixed sample size; t∗S: average sequential sample

size; U∗
S − U∗

F : expected utility for sequential design minus expected utility

for fixed sample.
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and NN models are t∗F = 5 and t∗F = 4, respectively. When π = π̂ the ex-

pected sequential sample sizes are 5.0 and 4.1 (respectively) and there is no

gain in posterior expected utility. Sequential designs offer little advantages

when the data matches the prior expectations. However, when prior expec-

tations are unrealistic sequential designs adapt to the observed data. When

π was overstated by the prior (π = 0.5π̂), sequential designs stopped earlier

than the fixed sample size designs. Conversely, when π = 2π̂ they stopped

later so that more DE genes could be found. For instance, for c = 50 the

GaGa sequential design requires 4.1 data batches when π = 0.5π̂ and 6.9

when π = 2π̂. The fixed design always requires 5.

5.2 High-throughput Sequencing Example

We use a pilot RNA-seq dataset with 2 muscle and 1 brain human samples to

design two hypothetical studies. Study 1 compares gene expression for muscle

vs. brain. Many DE genes are expected. Hypothetical Study 2 compares the

two muscle samples. No genes should be DE. In both cases we use 1 sample

per group as pilot data. We consider up to T = 5 more samples, in batches

of 1 sample. The GaGa model provided a reasonable fit to these data (SM,

Section 2).

We determined the optimal boundary for sampling costs c = 0, 1, . . . , 100.

Figure 2(a) shows that ∆t(TP) is maximal for t = 2 additional data batches.

As suggested by Theorem 1 (SM, Section 1), the incremental reward decreases

as t grows further. The dashed boundary shows that for c > 66 the optimal

decision is to stop experimentation. For c ≤ 66 there are multiple optimal

b∗. The solid black lines show two optima. In both cases, the decision at

t = 0 is to continue. Since the simulated trajectories do not cross either

boundary, we expect experimentation to continue up to T = 5. The future
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realized ∆t(TP) might cross the boundary, in which case the design would

adapt and stop experimentation before T = 5. Given that the pilot data

contains 1 sample per group, we would re-determine b? upon observing new

data.

The hypothetical muscle vs. muscle comparison simulation is shown in

Figure 2(b). In this case ∆t(TP) is negligible and the optimal design is to

stop at t = 0 (i.e. not to collect any further data) for any c > 2. The result

seems sensible as no DE genes are expected.

5.3 Microarray Example

We consider the leukemia study of Campo Dell’Orto et al. (2007) recording

mRNA expression for 21 ALL and 15 MLL patients and 54,675 genes. We

consider designing the study before any data was available. In such circum-

stances, one could estimate the hyper-parameters ω from a similar study. We

used the Armstrong et al. (2002) study (Section 5.1) as it was also carried on

ALL/MLL patients and used the same microarray platform. Once fixed and

sequential designs were determined, we used the historical data to compare

performance. We use batches of 2 arrays per group, maximum T=7 batches

and c = 50.

The white bars in Figure 3 (left panels) show expected utility under the

GaGa and the NN priors for all fixed sample sizes. The optimal fixed sample

sizes are t∗F = 5 batches (GaGa) and t∗F = 4 (NN). The right panels show the

optimal boundaries and ∆t(TP) computed from the observed data up to time

t = 1, . . . , 7. For both models the sequential design continues up to the time

horizon. Figure 3 compares the designs by computing the posterior expected

TP (gray bars) and the number of genes with limma P-values< 0.05 after

the Benjamini and Yekutieli (2001) adjustment (black bars). At the time
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horizon both quantities increase over 2 fold compared to the recommended

fixed sample size. The differences between prior and posterior expected TP

show how sequential designs adapt to the observed data to correct prior

miss-specifications.

5.4 Reverse Phase Protein Arrays

We design a follow-up study for the Reverse Phase Protein Array (RPPA)

dataset dataIII that is included in the R package RPPanalyzer (?). The

data contains expression for 75 proteins and 35 stage 2 and 25 stage 3 samples.

Both models, the NN and GaGa models provide a reasonable fit (SM, Section

2). The fit under the NN model is slightly better. We find π̂ = 0.13 under

the NN model, and π̂ = 0.10 under the GaGa mdoel. That is, the estimated

number of DE proteins is 9.75 and 7.5, respectively. While we expect several

DE proteins, at a posterior expected FDR < 0.05 the NN model calls 1 DE

protein, and the GaGa model makes no DE calls. For comparison, only 1

protein has limma BY-adjusted P-values below 0.05.

We consider adding batches of 50 samples per group, up to a maximum of

T = 4. We set the sampling cost to c = 1, reflecting that RPPA samples are

relatively cheap. The study focuses on 75 carefully chosen proteins. Figure 4

shows simulated ∆t(TP) trajectories and the optimal boundaries. Inference

under the NN model estimates fewer TPs. Otherwise, inference is fairly

similar across models and the optimal boundaries are remarkably close. The

average sample size is t∗S = 1.37 under the NN model, and t∗S = 1.32 under

the GaGa model. The expected number of true positives at t∗S is 9.46 (NN)

and 6.11 (GaGa). That is, according to both models, most DE proteins

should be detected by adding 1-2 batches, i.e. 50-100 samples per group.

These results help assess the potential benefits of extending the experiment.
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6 Discussion

We proposed a sequential strategy for massive multiple hypothesis testing.

An important advantage lies in the generality of the proposed design. We

discussed three RNA-seq, one microarray and one RPPA experiment. Se-

quential designs are robust with respect to to inaccurate prior guesses and

provide substantial advantages over fixed sample designs.

The proposal is formulated in a decision-theoretic framework and empha-

sizes interpretability. We monitor the one-step ahead expected increment in

utility and stop the experiment when it falls below a boundary. The ap-

proach includes fixed sample size and myopic designs as special cases. We

use terminal decisions that control the posterior expected FDR. While in-

consistent with a strict decision-theoretic setup where all decisions are taken

to maximize the expectation of a single utility, we feel that our choice offers

a pragmatic compromise.

The method allows stopping when only 1 or 2 samples are available, which

requires making strong parametric assumptions. For instance, in Figure 3 the

posterior expected TP and ∆t(TP) based on 2 samples per group differ widely

between the GaGa and NN models. Nevertheless, both models correctly

indicate to continue and show good agreement for later samples. Whenever

possible, we recommend using a minimum burn-in (e.g. ≥ 3 samples) before

starting sequential stopping. When not feasible, we recommend assessing

goodness-of-fit carefully and updating the forward simulation when more

data is available.

We focused on group comparison experiments, but the framework can

serve as the basis for other HTS. Interesting extensions include classification,

clustering or network discovery studies. These would require adjusting the
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utility function and possibly the probability model, e.g. to capture strong

dependencies between outcomes.

Sequential designs are most appealing in moderate to large studies, where

technical limitations require gathering data in batches. They should also

prove valuable when samples are costly to obtain or there are ethical consid-

erations, e.g. in human studies. Overall, they help save valuable resources

and guarantee that sufficient data is collected to answer the scientific ques-

tions.

7 Software

An implementation of the proposed approach was added to the Bioconductor

package gaga.

8 Supplementary Material

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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Figure 1: GaGa model based optimal sequential boundary for c = 50 (thick

black line) and forward simulation trajectories (light grey lines) for example

in Section 5.1. 22
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Figure 2: Simulated one-step expected increase in true discoveries ∆t(TP)

(gray lines) and optimal boundaries for several sampling costs c (black lines).

Left: brain vs. muscle (two multiple optimal boundaries shown for c ≤ 66)

Right: muscle vs. muscle.
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Figure 3: Sequential Analysis of Campo Dell’Orto’s data based on GaGa

(top panels) and NN models (bottom panels). Left panels: expected number

of true positives (a priori & a posteriori) vs. sample size. Black bars indi-

cate the number of genes with Benjanimi-Yekutieli adjusted limma P-values

< .05. Right panels: ∆t(TP) vs. sample size and optimal sequential bound-

ary. ∆t(TP) being above the boundary for all t indicates experimentation to

continue up to the maximum sample size.
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Figure 4: Simulated ∆t(TP) and optimal boundaries for c = 1 in RPPA data

using GaGa (left) and NN (right) models

25


	Introduction
	Data Format and Model
	Probability model
	Pre-processing

	Optimal Sequential Stopping
	Decision criterion
	Optimal rule

	Approximation by Optimal Decision Boundaries
	Examples
	Simulated Microarray Study
	High-throughput Sequencing Example
	Microarray Example
	Reverse Phase Protein Arrays

	Discussion
	Software
	Supplementary Material

