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SUMMARY

We propose drug screening designs based on a Bayesian decision-theoretic ap-

proach. The discussion is motivated by screening designs for phase II studies.

The proposed screening designs allow consideration of multiple treatments

simultaneously. In each period new treatments can arise and currently con-

sidered treatments can be dropped. Once a treatment is removed from the

phase II screening trial, a terminal decision is made about abandoning the

treatment or recommending it for a future confirmatory phase III study. The

decision about dropping treatments from the active set is a sequential stopping

decision. We propose a solution based on decision boundaries in the space of

marginal posterior moments for the unknown parameter of interest that re-

lates to each treatment. We present a Monte Carlo simulation algorithm to

implement the proposed approach.

We provide an implementation of the proposed method as an easy to use R

library available for public domain download (http://www.stat.rice.edu/∼rusi/

or http://odin.mdacc.tmc.edu/∼pm/).
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1 Introduction

We develop a Bayesian decision-theoretic approach to screening designs for

drug development. The proposed process is appropriate for a sequence of

phase II studies targeting the same disease area, carried out at the same in-

stitution, competing for the same pool of potentially eligible patients, and

subject to common resource constraints. For example, at large institutions

dedicated to clinical research in cancer, such as the University of Texas M. D.

Anderson Cancer Center, a large number of new agents or new combinations of

anticancer agents undergo evaluation for activity. The process is typically car-

ried out through separate phase II studies with only informal learning between

studies – even if the studies draw patients with similar disease characteristics.

We develop an approach that considers such a sequence of studies as one large

encompassing screening design and borrows information between studies. An

easy to use implementation as an R library allows interested readers to imple-

ment the proposed algorithm with minimal effort.

Most screening designs for culling active therapies from the many new

agents that are in development consider each study in isolation, even though

investigators recognize the need for reproducibility of results (Simon, 1987).

After several similar phase II studies have appeared, one is left to combine the

information informally and arrive at a decision whether to move ahead with

the treatment or not. The question of how many repeat studies to complete is

also left informal. In particular, one intuitively would think that the number

of replicate phase II studies might depend on the strength of evidence already

available concerning the activity of the new agent. Currently, however, decision
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making does not incorporate such quantitative information in a formal way.

Yao et al. (1996) proposed a formal way to screen multiple agents for activ-

ity in a series of phase II vaccine trials. For each treatment being considered,

a single-arm clinical study is carried out. The decision concerns choosing the

sample size for each phase II study and a threshold to minimize the overall

expected sample size (or time) needed until an active agent is identified. The

decision problem is discussed in the frequentist paradigm, in which the type

I and type II error probabilities are prespecified and preserved over the se-

quence of experiments. The formal setup in Yao et al. (1996) considers one

treatment at a time and assumes independent binary outcomes. In later work,

Yao & Venkatraman (1998), Wang & Leung (1998) and Leung & Wang (2001)

consider a variety of extensions leading to 2-stage designs and fully sequential

designs in the same setup. Strauss & Simon (1995) consider a generalization

based on two-armed randomized trials for each new treatment. One arm is

the new treatment, and the other arm is the best treatment found so far. At

the end of this sequence of randomized studies, one chooses the “winner” that

will be compared to a standard regimen in a randomized comparative trial.

Stout & Hardwick (2005) discuss the above mentioned approaches as special

cases of a more general setup.

In this paper, we build on these methods to develop a sequential decision-

theoretic design for drug screening. We introduce two important directions of

generalization. First, we allow for multiple treatments to be considered at any

given time. New treatments can arise and existing ones can be dropped at

any time if the current evidence suggests that it is optimal to abandon further

development of them, or that it is optimal to move them to phase III. Second,
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we cast drug screening as a decision problem. Using a simulation-based solu-

tion allows us to consider essentially arbitrarily complex utility functions and

probability models. Also, the proposed approach includes the possibility to

restrict the action space, e.g. by considering only designs with certain type-I

and type-II error probabilities.

We propose a probability model that allows borrowing information between

treatments, which is appropriate when treatments target the same disease and

are likely to be based on similar mechanisms. We consider a utility function

that includes terms related to sampling cost and a final payoff that is realized if

the future phase III trial shows a statistically significant improvement over the

standard of care. The use of a utility function that is based on the sampling

cost and the final payoff means that we focus on the perspective of the drug

developer or the investigator who is carrying out the trial. We propose to

accomodate the interests of regulators and patients by restricting consideration

to rules that satisfy constraints on type I and type II error probabilities. For

comparison, we also consider a utility of the form proposed by Yao et al.

(1996) who seek to minimize the number of patients before the first treatment

is recommended for phase III. The decision criterion for the screening trial is

the expected utility, appropriately marginalizing with respect to the unknown

true success probability and the future outcomes in the phase III study. For an

extensive discussion of utility functions for clinical trials see Gittins & Pezeshk

(2002).

In Section 2, we formally state the drug screening process as a decision

problem by defining a probability model, an action space, and a utility function

that serves as the decision criterion. In Section 3, we discuss a simulation-based
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approach for solving the decision problem. In Section 4 we show results for

a simulated example. In Section 5 we assess the uncertainty and robustness

of these results. In Section 6 we compare our approach with that of Yao &

Venkatraman (1998) in a clinical immunology problem. Finally, we conclude

in Section 7 with a final discussion of features and limitations of the proposed

approach.

2 Drug Screening

Our approach is based on casting the screening process as a formal decision

problem. The basic ingredients of a decision-theoretic setup are an action

space A of possible decisions d ∈ A, a probability model p(θ, y) for all rele-

vant random variables, including parameters θ and future data y, and a utility

function u(d, θ, y). The probability model is conveniently factored into a prior

probability model p(θ) and a sampling model p(y | θ). It can be argued (De-

Groot, 2004) that a rational decision maker should choose an action in A to

maximize the expectation of u. The expectation is with respect to p, condi-

tioning on all data observed at the time of decision making, and marginalizing

over all parameters and all future data. Sometimes the action space is re-

stricted to decisions that satisfy certain constraints, for example prespecified

bounds on type-I and type-II errors (false positive and false negative rates).

In such cases the maximization is carried out over the restricted set.

2.1 Action Space and Probability Model

Let yti be the outcome at time t = 1...T for treatment i ∈ At, where At is

the set of treatments being considered at time t. We assume a finite time
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horizon T for the entire screening process and we allow for a random number

of treatments at any given time t.

After observing the outcomes yti, i ∈ At, we make a sequential stopping

decision dti for each treatment. We denote with dti = 0 the action of removing

treatment i from At and with dti = 1 the action of continuing recruitment

for treatment i. If we decide dti = 0, then a terminal second step decision ai

indicates whether to abandon treatment i (ai = 0), or whether to recommend

to proceed with a confirmatory phase III study (ai = 1).

Finally, before the next decision at time t + 1, new treatments might be

proposed and added to the set At+1. Let ∆nt denote the number of new

treatments arising in period t and denote with πj = Pr(∆nt = j) for j =

0, 1, ... its probability distribution. In the last period, T , continuation is not

possible. That is, dTi = 0 for all i ∈ AT . Figure 1 illustrates the sequence of

decisions and observations.

The formal definition of the decision problem requires a probability model

for all involved random variables. We assume binomial sampling. We make

this assumption mainly for ease of exposition. With minor modifications the

proposed approach can be adapted to other sampling models. Thus, without

major loss of generality we assume

yti ∼ Bin(Nti, θi), i ∈ At, (1)

with known Nti. In particular, accrual rates can vary across treatments. The

unknown success probabilities arise from a common prior distribution, possibly

involving a regression on treatment-specific covariates. We use a Beta prior,

θi ∼ Be(u, v), with random hyperparameters (u, v) that allow borrowing of in-
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formation between treatments. As prior distribution on these hyperparameters

we assume Gamma distributions, subject to a bound on u + v,

(u, v) ∼ Gamma(Au, Bu) ·Gamma(Av, Bv) · I(u + v ≤ 10). (2)

The restriction limits the extent of borrowing of strength across treatments.

That is, no matter how many treatments and patients we have observed, the

data will never provide more information about a new treatment than the

equivalent of 10 patients. The choice of 10 is arbitrary. Any alternative bound,

or no bound, could be used without any change in the following discussion. In

the context of phase II trials with typically small sample sizes we consider 10

to be a reasonable choice.

Finally, we include a bound N? for the number of eligible patients that can

be recruited for enrollment at time t. Setting N? = ∞ defines the problem

without recruitment limits. We assume without loss of generality that N?

remains the same across t. When a new treatment arises and no patients are

available, data collection for the new treatment has to wait until one of the

existing treatments is dropped. We do not consider adaptive allocation to

treatments.

2.2 Utility Function

Let nT be the overall number of treatments considered in the screening process

and let d ≡ (dti, t = 1, 2, 3, . . . , T ; i ∈ At) and a ≡ (ai, i = 1, . . . , nT ) denote

the sequence of decisions. Recall that dit denotes the stopping decision and ai

denotes the terminal decision upon stopping enrollment for treatment i. Let

y = (yti, t = 1, 2, . . . , T, i ∈ At), and let θ = (θi; i = 1, . . . , nT ) denote the
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parameters of the sampling model for y.

The utility function u(d, a, θ, y) formalizes preferences across possible out-

comes corresponding to assumed responses y, parameters θ, and decisions

(d, a), i.e. it reports the value of a hypothetical realization (y, θ, a, d) of the

entire trial. An important advantage of the proposed simulation-based solu-

tion is that we are free to specify a utility function that reflects the scientific

problem, without constraints to convenient analytic properties.

In our implementation, we use a utility function that includes sampling

cost plus a payoff for every treatment that is recommended for phase III and

is approved at the end of a future confirmatory phase III study that compares

the experimental therapy versus the standard of care. The payoff is weighted

by the size of the advantage over the standard of care. Regulatory approval

is formalized as a statistically significant treatment effect at the conclusion of

the confirmatory trial. We build a utility function for the entire process in

steps, leading eventually to the utility function stated in (3).

First, suppose that for treatment i we start recruitment at time t0i and we

stop recruitment at time t1i, i.e., dti = 0 at time t = t1i. If the treatment is

abandoned (ai = 0), then we only record a linear sampling cost c1 ·
∑t1i

t=t0i
Nti =

c1 ·N.i. Here N.i is the total number of patients assigned to treatment i.

If we proceed with a phase III trial (ai = 1), then we record the sampling

cost c1n3, where n3 is the sample size of the future study, and we add a

payoff for a significant phase III result, weighted by the estimated size of the

advantage over the standard of care. Let θ0 denote the success probability for

the standard of care. Let θ̂i and θ̂0 denote the maximum likelihood estimates

for θi and θ0 at the end of the phase III trial, and let B denote the event of
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observing a significant result. Let c2 denote the reward for recommending a

treatment that shows a significant treatment effect in the confirmatory trial,

i.e., the reward for a successful drug development. The reward is scaled by

the estimated size of the advantage over placebo and the probability of B.

We record c2 Pr(B | y1, . . . , yt) E(θ̂i − θ̂0 | B, y1, . . . , yt). Putting everything

together, we have

u(d, a, θ, y) =

nT∑
i=1

−c1 ·N.i+∑
i: ai=1

[
−c1 · n3 + c2 Pr(B | y1...yt1i

) E(θ̂i − θ̂0 | B, y1, . . . , yt1i
)
]

(3)

We now discuss the evaluation of n3, Pr(B | y1...yt1i
) and E(θ̂i−θ̂0 | B, y1, . . . , yt1i

).

Let (mti, sti) denote the posterior mean and standard deviation for θi at time

t, and let (m.i, s.i) denote their value at time t1i. The phase III sample size

n3 is chosen for a test comparing H0, H0 : θi = θ0, versus an alternative

H1, H1 : θi = m.i, for a given significance level α3 and power 1 − β3. Let

m̄ = (mti + θ0)/2, and let zp denote the (1− p) standard normal quantile. We

assume that the final test is carried out as a z-test to compare two binomial

proportions. Assuming known θ0, we approximate the phase III sample size

as

n3(m.i, s.i) = 2

(
zβ3

√
m.i(1−m.i) + θ0(1− θ0) + zα3/2

√
2m̄(1− m̄)

m.i − θ0

)2

.

Next, we evaluate the posterior predictive probability p(B | y1...yt1i
). The

event B is defined by the z-statistic falling in the rejection region in favor of

the experimental arm. Thus

P (B | y1...yt1i
) = P

(
θ̂i − θ̂0 > zα3/2

√
2m̄(1− m̄)/n3 | y1...yt1i

)
.
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Using a normal approximation to the posterior predictive distribution, p(θ̂i −

θ̂0 | y1...yt1i
) we can approximate p(B | y1...yt1i

). Denote by µ∆ and σ2
∆ the

moments of this normal approximation,

µ
∆

= m.i − θ0 and σ2
∆

=
1

n3

m.i(1−m.i) + s2
.i(1− 1/n3) +

1

n3

θ0(1− θ0).

Finally, we evaluate E(θ̂i−θ̂0 | B, y1...yt1i
), the posterior predictive expectation

for the size of the advantage over standard of care, conditional on B. This

conditional expectation is evaluated as the expected value of a normal random

variable left-truncated at k = zα3/2

√
2m̄(1− m̄)/n3 (Jawitz, 2004).

2.3 Decision Boundaries

The described action set, probability model and utility function formally de-

fine the decision problem. We now proceed to find the optimal solution by

maximizing the utility u(d, a, θ, y) as a function of the decisions, marginalizing

with respect to θ and all future data that are unknown at the time of a decision

and conditioning on all available data.

We first discuss the terminal decision ai, the indicator for recommending a

phase III trial. The terminal decision is carried out at time t = t1i. From (3)

we find that ai = 1 is optimal if and only if

c1 · n3 < c2 Pr(B | y1...yt1i
) E(θ̂i − θ̂0 | B, y1...yt1i

) (4)

If m·i < θ0 it is not possible to achieve the desired power in the phase III trial,

and we set ai = 0. This solves the choice for the terminal decision ai, once we

have decided to stop enrollment in treatment i.

The continuation decision dti, is complicated by its sequential nature. To

find the optimal solution at time t, we need to compare expected utilities
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under dti = 0 and dti = 1. To find the expected utility under continuation,

dti = 1, we need to know the decision for t+1, etc. A full solution involves the

use of backward induction. But the computational cost of backward induca-

tion makes a full solution infeasible even in fairly simple situations. DeGroot

(2004), Brockwell & Kadane (2003) and Berry et al. (2001) discuss alterna-

tive, computationally intensive approaches that allow one to approximate full

backward induction. Many Bayesian clinical trial designs avoid the difficult

problem of optimal sequential decisions by stopping short of a formal decision-

theoretic approach. Instead, many methods include a combination of posterior

inference for the probability model with reasonable, but ad-hoc rules for the

desired decisions. A typical example is the approach proposed in Thall et al.

(1995). The method proceeds by evaluating posterior probabilities of clini-

cally meaningful events. When these probabilities cross predefined boundaries

certain decisions are indicated. The boundaries are fixed to achieve desired

frequentist properties. Spiegelhalter et al. (2004) refer to such decision rules

as proper Bayes. The main problem with such approaches is the large number

of arbitrary choices. The major advantage is the ease of implementation.

We propose rules that are derived as optimal Bayes rules by maximizing

expected utility. But we avoid the prohibitive computational cost of backward

induction by appealing to an approximation. Instead of a full backward in-

duction solution, we use decision boundaries in the space of marginal posterior

moments (log(sti), mti) to approximate the optimal sequential decision. See

Figure 2 for an example. The decision boundary is defined by two line segments

starting at (s0, b0) and going through (s1, b1), with b1 > b0 and (s1, b2), with

b2 < b0, respectively. The two values s0 and s1 are fixed, leaving b = (b0, b1, b2)
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to identify the decision boundary. At the end of each period t, we compare

the marginal moments (log(sti), mti) with the decision boundaries. If mti lies

between the two lines, then we continue to accrue patients for treatment i,

that is dti = 1. If not, we drop treatment i (dti = 0). In summary,

dti(b) = I

(
b0 +

b2 − b0

s1 − s0

(log(sti)− so) < mti < b0 +
b1 − b0

s1 − s0

(log(sti)− so)

)
(5)

We write d = d(b) to highlight the nature of d as a rule determined by the

decision boundary b.

Figure 2 shows the decision boundaries for a specific choice of (b0, b1, b2).

The (fixed) offset so determines the log(sti) value where the two half lines

join. We always stop accruing patients when log(sti) < s0. This has the desir-

able implication of imposing an upper bound on the amount of information,

as measured by posterior variance, before making a stopping decision. The

stopping decision is followed by the terminal decision ai, as described earlier.

Using decision boundaries as in (5) reduces the solution of the sequen-

tial decision problem to finding the optimal parameters b = (b0, b1, b2). The

optimal choice is determined by maximizing expected utility

b∗ = arg max
b

E [u(d(b), a, θ, y)] (6)

The expectation is over θ ∼ p(θ) and yti ∼ p(yti | θ), and plugging in the

optimal terminal decisions ai.

3 Expected Utility Maximization by Simulation

We resort to forward simulation to evaluate expected utility

U(b) = E [u(d(b), a, θ, y)] (7)

12



using the optimal terminal rule a. Forward simulation was introduced in Carlin

et al. (1998) to solve sequential decision problems that can be described by

decision boundaries. We simulate once, up front, possible realizations, j =

1, . . . ,M , of the screening process, keeping all treatments in the trial until a

final horizon T . That is, we do not include stopping in the simulation. The

arrival of new treatments is simulated using the multinomial probabilities πj.

To evaluate expected utility U(b) for a decision boundary described by b

we look through the file of saved simulations. Let ui denote the i-th term in

(3). Whenever a treatment hits the decision boundary b, it is removed from

the current set. When this happens we compute the optimal terminal decision

ai using (4) and record the realized utility ui for this treatment. Summing

ui over all treatments we get a realization of the utility (3). Averaging over

all simulated realizations, j = 1, . . . ,M , we obtain an estimate Û(b) of the

expected utility U(b). In other words, we use the Monte Carlo average Û(b)

to evaluate the expected utility integral (7). Similarly, we can evaluate the

expected value of other summary statistics, such as the number of patients

tested with each treatment or the probabilities of type I and II errors. Finally,

evaluating Û(b) over a grid on b, we find the optimal decision boundary b∗.

Evaluation of U(b) as a sample average Û does not exploit assumed regu-

larities of the expected utility surface as a function of b. That is, we ignore

that we could learn about b also by looking at close-by designs b′. This is

formalized by fitting a smooth surface Ũ(b) to the observed sample averages

Û(b) as a function of b. Such smoothing was proposed in Müller & Parmigiani

(1996) as a generic method to improve expected utility evaluations. We pro-

pose to define a smooth surface Ũ(b) as a locally weighted linear regression of
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Û(b) on b, using only main effects for b0, b1 and b2.

The described algorithm requires the evaluation of (mti, sti) for a large num-

ber of times, treatments and simulations. This can be very computationally

intensive when no closed form is available, as is the case for the model defined

by (1) and (2). We implemented instead an empirical Bayes approximation to

(mti, sti) as proposed, for example, in Gelman et al. (1995).

4 Simulation Example

We implemented the described method for the following problem. We assume a

standard of care with success probability θ0 = 0.5, sampling in cohorts of Nti =

2 patients, and multinomial probabilities (π0, . . . , π3) = (0.7, 0.2, 0.05, 0.05)

for the arrival of new treatments ∆nt. We specify no limit on the number of

available patients, i.e., N? = ∞.

We set the prior parameters to Au = 3, Bu = 1, Av = 3 and Bv = 1,

corresponding to a prior mean E(θi) = 0.5 and standard deviation SD(θi) =

0.27. The experimenter expects new treatments to be as good as the standard

of care on the average, but the actual performance of individual treatments

can vary considerably. For the utility function, we use relative weights c1 = 1

and c2 = 10, 000, i.e. the final payoff for a successful drug is 10,000 times the

sampling cost for one patient. The value of c2 was chosen to achieve a power

of approximately 80%. See below for a definition of power and type-II error

in the context of this simulation. The time horizon is assumed as T = 100.

We investigated the impact of T on the solution by considering a doubling

of the time horizon to T = 200. Comparing the reported optimal rules we

found no significant change, leading us to interpret T = 100 as a reasonable

14



approximation for a process with infinite horizon.

We add one more important feature to the decision problem. Let 1 − β

denote the probability of an effective treatment, i.e., a treatment with simu-

lation truth θi > θ0, being recommended for phase III. The probability is over

repeated simulations, and averaging with respect to the prior over all θi > θ0.

We refer to β as the false negative probability (type-II error), and 1 − β as

power. Similarly, we define α as the false positive probability (type-I error).

We constrain the set of allowable decision rules b to such rules that imply

α ≤ 0.05 and β ≤ 0.20, i.e., power > 80%. The motivation for adding the

constraint is that the utility function (3) could be criticized as being too nar-

rowly focused on the perspective of the investigator and drug developer only.

In the simulation the constraint is imposed by restricting the grid search for

the optimal rule b∗ to decision rules b that satisfy the conditions. To evaluate

α, we find the relative frequency of simulated treatments with θi < θ0 in the

forward simulation that are recommended for phase III. To evaluate β, we

count the treatments with θi > θ0 that are not recommended for phase III. All

results are based on M = 1000 forward simulations.

We evaluate the expected utility U(b) in (7) over a 3-dimensional grid, as

described in Section 3. Figures 3abc plot the surface Û(b0, b1, b2) for several

values of b0. The flat nature of the surface with respect to b1 indicates that a

wide range of b1 values yield similar expected utility.

Figure 2 shows the optimal decision boundaries subject to α ≤ 0.05 and

β ≤ 0.2, some simulated trajectories, and the terminal decisions. For each

treatment in the simulated trial we plot the trajectory of (mti, sti). We follow

each treatment from right (high, prior variance) to left until the trajectory
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crosses a decision boundary. This defines the stopping time t = ti1 and the

terminal decision ai.

Rows 1 and 2 of Table 1 provide the solution to both, the unconstrained

and the constrained optimization problems. The optimal unconstrained deci-

sion has higher expected utility than the optimal constrained decision, but it

requires a larger average number of patients and it implies higher α and β.

Finally, we fit a smooth surface Ũ(b) to Û(b) by locally weighted linear

regression, as proposed in Section 3. The optimal bandwidth is selected by

leaving 1/3 of the grid points out of the model fit and minimizing the mean

square error of the predictions for those points. Figures 3def show the fit.

The optimal decisions, shown in rows 3 and 4 of Table 1, are very similar to

those obtained without smoothing. The fact that the optimal design changed

little confirms that the chosen Monte Carlo sample size, M = 1000, was suffi-

ciently large for this optimal design problem. For smaller M , the advantages

of smoothing should be more noticeable.

5 Uncertainty and Sensitivity of the Optimal Decision

5.1 Uncertainty

We consider two sources of uncertainty in the final solution b∗. First, numerical

errors in evaluating the expected utilities imply uncertainty about the location

of the maximum b∗. We refer to this uncertainty as numerical uncertainty.

Second, even if we identify the correct mode of the expected utility surface,

there may be other designs with almost equally high expected utility. We refer

to a set of designs b with expected utility U(b) within a small neighborhood of
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U(b∗) as almost optimal designs. While it is possible to reduce the first source

of uncertainty by more extensive simulation, the latter uncertainty is inherent

in the problem. We can only aim to honestly describe it.

To evaluate the numerical uncertainty in b∗ we select designs b within a

neighbourhood of b∗. We then approximate the expected utility U(b) in that

neighbourhood with a quadratic response surface, U(b) = Q(b; γ) + ε. Here γ

are the regression coefficients of the quadratic function and ε are independent

normal residuals. The posterior distribution on γ implies a posterior distri-

bution on the mode b∗
Q(γ) of the response surface. We report 95% posterior

intervals for b∗
Q to summarize the numerical uncertainty in the optimization.

The results are shown in Table 2. The table is based on a neighborhood of b∗

defined by ||b − b∗|| ≤ 0.01. We judge the reported uncertainties to be neg-

ligible based on the comparison with the suboptimal set of designs discussed

below. The small size of the reported numerical uncertainties confirms that

the chosen Monte Carlo sample size M = 1000 was sufficiently large.

Next we find the set of almost optimal designs. In the forward simulation

203 = 8000 triples b = (b0, b1, b2) were considered, i.e., we estimated the ex-

pected utility and type I and type II error rates for 8000 possible values of b.

Of these, 55 designs satisfied the constraint α̂ ≤ 0.05 and β̂ ≤ 0.2 and had an

expected utility greater than 95% of the utility under the optimal design b∗,

i.e., Û(b) ≥ 0.95 Û(b∗). Here b∗ denotes the optimal rule for the constrained

problem. We refer to these 55 designs as the almost optimal designs. They are

suboptimal, but only by a neglible difference in expected utility. The range

of almost optimal designs is reported in Table 2. Since the decision problem

is invariant with respect to any additive shift of the utility function, it is not
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possible to recommend a universal threshold like the 95% chosen here. The

choice depends on the problem. The reported range of almost optimal de-

signs is a useful diagnostic to help interpret, critique and modify the proposed

solution. Typically the utility function is only a stylized description of the

decision problem. The range of suboptimal designs allows the investigator to

consider adjustments of the proposed solution to accomodate secondary goals

and nuances of the decision problem that were not included in the formal util-

ity function. For example, a large range on b1 or b2 might lead an investigator

to propose designs with a narrower continuation region than b∗, i.e., shorter

total time for each treatment under consideration.

5.2 Sensitivity Analysis

We assess the sensitivity of the solutions with respect to the choice of the

main features of the decision problem: the utility function, the prior proba-

bility model, the parametrization of the decision boundary and the maximum

number of patients enrolled across all trials at each time (N?).

We first consider changes to the utility function defined in (3). We leave

the general form of the utility unchanged, but we now weight the payoff for a

significant phase III result by the true advantage over placebo (θi− θ0), rather

than the estimated advantage. We define the utility function

u2(d, a, θ, y) =
n∑

i=1

−c1 ·N.i+∑
i: ai=1

[−c1 · n3(mti, sti) + c2 Pr(B | y1, . . . , yt) (θi − θ0)] . (8)

The optimal designs under the corresponding expected utility U2(b) are shown

in rows 5-6 of Table 1 (smooth version only). Compared to the solution under
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the original utility function, b0 in the solution of the unconstrained problem

decreases, the expected sample size N increases and the type I error probability

decreases slightly. The solution of the constrained problem is robust with

respect to the change in the utility.

Next we consider changes in the prior probability model. In (2) we defined

a hierarchical model with hyperparameters that allow the pooling of informa-

tion between treatments. We investigate the change in the optimal design if

at the time of analysis we ignore the hierarchy and use independent beta pri-

ors. We continue to use the hierarchical model as the simulation truth. For a

meaningful comparison, we use U2 since it does not depend on model-based es-

timates of θi. Table 1 presents the optimal decisions for both, the constrained

and unconstrained problems. Without pooling information the expected num-

ber of patients per treatment is increased. The change is most extreme in the

constrained problem. The expected utility of the optimal design changes only

little. We conclude that by using the hierarchical prior we can gain the same

payoff with fewer patients. Of course, this conclusion is only valid if the true

sampling process does in fact include dependence across treatments.

Next, we consider changes in the parametrization of the decision bound-

aries. In (5) we imposed that the boundaries be linear in log(sti). We in-

vestigate changing the boundaries to be linear in sti, i.e. in (5) we replace

log(sti) by sti. Results are shown in Table 1. The optimal design, its expected

utility, and the expected number of patients per treatment are similar to the

results for the log-scale parameterization. Lack of such robustness would be

a concern. It would indicate that the optimal sequential rule is very poorly

approximated by boundaries on the chosen grid.
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Finally we consider changing N?. We investigate the solution for only

N? = 10 eligible patients available to enroll at each time (across all treatments

in At). The optimal rule, shown in Table 1, results in smaller sample sizes and

reduced utility, especially under the unconstrained problem.

6 A Clinical Immunology Example

We apply the proposed approach to a screening design for vaccines in a clinical

immunology scenario. The same example was analyzed in Yao et al. (1996) and

Yao & Venkatraman (1998) using an approach that minimizes the expected

number of patients until the first effective treament is identified. The design is

restricted to a bound on type I and type II errors. They propose a two-stage

design where an interim analysis is carried out after the first N1 patients. The

treatment is discarded if the number of successes is ≤ K1. Otherwise, N2 more

patients are accrued and the treatment is discarded if the overall number of

successes is ≤ K2 and recommended otherwise. They then repeat the same

process with the second treatment, and so forth. The decision parameters are

K1, K2, N1 and N2. The method also includes a truncation, i.e. stopping

the accrual before observing N1 patients if the number of failures is already

≥ N1 − K1, and stopping before N2 patients if we already have more than

N2 −K2 failures. Truncation can significantly reduce the expected number of

patients.

In our sequential approach, we define the utility function to be the average

number of patients needed to recommend one treatment. This allows us to

compare the results across methods. Specifically, we define the utility function

to be the ratio of the total number of patients enrolled across all treatments
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by the number of treatments recommended for phase III. Let N·i =
∑t1i

t=t0i
Nti

denote the total number of patients on treatment i. We define

u3(d, a, θ, y) = −
nT∑
i=1

N·i

/
nT∑
i=1

ai

Like Yao et al., we set the success probability for the standard of care to be

θ0 = 0.5 and we use a Beta prior with parameters û = 0.3188, v̂ = 0.5327,

chosen to match the moments based on historical data, Ê(θi) = 0.3743 and

V̂ (θi) = 0.1265. The prior gives a high probability to success probabilities

close to 0 or 1.

We evaluate designs with M = 1000 simulations on a grid with 20 equally

spaced values of b0 in [0.3, 0.7], b1 in [0.3, 0.8] and b2 in [0.2, 0.6]. We use cohorts

of N = 2 patients. After each batch the posterior moments are evaluated and

the decision to stop is taken according to (5). For the terminal decision we

use a fixed rule. Upon stopping the enrollment, a treatment is recommended

when stopping was indicated by crossing the upper boundary, and a treatment

is abandoned if stopping was indicated by crossing the lower boundary. We

then select b to maximize Û3, the Monte Carlo sample average utility in the

forward simulation. Again, the maximization is restricted to designs b that

satisfy the constraints α̂ ≤ αmax and β̂ ≤ βmax.

Table 3 shows the optimal decision boundaries for several values of αmax

and βmax and compares them with the two-stage optimal design with trunca-

tion proposed in Yao & Venkatraman (1998). The fully sequential approach

with the optimal decision boundaries yields a reduction between 27% and 57%

in the expected number of patients necessary to recommend a treatment for

phase III evaluation. In some cases the actual α̂ and β̂ are lower than the
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upper bound imposed by the constraints. The reduced sample size is a nat-

ural consequence of the fully sequential setup, and does not reflect on any

deficiency in the other method.

7 Discussion

We have proposed a Bayesian decision-theoretic approach to optimal screen-

ing designs for phase II studies. Its main strength is the generality of the

simulation-based solution which allows for a wide range of probability models

and essentially any utility function. Another advantage is the possibility of

optimizing within a subset of rules that satisfy certain properties.

As a decision-theoretic approach, the proposed method inherits the usual

limitations of expected utility maximization. In particular, it requires the

specification of a utility function and a prior probability model.

The use of decision boundaries to solve the sequential design problem

greatly reduces the computational burden to find the optimal sequential de-

cision. At the same time, however, it restricts the possible actions to those

described by such decision boundaries. Instead of decision boundaries one

could consider the optimal decision for all possible values of a suitable sum-

mary statistic, in our case (sti, mti), on a finite grid. This is explored in Ding

(2006).

The basic framework developed in this paper allows many generalizations.

The prior model could easily be generalized to include a regression of success

probabilities on treatment-specific covariates. For example, we might learn

that treatments that target a specific molecular mechanism are more successful

than others. Another important direction of generalization is the sampling
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model. Little changes in the proposed algorithms if we replace the binary

outcome by a continuous response or time to some clinically meaningful event,

as long as we can define a single parameter upon which to base the inference.

For example, when analyzing time until tumor progression one could define the

summaries (mti, sti) as posterior moments of a log hazard ratio for treatment

relative to the standard of care. The nature of the event time as a delayed

response would cause no difficulty in the optimal design scheme. Delayed

responses are accounted for in the definition of the posterior moments. In

particular, the definition of the likelihood function would include different

factors for censored observations and for observed event times, as usual in

posterior inference for event time data.
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Table 1: Optimal Decisions for the Simulation Example

Original problem

b∗
0 b∗

1 b∗
2 Ê(U) α̂ β̂ N

√
MSE

max Û 0.88 1.69 0.49 42320 0.03 0.23 18.2 10.9%

max Û , α̂ ≤ .05, β̂ ≤ .2 0.56 0.75 0.42 39410 0.02 0.20 17.1 12.0%

max Ũ 0.90 1.49 0.49 42268 0.03 0.23 17.8 10.9%

max Ũ , α̂ ≤ .05, β̂ ≤ .2 0.56 0.75 0.42 39214 0.02 0.20 17.1 12.0%

Sensitivity to change in utility

max Ũ2 0.58 1.59 0.42 37130 0.01 0.23 27.4 10.7%

max Ũ2, α̂ ≤ .05, β̂ ≤ .2 0.56 0.70 0.36 33649 0.02 0.20 17.8 11.8%

Sensitivity to ignoring hierarchical model

max Ũ2 0.58 1.59 0.34 36853 0.01 0.24 32.6 10.0%

max Ũ2, α̂ ≤ .05, β̂ ≤ .2 0.51 0.75 0.26 34766 0.02 0.20 26.3 10.0%

Sensitivity to re-parameterizing boundaries

max Ũ 0.90 1.65 0.55 42225 0.04 0.23 15.3 11.0%

max Ũ , α̂ ≤ .05, β̂ ≤ .2 0.53 0.91 0.39 39931 0.02 0.20 22.1 10.5%

Limiting number of available patients to N? = 10

max Ũ 0.69 0.70 0.57 40448 0.06 0.31 4.5 16.1%

max Ũ , α̂ ≤ .05, β̂ ≤ .2 0.48 0.70 0.42 37116 0.03 0.20 13.4 13.0%

N is the average number of patients tested with each treatment. MSE is

the average mean squared error in estimating θi. In the last two rows, N?

constrains the number of patients available for enrollment in each period.
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Table 2: Uncertainty in the Determination of the Optimal Decision

original grid optimal numerical almost optimal

design b∗ uncertainty designs

b0 [0.4,0.9] 0.56 [0.56,0.56] [0.43,0.58]

b1 [0.7,1.7] 0.75 [0.75,0.80] [0.70,0.81]

b2 [0.1,0.6] 0.42 [0.36,0.42] [0.23,0.42]

Table 3: Clinical Immunology Example

αmax βmax b∗
0 b∗

1 b∗
2 −Û3 α̂ β̂ NYao % reduction

0.05 0.05 0.45 0.64 0.24 31.49 0.04 0.04 55.60 43.36

0.05 0.10 0.53 0.67 0.37 15.67 0.05 0.10 32.40 51.64

0.05 0.15 0.57 0.64 0.52 9.93 0.05 0.14 20.20 50.85

0.10 0.05 0.49 0.51 0.26 17.04 0.09 0.03 27.20 37.35

0.10 0.10 0.43 0.46 0.37 7.14 0.10 0.10 16.50 56.70

0.10 0.15 0.41 0.45 0.39 7.04 0.09 0.10 14.80 52.46

0.15 0.05 0.43 0.46 0.22 13.04 0.15 0.02 17.80 26.74

0.15 0.10 0.41 0.44 0.37 6.18 0.12 0.09 12.80 51.71

0.15 0.15 0.41 0.44 0.37 6.18 0.12 0.09 9.50 34.94

(−Û3): expected number of patients necessary to recommend one treatment.

NYao: expected number of patients necessary to recommend the first treat-

ment when following the approach in Yao & Venkatraman (1998).
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Figure 1: Multiple binomial experiments are available at time t. Some of them

are dropped and some are introduced at the end of period t.
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Figure 2: Forward simulation. For 20 treatments we plot (mti, log sti) from

the time t0i treatment i arose until t1i when it stopped. The two thick black

half lines show a decision boundary b.
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Figure 3: Heat map of unsmoothed expected utilities Û(b) (first row) and

smoothed Ũ(b) (second row) on a grid. The black star in each figure marks

the optimal (b1, b2) combination for that b0.
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