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Abstract

We introduce a new approach to inference for subgroups in clinical trials. The main

elements of the proposed approach are the use of a priority ordering on covariates that

define potential subgroups, the use of Bayesian model selection methodology, and the

use of a threshold on posterior model probabilities to identify subgroup effects for

reporting. We control for multiplicities by following a predetermined priority order

and by using coherent posterior probabilities across competing models. As usual in

Bayesian clinical trial design we compute frequentist operating characteristics, and

achieve the desired error probability by choosing an appropriate threshold(s) for the

posterior probabilities.

Keywords: Subgroup analysis, Bayesian model selection, frequentist operating char-

acteristics.
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1 Introduction

In randomized clinical trials designed to investigate the effectiveness of a new treat-

ment, data are also collected on a number of baseline variables or covariates on the

subjects who are admitted to the study. Typically, the primary goal of the clinical

trial is to determine the overall effectiveness of the treatment. But patient populations

are not homogeneous with respect to many covariates. Thus the question arises as to

whether the overall conclusion about the effectiveness of the treatment, or the lack of

it, is also valid in some sub-population defined by the covariates. Statistical analysis

carried out to answer questions about the treatment effects in sub-populations defined

by a covariate (or set of covariates) is called subgroup analysis.

It is important for clinicians to know whether an overall finding about a new treat-

ment applies equally to all patients who satisfy the criteria for inclusion in the trial, or

only to some subgroups of patients. Furthermore, regulatory guidelines also encour-

age or require subgroup analysis [2]. While subgroup analysis is important, there are

also several concerns. The main concerns relate to the potential for data dredging,

to multiple testing, to lack of power, and to the interpretation of findings. When

a plethora of subgroups is available, as is the case in many trials, there can be a

tendency to test for subgroup effects in a large number of mostly un-planned sub-

groups. Spurious significance findings are bound to occur as more tests are carried

out. Even when only pre-planned subgroups are tested, studies may not adjust for

multiple testing, and report p-values for each subgroup. Often, sample sizes are only

adequate for detecting possible overall treatment effect, and true subgroup effects,

when present, may not be detected due to insufficient power.

Several recent articles have proposed guidelines on the use and interpretation of sub-

group analysis, [2, 8, 9]. Most of these guidelines emphasize the following. Subgroups
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to be tested must be pre-specified, motivated by biological reasoning or by results

from previous studies. Analysis should be limited to a small number of clinically im-

portant subgroups; adjustment must be made for multiple testing; separate tests for

individual subgroup effects must be avoided and only tests of subgroup-treatment in-

teraction must be done; and all subgroups tested must be reported clearly distinguish-

ing those planned prior to the study from those decided post-hoc. Interpretations of

non-significant subgroup effects must be in light of whether there was sufficient power

to detect such effects since, often, a false-negative result may occur due to lack of

power.

In this paper, we provide a Bayesian approach to subgroup analysis, which addresses

some of the common concerns about subgroup analysis. We assume that the sub-

groups of interest are defined in terms of covariates such as age, gender, treatment

history, biomarkers, etc., and that these covariates can be ordered by the investigators

according to their clinical importance. We propose to test the overall hypotheses of

interest first, namely the overall null hypothesis that treatment is not effective in the

study population as a whole, versus the overall alternative that the treatment is effec-

tive. At this stage, we also compare the overall effect model with possible subgroup

models. Only when the treatment is declared not effective overall, we proceed to test

for subgroup effects one covariate at a time in the order of importance. We continue

until a subgroup effect is found or all covariates are exhausted. This approach lim-

its the number of subgroups tested to those deemed as clinically more important.

We use a Bayesian model selection approach, representing each possible hypothesis

of interest by a model. The posterior probabilities of models associated with each

covariate are obtained, one covariate at a time, and a determination is made at each

step based on specified thresholds for the posterior probabilities. Prior distributions

are carefully chosen to allow reasonable probabilities for the models as well as the

parameters under each model. The thresholds for the posterior probabilities are set

by matching desired (frequentist) operating characteristics, such as the overall Type
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I error.

In [4, 11], the authors have provided a useful Bayesian approach, using a subjec-

tive prior. Their approach uses a single model that includes both main effects and

treatment-subgroup interaction for all covariates simultaneously, and define a suitable

prior distribution for the interaction term(s). Point and interval estimates for the sub-

group specific treatment effects, as well as posterior probabilities about the effect size

of the treatment in each subgroup are obtained. These results are then used to draw

conclusions about the subgroup effects. This is a very useful approach and can be

used with a variety of generalized linear models, using MLE results and appropriately

specified prior distributions. In a related paper,[10], a hierarchical Bayesian approach

is used with different variances for different interaction terms. This approach per-

mits each interaction to shrink to zero, or to be estimated by a non-zero quantity,

according to the evidence in the data and aided by the choice of priors. While these

approaches have similarities with ours, there are also differences: we use a model se-

lection approach to choose from among models with and without interaction effects,

based on the posterior probabilities of these models; we focus on one covariate at a

time according to their clinical importance in order to control the number of sub-

groups tested; and we adjust for multiplicity by controlling the overall Type-I error

rate.

The manuscript is organized as follows. Section 2 introduces the question of interest

and relevant notation; Section 3 defines the models representing various scenarios of

interest concerning the treatment effects; Section 4 describes the assumed sampling

model for response variables and the prior distributions for the unknowns, and gives

the posterior probabilities of the models; Section 5 introduces the stepwise procedure

for the determination of the existence of the overall and subgroup effects; Section 6

addresses error rates and their evaluation, and gives an example using real data; and

Section 7 ends with a discussion.
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2 Problem Description and Notation

Consider a two-arm clinical trial, where a treatment is compared with a control.

Suppose that a continuous response variable is observed on independent random

samples of subjects under treatment and control. We let Y0j, j = 1, ..., J0, and

Y1j, j = 1, ..., J1 denote the responses under control and treatment, respectively. We

assume a N(µt, σ
2) distribution as a sampling model for Ytj, t = 0, 1.

We make these assumptions without loss of generality. The proposed approach re-

mains valid for any alternative sampling model or primary aim of the trial.

We also assume that the values of I covariates (Xi, i = 1, .., I) are available on each

subject, and that the values of the i−th covariate are classified into Si categories.

The covariates X1, ..., XI are assumed to be ordered according to their importance,

with X1 (respectively, XI) being the most (respectively, least) important covariate

for which the investigator is interested in determining subgroup effects.

The main question of interest is whether the treatment is effective overall, i.e., µ1 = µ0

or not. In the subsequent subgroup analysis, interest lies in the effectiveness of the

treatment among all patients, and among the subgroups of patients defined by each

covariate. For instance, suppose that a covariate X is classified into 3 categories.

We want to determine whether the treatment is effective based on all the subjects in

the study (i.e., full data), and then, determine whether it is effective within any of

the three subgroups defined by the three categories of X. If the treatment is found

effective in 2 or more of the 3 subgroups, then we ask to determine how the treatment

effects differ across these subgroups. We proceed to test for subgroup effects one

covariate at a time, and stop when a subgroup effect is found for a covariate. This

limits the number of subgroup analyses carried out.

5



3 Models for Overall and Subgroup Effects

We use a model selection approach to carry out the desired inference about treatment

effects, beginning with an overall treatment effect, and then followed by the subgroup

effects. First, we consider two competing models to determine if the treatment is

effective in the overall population of interest,

M00 : δ = µ1 − µ0 = 0, M01 : δ = µ1 − µ0 6= 0.

Thus we define the model space at this stage as

M0 = {M00, M01}. (1)

3.1 Subgroup effects due to a Single Covariate

We first focus on a single covariate X taking values 1, . . . , S. We consider the S

subgroups defined by X. Let µ0s, µ1s denote the mean efficacy outcome under control

and treatment, respectively, in subgroup s, s = 1, . . . , S, and let

δs = µ1s − µ0s for s = 1, ..., S (2)

represent the treatment effect in subgroup s.

Our goal is to identify subgroups which have no treatment effect, and, among those

having treatment effects, to characterize how the treatment effects differ across the

corresponding levels of the covariate. To this end, we will consider several models

representing all such configurations of subgroup effects, and use MX to represent the

set of all such models.
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Indexing Models in MX

We index the models in MX using a vector, γ = (γ1, ...., γS), of length S. A zero in

any position indicates no treatment effect in that subgroup. The nonzero elements are

integers ranging from 1 to K, where K is the number of distinct nonzero treatment

effects among all the subgroups. The integers 1 to K are assigned to elements of γ by

order of appearance, such that subgroups with common treatment effect values receive

the same integer. For example, taking S = 3, the model with nonzero and distinct

treatment effects in the three subgroups is denoted by γ = (1, 2, 3); the model with

equal but nonzero effect in the first and third subgroups and a distinct nonzero effect

in subgroup 2 is denoted as γ = (1, 2, 1). Taking S = 5 subgroups, γ = (1, 0, 2, 1, 3)

represents the case δ2 = 0, δ1 = δ4 6= 0, δ3 6= 0, δ5 6= 0, δ1 6= δ3, δ1 6= δ5, δ3 6= δ5.

Thus γs, s = 1, .., S, can be regarded as the cluster membership indicator for the S

subgroup effects corresponding to the covariate X.

We will also use {δ?
1, . . . , δ

?
K} to indicate the K non-zero distinct treatment effect

sizes. We index the unique levels δ∗k by order of appearance. For example, when

γ = (1, 0, 2, 1, 3), then {δ?
1, δ

?
2, δ

?
3} = {δ1, δ3, δ5}. Models will also be denoted in

sequence as M0, M1, . . . ,MH with M0 corresponding to γ = (0, . . . , 0) and MH to

γ = (1, . . . , 1). Explicit specification of the one-to-one correspondence between Mh

and γ for 0 < h < H is not needed for the purposes of this paper. Finally, a note on

notation. We will consistently use j to index subjects, s for subsets (i.e., covariate

levels), k for clusters of subsets with equal treatment effect, i for covariates and h for

models. We will use corresponding upper case letters J , S, K, I and H to denote

the range of each of these indicators. Models are alternatively characterized by their

cluster membership indicators γ’s, i.e., there is a one-to-one correspondence between

model index h and γ. Also we will denote cluster sizes by Nk, k = 0, . . . , K.
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Counting Models in MX

Consider the S subgroups defined by the covariate X. To count all possible models

in MX , note that a model puts the S subgroups into clusters and assigns each cluster

a distinct treatment effect δk including, possibly, zero. The number of distinct ways

S distinguishable objects can be put in K clusters (or indistinguishable cells) equals

St(S, K), the Stirling number of the second kind. Since the value zero has a special

meaning, each of the St(S, K) partitions corresponds to (K + 1) models obtained by

labeling one of the K clusters with δ = 0, plus the model that does not label any of

the K clusters with δ = 0. Thus, the number of models, H, is given by

H =
S∑

K=1

(K + 1)St(S, K) =
S∑

K=1

(K + 1)

K!

K∑
i=0

(−1)i

(
K

i

)
(K − i)S (3)

Actual counting can be accomplished more readily by the recursion

St(1, 1) = 1, St(S, K) = 0 if K < 1, and St(S, K) = KSt(S−1, K)+St(S−1, K−1)

Straight forward calculations yield

S 2 3 4 5 6

H 5 15 52 203 877

4 Probability Models

We assume a sample of J0 subjects under control with observations, Y0j, j = 1, ..., J0,

and another sample of size J1 subjects, under treatment, with observations Y1j, j =

1, ...., J1 are available. We assume that the sampling distribution under model γ ∈

MX consists of independent normal distributions:

Y0j ∼ N(µ0s, σ
2), s = x0j

Y1j ∼ N(µ1s, σ
2), s = x1j
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where x0j = s, if the covariate X takes value s (s = 1, ..., S), for the j-th subject in

the control group and similarly for x1j. Recall that µ1s = µ0s + δ∗γs
, where δ∗0 = 0.

Prior distribution for Parameters in a Model

The unknown parameters under a model M are the vector of s control means, µ0 =

(µ01, ..., µ0s), the K non-zero distinct treatment effects vector δ? = (δ?
1, ..., δ

?
K), and

σ2. We assign mixture g-priors for the δ?’s, and noninformative priors for the other

parameters which are common to all models. Mixture g-priors have been found to

be reasonable non-informative priors in linear model settings, in addition to being

computationally easy to work with, [6]. We will use a generic notation P (·) to denote

all probability distributions. Thus, conditionally on g, µ0 and σ2,

δ? ∼ NK(0, gσ2IK) (4)

and

P (g,µ0, σ
2) ∝ 1

(1 + g)2
· 1

σ2
, g > 0.

Probability distribution on the Model Space MX

The models represent the hypotheses of interest related to the subgroup effects. In

particular, a model M designates each subgroup effect as either zero or non-zero, and,

when two or more subgroups are non-zero, whether there are ties in the treatment ef-

fects. The model space MX is the space of all partitions of {1, . . . , S} with additional

labeling of one cluster as the special zero cluster with δ = 0.

We assign probabilities for models using an extension of the Polya urn, [1, 7], extended

to allow the labeling of one cluster as the zero cluster. Let Ks = max{γs′ 6= 0; s′ ≤ s}

denote the number of distinct non-zero treatment effects among the first s covariate
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levels, with KS = K for the full set of γs’s. Also, when Ks ≥ 1 and 1 ≤ k ≤ Ks, let

Nsk = #{s′ : γs′ = k, s′ ≤ s} and Ls = #{s′ : γs′ 6= 0, s′ ≤ s} denote, respectively,

the number of treatment effects that match the k-th distinct non-zero effect and the

total number of non-zero treatment effects, among the first s levels of the covariate.

Then let

P (γs+1 = 0 | γ1, . . . , γs) = p

P (γs+1 = k | γ1, . . . , γs) = (1− p) Nskq
1−q+Lsq

for k = 1, . . . , Ks ≥ 1

P (γs+1 = Ks + 1 | γ1, . . . , γs) = (1− p) 1−q
1−q+Lsq

for Ks ≥ 0

(5)

Conditional on non-zero treatment effects, the last two lines define a Polya urn with

total mass parameter α = (1 − q)/q. With probability proportional to q · Ls the

treatment effect for the (s + 1)-st level of the covariate is tied with an earlier level.

With probability proportional to 1− q the treatment effect is distinct.

We will regard p and q as unknowns, and assign independent Beta priors

P (p, q) = Beta(p ; α1, δ1)Beta(q ; α2, δ2), (6)

where Beta(x ; a, b) indicates the probability density function of a random variable x

with parameters a and b.

To specify the prior probability of a model M ∈MX , given p and q, let, for 0 ≤ k ≤

K ≤ S

Nk = #{s : γs = k, 1 ≤ s ≤ S} (7)

so that
∑K

k=0 Nk = S and Nk = NSk. For example, N0 is the number of subgroups

with zero treatment effect, and N1 is the number of subgroups with treatment effects

that are equal to the first non-zero subgroup effect, and so on. The process of specify-

ing the probability of a model M indexed by γ can be thought of as filling in each of

the S positions in γ by 0 with probability p, or by a positive integer with probability

1−p. The positive integers, which identify the configuration of the non-zero subgroup

effects, are chosen successively according to the probability specification in (5).
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Then prior probability of a model M , given p and q is

P (M | p, q) = c(p, q) P (N0, . . . , NK | p, q) (8)

where

P (N0, . . . , NK | p, q) = pN0(1− p)S−N0
αK

∏K
k=1[Nk − 1]!∏S−N0

s=1 {α + (s− 1)}
, (9)

[x] = max{x, 0}, Nk’s are as in (7), c(p, q) is the normalizing constant, and a product

over an empty set is equal to 1.

The probability model (8) is a zero-enriched Polya urn scheme. Each integer in the

index vector γ of a model M is allowed to be zero with probability p ; and each

non-zero integer is either equal to a previously selected value or to the subsequent

(hitherto unselected) value.

The normalizing constant c(p, q) is determined by counting the number of different

models corresponding to a given K and (N0, ..., NK),

c(p, q)−1 =
S∑

K=0

∑ (
S

N0

)
P (N0, . . . , NK | p, q)

where the inside summation spans over all integers N0 ≥ 0, N1 > 0, ..., NK > 0

satisfying the condition N0 + N1 + ... + NK = S and P (N0, . . . , NK | p, q) is as in (9).

Posterior Probability of Models

Let y
¯

denote the combined sample data. The conditional independence given the

model implies P (y
¯
|M, p, q) = P (y

¯
|M). Hence, the posterior model probability of a

model M is

P (M | y
¯
) =

P (y
¯
|M)P (M)∑

M ′∈M P (y
¯
|M ′)P (M ′)

where

P (M) =

∫
P (M |p, q)P (p, q)dpdq (10)
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In the above,

P (y
¯
|M) =

∫
P (y

¯
|M, g)P (g)dg,

where

P (y
¯
|M, g) =

∫
P (y

¯
| µ0, δ

∗, σ2)P (δ∗|g, σ2)P (µ0, σ
2)dµ0dδ∗dσ2.

Although closed form expression for P (y
¯
|M) is not available, it can be expressed as

a one-dimensional integral over g.

4.1 A Special Case : S = 2

Suppose that X is categorized into two levels defining two subgroups. We are in-

terested in whether the treatment is effective in either subgroup, and when it is in

both subgroups, whether the effect sizes are equal. Here, the model space MX con-

sists of five models. These are listed in Table 1 along with their indices and prior

probabilities.

Model Index γ P (M |p, q)

M0 : δ11 = δ12 = 0 (0, 0) p2

M1 : δ11 6= 0, δ12 = 0 (1, 0) p(1− p)

M2 : δ11 = 0, δ12 6= 0 (0, 1) p(1− p)

M3 : δ11 6= δ12 6= 0 (1, 2) (1− p)2(1− q)

M4 : δ11 = δ12 6= 0 (1, 1) (1− p)2q

Table 1: Models and their prior probabilities, given p and q, for the case S = 2.
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4.2 Multiple Covariates

Suppose that there are I covariates of interest X1,...,XI , and that Xi is classified into

Si categories. As in the previous section, we define a model space MXi
= Mi, for

each covariate Xi. The number of models, say Hi, in Mi, and their probabilities

under the model space Mi, are defined as in (3) and (8), with S replaced by Si. In

summary, we define I distinct probability models, one for each family Mi of models.

Note that our primary hypotheses of interest are indicated by the overall null and

alternative models M00 and M01, which constitute the space M0 in (1). This overall

effect model space M0, along with Mi, i = 1, ..., I define the collection of models that

are of interest in the subgroup analysis.

We find it useful to list the models in Mi in sequence, labeling the hth model by Mih,

0 ≤ h ≤ Hi. When the index i is understood from the context we write simply H.

Each model is characterized by a vector γ of length Si, as in Section 3.1. The labeling

of the models in Mi is done so that the first model (h = 0) corresponds to the absence

of subgroup effects in all si subgroups and is represented by γ = (0, ..., 0), and the

last model (h = H) corresponds to the presence of subgroup effects of equal size in

all subgroups and is represented by γ = (1, ..., 1). These two models are equivalent

to the overall null and alternative models M00 and M01, respectively. Thus, each

of the remaining models in Mi represents the presence of a ”bona-fide” subgroup

effect. For instance, when S1 = 2, M10 and M14, respectively, represent the overall

null and alternative hypotheses, and are equivalent to M00 and M01. Table 1 lists

these omitting the first subscript i = 1 since I = 1 in this context. The remaining

three models, namely, M11, M12 and M13, represent presence of subgroup effects.
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Prior and Posterior Probabilities

When calculating the posterior probability of a model M ∈ Mi, we regard Mi as

the model space, and use the prior probabilities as defined in Section 4. We will use

the notation Pi(M) ≡ P (M | Mi) and Pi(M | y) ≡ P (M | y,Mi) for the prior

and posterior probabilities of M , conditional on M ∈ Mi, i = 0, ..., I. Thus, for

M∗ ∈Mi,

Pi(M
∗ | y) =

P (y|M∗)Pi(M
∗)∑

M∈Mi
P (y|M)Pi(M)

(11)

5 A Stepwise Procedure to Decide on Subgroup

Effects

Recall that our goal is to first compare the overall null and overall effect models (i.e.,

models in M0), and to determine if a subgroup effect is present. Also recall that the

covariates are labeled according to their importance to the investigator, in descending

order.

The proposed procedure is carried out in steps. In the initial step (Step 0), we first

compare the models in M0. If the overall effect model is preferred over the null

model by a sufficient margin, the former is further compared with subgroup models.

Then, if the overall effect model is not selected, we continue to focus on model spaces

representing the subgroup effects, M1, M2,..., and MI , in that order. We stop either

when the overall effect model (at Step 0) or a model with subgroup effect (at Step

i ≥ 1) is selected, or when all such models are exhausted. The overall null model

is chosen at Step I when we fail to choose any of the models representing subgroup

effects. At Step i, i ≥ 1, the determination of the presence (or the absence) of a

subgroup effect is made based on the posterior probabilities of the models in the model
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space Mi. Specifically, we use two threshold values c0 and c1, 0.5 < c1 ≤ c0 < 1,

for the posterior probabilities. We select a model representing a subgroup effect if it

is the most likely model and, in head to head competition with the null model Mi0

(resp. with the overall effect model MiH), its posterior probability exceeds c0 (resp.

c1). Recall that Mi0 and HiH are the representations in Mi of the overall null and

the overall effect model, respectively. Below, we give an algorithmic description of

the proposed stepwise procedure.

Step 0 :

Choose M01 and stop if

P0(M01|y) > c0 and

Pi(Mih|Mih ∪MiHi
, y) < c1 for 1 ≤ i ≤ I and 0 < h < H,

else continue to next step.

Step i : for i = 1, ..., I − 1

Choose Mih for 0 < h < Hi, and stop if

Pi(Mih | y) = max
0<h′<Hi

Pi(Mih′|y) and

Pi(Mih | Mih ∪Mi0, y) > c0, and

Pi(Mih|Mih ∪MiHi
, y) > c1

else continue to next step.

Step I :

Choose MIh and stop if

PI(MIh | y) = max
0<h′<HI

PI(MIh′|y) and

PI(MIh|MIh ∪MI0, y) > c0,

else choose M00 and stop.
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The following is a schematic description when there are two covariates, each at two

levels, i.e., I = 2, S = 2, and the number of models at each stage is 5, i.e., H = 4.

 
 
 
 
 
 
 
 
 
 

Compare models 
 M01 vs. M00, M11, M12, M13, 
M21, M22 , M23      

Choose 
M01

STOP 

Compare models 
M10 ,   M11 ,  M12 ,  M13 , M14 

Compare models 
M20 ,   M21 ,  M22 ,  M23   M24 

Choose  
M21, M22   or M23

STOP 

Choose  
M11, M12   or M13

Continue 

Continue 

Stage 0 

Stage 1 

Stage 2 

Choose M00 STOP 

 
 
 
 
  

Figure 1: The stepwise procedure, when k = 2 and N = 4

5.1 Important Aspects of the Stepwise Procedure

The above procedure is designed to incorporate two important features. One is the

adjustment for multiplicity via control of the important error rates, namely Type

I error and the error of choosing a subgroup effect model when the overall effect

model is true. The other is to maintain good error rates by controlling the number

of subgroups tested.

At Step 0, a determination of whether or not to choose the overall effect model is

made. The overall effect model is chosen, only if there is strong evidence in its favor

16



in comparison to the overall null model, and if there is no strong evidence against it

in comparison to any single subgroup effect model. This serves to control two types

of errors. When a model representing a subgroup effect (in Mi, i > 0 ) is true, simply

comparing M00 and M01 alone could result in a very high posterior probability for M01

(if this is the one “closer” to the true model) and lead to choosing the wrong model

M01. Comparing the overall effect model with the subgroup effect models (in addition

to the null model) protects against this error. On the other hand, it is also important

to control the error of choosing a subgroup effect model when in fact the overall effect

model is true; this can be achieved by requiring sufficiently large evidence against the

overall effect model, i.e., by choosing an appropriately large value for c1.

The values of c0 and c1 can be chosen so that the overall Type-I error is equal to

a pre-determined value, and the average probability of choosing a wrong subgroup

effect model when the overall effect model is true is also small. Values of c0 and c1 can

be determined via simulation. Typically, the value of c1 has no bearing on the Type-I

error rate. It relates to the amount of evidence required for choosing a subgroup effect

model over the overall effect model. A reasonable value for c1 would be between 0.5

and c0, with a larger value of c1 indicating a higher threshold for evidence required

for choosing a subgroup effect model, or higher penalty for choosing a subgroup effect

model when the overall effect model is true. As discussed in Section 1, adjusting for

multiple testing and controlling the error of choosing a subgroup effect when there

is an overall effect are important goals in a subgroup analysis; the approach here is

specifically geared to achieving these goals.

The procedure proposed above stops when the overall effect model or a subgroup effect

model is selected, and continues only when a model representing a treatment effect

is not selected. This precludes the procedure from searching for additional subgroup

effects at lower levels (i.e., with less important covariates) when a subgroup effect is

found at a higher level covariate, thus limiting the number of subgroups tested.
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6 Operating Characteristics and Example

In this Section we define error rates relevant to subgroup analysis and study the

operating characteristics of the proposed procedure. We do this in the context of an

example.

6.1 Introduction to STI Example

Kovach et al.(2006) reported on a double-blinded randomized experiment to study

the effectiveness of Serial Trial Intervention (STI), the treatment, on comfort and be-

havior. The study was conducted in 14 nursing homes on 114 subjects with late-stage

dementia. Serial Trial Intervention (STI) is an innovative clinical protocol for assess-

ment and management of unmet needs in people with late-stage dementia. Outcome

variable of interest was the difference, pre and post intervention, in Discomfort-DAT

(Discomfort-Dementia of the Alzheimer’s Type scale), a measure of discomfort felt by

the subjects. The sample sizes for the treatment and control were 55 and 57, respec-

tively. The investigators were interested in the subgroups (personal communication)

defined by two covariates, Functional Assessment Staging of Dementia (FAST) score

(covariate X1) and Presence/Absence of Vocalization in Behavioral Symptoms (MVO-

CAL) initiating treatment (covariate X2). Two subgroups were of interest based on

X1, defined by X1 = 1 when FAST Score ≥ 7, and, =0 if FAST score < 7. The

presence (X2 = 1) and absence (X2 = 0) of vocalization in behavioral symptoms

initiating treatment also define two subgroups of interest. Here we rank the covariate

X1 as more important than X2 for finding subgroup effects. Subgroup sample sizes

are shown in Table 2.

Thus we have I = 2 covariates, each at S = 2 levels. There are eight models,
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X1 = 0 X1 = 1 Total X2 = 0 X2 = 1

Control 31 26 57 19 38

Treated 35 20 55 19 36

Total 66 46 112 38 74

Table 2: Subgroup Sample Sizes

altogether, the overall null model M00, the overall effect model M01, three subgroup

effect models M11, M12, and M13 corresponding to FAST ( as defined in Section 4.1),

and three subgroup effect models M21, M22, and M23 corresponding to MVOCAL.

6.2 Error Rates

Since the proposed procedure selects a model from many competing models, several

error rates of interest can be defined. Of prime importance among these is the Type

I Error (TIE) defined as the probability, in repeated experiments, of rejecting the

overall null (M00) by selecting any other model when the true model is M00. Other

error rates pertain to probabilities under the overall effect model and each subgroup

model. While there are many possibilities, we focus on the following definitions, where

Pf represents probability under repeated experiments.

TIE : Type I Error Pf (M00 not selected|M00)

FNR : False Negative Rate Pf (M00 selected|M01)

TPR : True Positive Rate Pf (M01 selected|M01)

FSR : False Subgroup Rate Pf (some Mih, i 6= 0, h 6= 0, h 6= Hi selected|M01)

TSR : True Subgroup Rate Pf (Mih selected|Mih, i 6= 0, h 6= 0, h 6= Hi)

FPR : False (overall) Positive Rate Pf (M01 selected|Mih, i 6= 0, h 6= 0, h 6= Hi)

19



Truth

Rates Overall Null Subgroup Effect Overall Alternative

Model M00 Model Mih Model M01

M00 1-TIE FNR

Decision Mih TSRih FSR

M01 FPRih TPR

Table 3: Error Rates

It is important to note that all but the TIE require additional specifications for proper

definitions. An effect size is required for FNR, TPR and FSR. Moreover, TSR and

FPR further depend on i, h. These definitions lead to Table 3 summarizing the various

possibilities.

These error rates and the operating characteristics of the procedure can be evaluated

via simulation over repeated datasets. For the STI example in the previous subsection,

we used the sample sizes in Table 2 when generating simulated datasets. For each of

the many settings needed to construct Figures 2 and 3, 1000 datasets were generated.

In all cases we used independent Beta(.5, .5) priors for p and q.

The two lower curves in Figure 2(a) show the estimated True Positive Rate(TPR) and

the False Subgroup Rate(FSR), both calculated by simulating data from a specific

overall effect (true) model. The standardized effect size for this model was set at 0.8.

The uppermost curve marked TPR0 results from a simple procedure without subgroup

analysis, i.e., this shows the traditional power at various levels of significance. The

Type I Error (TIE) was varied by choosing c1 = 0.7 and c0 in the range from 0.78 to

0.99. At TIE of 0.05, TPR is 0.83, FSR is 0.12 and TPR0 is 0.98. These quantify

the tradeoffs involved in planning a subgroup analysis as opposed to a simple overall

effect analysis without considering subgroups.
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(a) Simulation under M01 (b) Simulation under M11, γ = (1, 0)

Figure 2: Operating Characteristic Curves for STI Example

The curves in Figure 2(b) were obtained with data from a particular subgroup model,

namely, M11 = (1, 0) representing an effect in the subgroup with FAST score less than

7. The standardized effect size was set to 0.8 again. The TSR curve represents the rate

of correctly choosing the subgroup effect model while the FPR curve represents the

rate of incorrectly concluding the overall effect model M01. Note that 1−(TSR+FPR)

is the rate of incorrectly accepting the overall null or concluding a different subgroup

model.

Figure 3 addresses issues similar to those in traditional power curves, plotting rates

against various standardized effect sizes. The TIE was fixed at 0.05 by choosing

c0 = 0.9 and c1 = 0.7. In Figure 3(a) the true model is the overall effect model M01.

As in Figure 2(a), TPR and FSR are plotted along with the traditional power curve

TPR0 for comparison. The curves in Figure 3(b) are computed under the same true

subgroup model as in Figure 2(b), i.e., M11 = (1, 0).
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Figure 3: Rates vs. Effect Size, STI Example

6.3 Results for STI Example

Returning to the STI study, we used the experimental data and independent Beta(.5, .5)

priors for p and q. Using simulation, the cut-off value c0 for the posterior probability

was determined to be 0.9 to correspond to an overall Type-I error rate of 0.05. To

address the FSR, one would need to study it as a function of the effect size. How-

ever, it is possible to define and control the value of average FSR, averaged over a

reasonable effect size distribution. We used the normal distribution for the effect size

with mean 0 and standard deviation equal to that of the data. Then, two values of

c1 were chosen to correspond to the average FSR values of 0.06 and 0.05. Thus the

tuning parameters in the procedure were chosen to control the probability of incor-

rectly rejecting the overall null and the probability of incorrectly picking a subgroup

model when the overall effect model is true.
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Implementation of the stepwise procedure resulted in the posterior probabilities as

given in Table 4, and selection of the models, as given in Table 5. The result shows

that STI has an overall effect, when the two error rates are set at 0.05. When the

second error rate is set at 0.06, there is evidence of a subgroup effect for MVOCAL

in the sense that treatment effect is absent when MVOCAL=0 and it is present when

MVOCAL=1.

Model Space M0

Models M00 M01

Posterior Probability 0.009 0.991

Model Space M1

Models M10 M11 M12 M13 M14

Posterior Probability 0.0078 0.0025 0.2273 0.3774 0.3850

Model Space M2

Models M20 M21 M22 M23 M24

Posterior Probability 0.0003 0.0002 0.6026 0.3039 0.0930

Table 4: Posterior Probabilities of overall and subgroup effects Models for Ko-

vach(2006) data. Model spaces M1 and M2 correspond to the covariates FAST

and VBS, respectively.

c0 c1 Model Selected Average FSR

0.90 0.89 Overall Effect Model, M01 0.05

0.90 0.80 Subgroup Effect Model, M22 0.06

Table 5: Overall or Subgroup effect model as selected by the procedure in Section 5

for Kovach et al.(2006) data. The cut-off value c0 corresponds to an overall Type-I

error rate of 5%.
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7 Discussion

We have presented a method for doing subgroup analysis that takes account some

of the major concerns and recommendations. A Bayesian model selection approach

is used to determine the presence (or absence) of treatment-subgroup interactions.

For the subgroups defined by each covariate, we represented the treatment-subgroup

interactions of interest by a set of models, and calculated their posterior probabilities.

Determination of the presence (or absence) of a treatment-subgroup interaction is

done based on some pre-specified threshold values for the posterior probabilities.

These thresholds are set to yield a specified overall Type-I error rate. Adjustment

for multiplicity is thus achieved by controlling the overall Type-I error rate. We limit

the number of subgroup effects tested by focusing on the covariates one at a time in

the order of their importance as determined by the investigator, and by not looking

further when a treatment-subgroup interaction for a covariate is deemed as present.

Falsely finding a subgroup effect, when the primary hypothesis of overall effect is

true, is also a concern. The approach proposed can safeguard against this by setting

a suitably high threshold value for the posterior probability used in this comparison,

which may be set to correspond to a low value of a weighted average of this error

rate, as illustrated in the example.

The proposed method requires the investigator(s) to rank-order the covariates ac-

cording to their clinical importance. While this is helpful in curbing the number

of subgroup effects tested, one may possibly find two or more covariates as equally

important, such as Age and Gender. In such instances, our recommendation is to

consider the two different model spaces, one corresponding to each covariate, at the

same step. This would mean comparing the models in each space separately, and con-

tinuing to the next step (only) when no subgroup effects found for either covariate.

This approach can thus yield conclusions such as there is a subgroup effect due to
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Age and Gender. If, on the other hand, Age-Gender combinations are also interest,

one may form a single covariate using these combinations and proceed as before.
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