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Summary: We propose optimal choice of the design parameters for random discontinuation designs

(RDD) using a Bayesian decision-theoretic approach. We consider applications of RDDs to oncology

phase II studies evaluating activity of cytostatic agents. The design consists of two stages. The

preliminary open-label stage treats all patients with the new agent and identifies a possibly sensitive

subpopulation. The subsequent second stage randomizes, treats, follows, and compares outcomes

among patients in the identified subgroup, with randomization to either the new or a control

treatment. Several tuning parameters characterize the design: the number of patients in the trial,

the duration of the preliminary stage, and the duration of follow-up after randomization. We define

a probability model for putative cytostatic agents out of tumor growth considerations, specify a

suitable utility function, and develop a computational procedure for selecting the optimal tuning

parameters.
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1. Introduction

We propose a decision-theoretic procedure for choosing an optimal randomized discontinu-

ation design (RDD). We use a tumor growth model to specify a prior on the experimental

outcomes across alternative choices of design parameters and we introduce a novel prior

elicitation process for the tumor growth model.

RDDs have found use in phase II clinical studies in oncology for assessing activity of new

agents with potentially cytostatic properties. The RDD proceeds in two stages, an open-label

stage and a randomization stage (Rosner et al., 2002). All (N) patients enrolling in the study

enter the first stage and receive the new agent. At the end of some predetermined treatment

duration (T1), each patient undergoes an evaluation of disease status. Only patients with

stable disease after stage 1 participate in the randomized second stage, with randomization

either to the new agent or to a control, usually placebo. After some period of follow-up after

randomization (T2), a subsequent evaluation of disease status yields the primary outcome

data for assessing the treatment’s activity.

The structure of the RDD is motivated by the characteristics that differentiate potentially

cytostatic agents from more commonly used cytotoxic therapies. Traditionally, clinical trials

in oncology have evaluated anticancer activity based on tumor shrinkage. In contrast, a

potentially cytostatic agent, such as many of the new targeted anticancer agents, could

demonstrate activity by slowing tumor growth, leading to stable disease. The great hetero-

geneity of tumor growth rates across patients with certain cancers and similar prognostic

characteristics can confound the effect of cytostatic agents. Moreover, some agents may be

active for a subgroup of the target population. Millar and Linch (2003) emphasize that for

these reasons, traditional clinical trial designs for cytotoxic therapies are inappropriate for

cytostatic agents. See Stadler et al. (2005) and Ratain et al. (2006) for applications of RDDs

in cancer treatment studies that highlight how these features dictate the design structure.
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With a good choice of tuning parameters, the first stage selects a possibly sensitive

population, and the second stage evaluates whether the experimental therapy is active in

this subpopulation. For the design to be efficient, it is critical that one choose these tuning

parameters well. Compared to a two-arm randomized trial, a properly designed RDD can

significantly improve the probability of detecting an active agent (Fedorov and Liu , 2005).

But this is only true for a good choice of the RDD design parameters. Stadler (2007) points

out the importance of the tuning parameters and illustrates that a small T1 (i.e., too short

a pre-randomization phase) can reduce the RDD’s ability to detect an active agent.

Most of the literature on the RDD for cancer studies has focused on comparisons of this

design with upfront randomization. Extensive discussions are given in Capra (2004), Freidlin

and Simon (2005), Fu et al. (2009), Galsky et. al (2009), Millar and Linch (2003), Ratain

et al. (2006), Stadler et al. (2005) and Stadler (2007, 2009).

We discuss a Bayesian decision-theoretic approach for determining the RDD tuning param-

eters. The Bayesian approach accounts for all relevant uncertainties and proposes a choice of

tuning parameters to best achieve the study goals. It also provides a unified framework

for representing the impact of alternative tuning parameters on the design’s operating

characteristics and for optimally choosing among possible parameterizations. To this end, we

propose a procedure for predicting the tumor growth trajectories on the basis of historical

data and a utility function that allows comparison of alternative RDD parameterizations.

Importantly, the application of our proposed approach only requires the elicitation of the

prior on a single scalar parameter that can be interpreted as the treatment effect.

Formalizing the choice of the tuning parameters as a Bayesian decision problem (DeGroot,

2004) means that the decision maker considers different hypothetical scenarios (φ). These

scenarios could include various degrees of activity of the new agent. A probability measure

p(φ) on the set of scenarios reflects a priori beliefs. The decision problem –in this case the
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choice of d = (N, T1, T2)— includes a utility function u(d, φ,X) that represents the decision

maker’s relative preferences for each combination of decision (i.e., design) d, hypothetical

scenario φ, and experimental outcome X. The optimal decision is defined by maximizing

the utility function in expectation. One can base the prior p(φ) on many sources, such as

earlier studies of the agent under study and historical data under standard of care. Korn

et al. (2001) give a detailed account of the clinical and preclinical information one should

consider when designing phase II trials for cytostatic agents. The utility function u(d, φ,X)

synthesizes the most relevant aspects of the study; it balances the costs of the trial against

possible benefits.

The model that we use to characterize tumor growth trajectories builds on a parametric

stochastic process proposed in Ferrante et al. (2000). We formalize the ideas of (i) imputing

each patient’s tumor growth trajectories in an historical cohort on the basis of observations at

discrete times, (ii) assuming that one can model future trajectories under the control therapy

as samples from the imputed historical trajectories, while (iii) modeling future trajectories

under the experimental therapy as samples from the imputed historical trajectories after a

simple geometric transformation involving an unknown parameter representing the treatment

effect. The attractive features of the outlined approach are that the prior for future obser-

vations under the control regimen is highly representative of the historical studies and that,

overall, the a priori distribution on the treatment-effect parameter is easily interpreted. The

probability model can be used both in a Bayesian framework or for simulations to assess an

RDD’s operating characteristics under hypothetical scenarios representative of the historical

data and of prior expectations of the treatment’s effect.

In the next section we describe an RDD we were asked to design. We then review the

various steps in finding the optimal design and conclude with a discussion.
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2. A Clinical Trial for Renal Cell Carcinoma

Over the last 5 years, several trials have investigated the use of targeted agents to treat

patients with advanced renal cell carcinoma (RCC) (Larkin et al., 2009). We have been

asked to design several RDDs for evaluating anticancer activity of new targeted agents. The

first is described in Stadler et al. (2005), a study carried out by the Cancer and Leukemia

Group B (CALGB) to evaluate a putative antiangiogenic agent for treatment of metastatic

RCC. In this paper, we discuss designing a new study using a RDD. The study will investigate

a possibly cytostatic agent for treating metastatic RCC, as in Stadler et al. (2005).

Evaluation of an RDD requires prior probabilities for the following events. We need the

probability (pe) that a patient attains stable disease at time T1 and the probabilities of re-

sponse for a patient randomized in stage 2 to control and treatment (p0 and p1, respectively).

These are design–specific probabilities; alternative choices of (T1, T2) typically correspond to

different values of pe, p0 and p1. Optimal choice of the design parameters (N, T1, T2) requires

a prior probability model for (pe, p0, p1) that is coherent across possible values of T1 and T2.

The easiest way to specify such a prior is through an underlying tumor growth model.

We construct a realistic prior probability model for tumor growth trajectories based on

tumor growth data for 61 patients from the study reported in Stadler et al. (2005). In Section

3 we describe a parametric tumor growth model. Then, in Section 4, we use these data to

derive the desired prior probability model for tumor growth trajectories. The probability

model allows us to efficiently simulate (pe, p0, p1) for arbitrarily chosen values of (T1, T2).

Figure 1, for example, shows the prior distribution of pe under alternative values of T1. The

boxplots show how increasing T1 leads to a decrease in the expected proportion of patients

eligible for randomization. An important feature of the adopted elicitation approach is that

the parametric model is only used for interpolation between actually observed data points.

This leaves the approach robust against alternative model choices.
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[Figure 1 about here.]

3. Tumor Growth Model and Prior Specification in absence of historical data.

3.1 A Model for Tumor Growth

Several tumor growth models exist in the literature. In the following discussion, we model

tumor growth with a Gompertzian diffusion process (Ferrante et al., 2000).

The Gompertz model solves the differential equation

dXt/dt = a ·Xt − b ·Xt · log(Xt) X0 = x0, (1)

where a and b are two constants and Xt represents the tumor volume at time t. The Gompertz

model reflects initial exponential dynamics and a subsequent decreasing growth rate. It often

approximates tumor growth data well (Ribba et al., 2006). Reviews of relevant applications

in oncology are given in Clare et al. (2000) and Waliszewski (2005).

One limitation of (1) is the deterministic nature of the implied tumor growth curves Xt.

We therefore assume that tumor proliferation for each patient is characterized by the above

equation randomly perturbed by subject-specific variations that are modeled through a

Brownian motion. The resulting random process, for the i-th patient, is the solution to

the following stochastic differential equation (s.d.e.):

dXit = {(aiXit − biXit log (Xit)}dt+ σiXitdWit Xi0 = xi0 t ∈ [0, T ],

where {Wit}i>1 are independent Brownian motions. The stochastic model describes tumor

growth if the individual patient receives the same therapy during the entire period [0, T ].

The solution of the s.d.e. (Ferrante et al., 2000) is:

Xit = exp

{
ai − σ2

i /2

bi
+

(
log(xi0)−

ai − σ2
i /2

bi

)
e−bit + σi

∫ t

0

e−bisdWis

}
. (2)

An in depth discussion of the probabilistic properties of the Gompertz diffusion model and

its application in oncology is given in Albano and Giorno (2006, 2009).

If two therapeutic regimens are involved, the resulting process will solve the same s.d.e. with
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ai and bi substituted by two piecewise-constant functions: ai(t) = a0i I(t ∈ T0) + a1i I(t ∈ T1)

and bi(t) = b0i I(t ∈ T0) + b1i I(t ∈ T1), where T0 and T1 are contiguous time intervals during

which the two therapies are administered. The Markovian property of the process allows

easy computation of the finite-marginal distributions. The transition probability density of

the process (2), omitting patient index i, is:

p
(
Xt+s|Xt, a, b, σ

)
∝ 1

Xt+s

exp

[
−
{

log(Xt+s)− e−bs log(Xt)− (1− e−bs)(a− σ2/2)/b
}2

σ2 (1− e−2bs)/b

]
. (3)

We note that the process has marginal lognormal distributions and that we can easily sample

from the marginal distributions. Expression (3) provides a complete and synthetic definition

of the process; for our purpose we will not need other theoretical results on this model.

The parametrization of the Markov process, when the patent is treated with two distinct

therapies, can be slightly simplified. We can argue that b0i = b1i = bi is necessary to allow for

the possibility of one treatment being superior to the other. The hypothesis that the new

treatment, labeled 1, is superior to the control, labeled 0, can be formalized as the inequality

E(Xt+s|Xt = xt, a
0, b0, σ) > E(Xt+s|Xt = xt, a

1, b1, σ) (4)

for every xt and s. In words, treatment 1 permanently improves the patient’s condition.

Considering the conditional expectations

E(Xt+s|Xt = xt, a, b, σ) = exp
{
e−bs log(xt) +

a− σ2/2

b
(1− e−bs) +

σ2

4b
(1− e−2bs)

}
and its derivative with respect to s we observe that expression 4 holds if, and only if, a1i < a0i

and b1i = b0i . Moreover if a1 < a0 and b1 = b0 then, for every couple (xt, xt+s) ∈ (0,∞)2, the

inequality p(Xt+s 6 xt+s | Xt = xt, a
1, b1, σ) > p(Xt+s 6 xt+s | Xt = xt, a

0, b0, σ) holds. This

fact can be straightforwardly verified using Theorem 4 in Levy (1973).

3.2 A Hierarchical Prior

We introduce a prior distribution for the subject-specific random effects a0i , a
1
i , bi and σi. It

includes a mixture over two cases: inhibition and no effect. We use latent binary variables
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Ei ∈ {0, 1} to indicate whether the treatment inhibits tumor growth for patient i. In the

case of no growth inhibition (Ei = 0), a0i = a1i , bi and σi completely characterize the i-th

patient’s tumor growth.

We assume that the random effects vector (a0i , a
1
i , bi, σi) varies across the heterogeneous

population according to a parametric distribution. The random effects distribution Fθ is de-

fined for a reparametrization of (a0i , a
1
i , bi, σi) to (ϕ1i, ϕ2i, ϕ3i, ψi). The first three components,

ϕ1i =
a0i − σ2

i /2

bi
, ϕ2i =

σ2
i

2bi
and ϕ3i = bi

regulate the tumor growth process under Ei = 0. We observe that ϕ1i, ϕ2i and ϕ3i have a

clear interpretation which follows from the equalities:

E
(

log(Xis) | Xi0, a
0
i , bi, σi, Ei = 0

)
= e−bis log(Xi0) +

a0i − σ2/2

bi
(1− e−bis) and

V ar
(

log(Xis) | Xi0, a
0
i , bi, σi, Ei = 0

)
=
σ2

2bi
(1− e−2bis).

The fourth random effect (ψi) reports the treatment effect for patient i

ψi = (
a0i − σ2

i /2

bi
− a1i − σ2

i /2

bi
).

Let Ga(x; ν, r) indicate a Gamma distributed random variable with mean ν/r. Let

NIG(θ1, θ2; m, v
2, ν, r) indicate a Normal-inverse-gamma distribution for the random vector

(θ1, θ2) defined as ( 1
θ2

) ∼ Ga(ν, r) and (θ1 | θ2) ∼ N(m, θ2v
2). We complete the model with

lognormal (LN) random effects distributions for ϕ1i, ϕ2i, ϕ3i and ψi,

ϕji | θ ∼ LN(θj1, θj2), and ψi | θ, Ei ∼


0 if Ei = 0

LN(θ41, θ42) if Ei = 1

where j ∈ {1, 2, 3}, independent Bernoulli priors on the latent indicators for growth inhibition

p(Ei = 1) = π

and conjugate priors for the hyperparameters θ = (θj1, θj2; j = 1, . . . , 4):

(θj1, θj2) ∼ NIG(mj, v
2
j , νj, rj).

The Normal-gamma hyperprior allows us to formulate an initial guess about the random
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effects distribution for the growth process parameters across the population. Frequently in

Bayesian statistics, elicitation of informative priors postulates a priori the existence of an

imaginary data set representing initially available knowledge. In our case, when Jeffreys’

prior for lognormal parameters is updated (with hypothetical prior equivalent data points),

a Normal-gamma distribution is obtained (Padgett and Wei, 1977).

Prior elicitation is a critical part of a decision theoretic approach. Although considerable

research has been conducted to improve the elicitation process (see for example Garthwaite

el al. (2005) and references therein), many difficulties remain. This is especially true when a

considerable number of uncertain quantities is involved. Such difficulties can be mitigated in

the application to clinical trial design by using frequentist properties, also known as operating

characteristics, to critique a proposed trial design. For example, the frequentist properties of

RDDs, for a fixed sample size N , are determined uniquely by three unknown parameters: the

probability of a patient being eligible for randomization pe and, conditionally on eligibility,

the response probabilities for the treatment and control regimens (p0, p1). Validation of the

optimal decision is particularly meaningful when the elicitation of expert opinion on the

tumor growth process across the heterogeneous population is difficult, but, at the same

time, expert judgement about the three pivotal probabilities is available.

4. Prior Construction Based on Historical Data

The study that we described in Section 2 is one of many similar studies of targeted agents for

RCC. We have access to data from a similar earlier study carried out by CALGB and reported

in Stadler et al. (2005). The prior construction should exploit such available historical data to

minimize the need for prior elicitation from experts. In the following paragraphs, we describe

a practical strategy for specifying an informative prior in such cases. The approach assumes

that tumor growth trajectories under the control regimen in the planned trial are likely to be
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similar to those in the historical trial. The proposed strategy restricts the need for subjective

prior elicitation to only the prior parameters related to the treatment effects ψi.

The main features of the proposed construction are as follows. We use model-based in-

terpolation of the historical tumor growth data to generate realizations of tumor growth

curves for future patients. The underlying model is the Gompertz diffusion model defined

earlier. The fact that we use the interpolation leaves the proposed strategy very robust

against possible deviations from the model assumptions. The architecture of the procedure

is easy to be interpreted and implemented. We assume a probability model consistent with

an extensive literature on solid tumors growth. The historical trajectories are imputed on the

basis of discrete time observations. In the end, we have a prior distribution for tumor growth

trajectories that represents a priori beliefs about the treatment effect and the historical data

through imputation. The details of the procedure formalize the idea of defining a prior, for

the control regimen, identical to the empirical distribution of the historical trajectories and,

similarly, a prior, for the treatment regimen, identical to a suitable geometric transformation

of the same empirical distribution.

Tumor growth under the control regimen. Assume we have historical data on M

patients under the control regimen:

{X̃0
1t0
, X̃0

1t1
, . . . , X̃0

1tk
}, {X̃0

2t0
, . . . , X̃0

2tk
}, . . . , {X̃0

Mt0
, . . . , X̃0

Mtk
}.

We use X̃ to distinguish the historical data from future experimental observations X. The

restriction to fixed measurement times (t1, . . . , tk) across patients is not important. We only

use this assumption to simplify presentation. The proposed procedure can easily be adapted

to historical data with heterogeneous follow up and data observed at different times across

patients. We specify a prior distribution for tumor growth curves (for future patients) under

the control regimens as a mixture of diffusion processes. Each component of the mixture

corresponds to one of the M historical patients. Let GP(a, b, σ) denote a Gompertz diffusion
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process as defined in subsection 3.1 and let GP(a, b, σ|4) be the conditional law of the

process given the event {4}. We assume

{X0
it}t>0 ∼

1

M

M∑
j=1

GP(ãj, b̃j, σ̃j|X0
it0

= X̃0
jt0
, . . . , X0

itk
= X̃0

jtk
) . (5)

That is, the law of the process is a mixture of M components and each component reflects

one of the historical trajectories. The parameters (ãj, b̃j, σ̃j) in (5) are estimated with the

standard maximum likelihood technique (Gutierretz et al., 2006).

Alternatively, the scheme could be slightly modified. The investigator could first define

clusters of historical patients (Schnatter and Kaufmann, 2008) and then assume a common

set of parameters (ãj, b̃j, σ̃j) for all patients in the same cluster and proceed again as in (5).

Tumor growth under the treatment regimen. We impute for each historical patient a

hypothetical trajectory under the treatment regimen. We exploit the linear relationship

log(X̃0
jt`+1

) = γ(b̃j, t` − t`+1) log(X̃0
jt`

) + β(ãj, b̃j, σ̃j, t` − t`+1) + δ(b̃j, σ̃j, t` − t`+1)Zj` (6)

of the Gompertz model. The random components (Zj`; j = 1, . . .M, ` = 0, . . . k − 1) are

independent standard Gaussian variables and γ(·), β(·) and δ(·) are known functions. Solving

(6) for Zj` we find realizations of the Gaussian random variables. Next we substitute these

values for Zj` in

log(X̃1
jt`+1

) = γ(b̃j, t` − t`+1) log(X̃1
jt`

)+

β(ãj − ψ̃j b̃j, b̃j, σ̃j, t` − t`+1) + δ(b̃j, σ̃j, t` − t`+1)Zj`. (7)

These are the analog of (6) for the treatment regimen. The only unknown random compo-

nents in (7) are the treatment effects {ψ̃j}Mj=1; the distribution of the treatment effects is

representative of the expectations on the cytostatic activity of the treatment.

The hypothetical observations (X̃1
jt0
, . . . , X̃1

jtk
; j = 1 . . . ,M) are defined as the random

solutions of equations (7) assuming that for every historical patient X̃0
jt0

= X̃1
jt0

. Finally, con-

ditional on X̃1 = (X̃1
jt0
, . . . , X̃1

jtk
; j = 1 . . . ,M) and on the random vector ψ̃ = (ψ̃1, . . . , ψ̃M),
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future tumor growth trajectories under the treatment regimen are characterized as follows:

{X1
it}t>0 | X̃1, ψ̃ ∼ 1

M

∑
j

GP(ãj − ψ̃j b̃j, b̃j, σ̃j|X1
it0

= X̃1
jt0
, . . . , Xitk = X̃1

jtk
) . (8)

Tumor growth under randomization to treatment and control. The outlined plug-in

strategy can easily be extended to characterize the distribution of the tumor growth process

for a patient receiving the new treatment until T1 and who is subsequently randomized to

control. Also in this case, the process law can be represented as a mixture of M components.

Each component consists of the conditional law of a Gompertz diffusion process whose

transition densities switch parametrization at time T1. The parameters (ãj, b̃j, σ̃j) as in

(5,8) are estimated through the standard maximum likelihood technique and the random

quantities {ψ̃j}Mj=1 are modeled through the prior discussed in Section 3. We impute, for

each historical patient, the hypothetical observations at (t1, . . . , tk) and T1. For each patient

j the distribution of X̃0
jT1

conditional on {X̃0
jt0
, X̃0

jt2
, . . . , X̃0

jtk
} is computed. We then slightly

modify the equations (6) and (7) by adding to the vector (t0, t1, . . . , tk) the additional

observation time T1, and substitute β(ãj − ψib̃j, b̃j, σ̃j, t` − t`+1) in (7) with

β(ãj − ψib̃j, b̃j, σ̃j, t` − t`+1)I(t`+1 6 T1) + β(ãj, b̃j, σ̃j, t` − t`+1)I(t`+1 > T1).

The hypothetical observations are then defined as the solutions of the slightly modified

random equations. In this case, the equations’ unknown random quantities consist of the

independently distributed random vectors (X̃0
1,T1

, . . . , X̃0
M,T1

) and {ψ̃j}Mj=1.

The use of historical data greatly simplifies the decision problem. The only prior informa-

tion that needs to be directly elicited from expert knowledge is related to the treatment effects

ψi. Prior elicitation for these remaining parameters can be guided by plotting simulated

tumor growth trajectories under alternative prior assumptions. Figure 2 shows an example.

Moreover, the procedure allows the investigator to report operating characteristics of alter-

native designs d following a simple predictive approach. It is straightforward to compute
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via Monte Carlo simulation the predictive probability that the trial detects the effect of the

agent for several assumed levels of efficacy of the new agent.

[Figure 2 about here.]

5. Decision Problem

The utility of the trial u(d, φ,X) is a function of the adopted design d, the parameters that

characterize the tumor growth processes φ and of the observed data X. We generically use

p(·) to denote a probability distribution. The expected utility is

U(d) =

∫ ∫
u(d, φ,X) p(dX | φ, d) p(dφ). (9)

The decision problem of selecting a design is solved by maximizing the expected utility,

U(d∗) = maxd∈D U(d). The action space D includes alternative designs d that differ in the

overall number of patients in the trial (N) and in the durations of the two phases (T1, T2).

The utility associated with each combination (d, φ,X) is the balance between the costs of

the trial (C(d, φ,X)) and the benefits which derive from recommending a phase III trial for

an effective agent (B(d, φ,X)):

u(d, φ,X) = B(d, φ,X)− C(d, φ,X).

We assume that the recommendation for phase III is determined by a hypothesis test after

completion of the trial. The null hypothesis is that the novel treatment is not superior to the

control. Let Sd(X) denote the test statistic, and let Rd denote the rejection region. When

the agent is recommended for phase III, we assume that the benefits are proportional to

expected efficacy of the therapy in a future (N + 1)-st patient. We use

B(d, φ,X) = I
(
Sd(X) ∈ Rd

)
E
(

log(1 + ψN+1) | φ
)
.

The benefit is balanced with the cost of enrolling patients in the trial. The cost depends on

the number of patients in the two trial phases (N andn) and on the durations T1 and T2:

C(d, φ,X) = c1N + c2n+ c3(T1N + T2n).



13

Here c1 and c2 are the costs of enrolling patients in the first phase and treating patients in

the second phase of the trial, while c3 is the variable cost per unit of time of retaining a

patient in the trial.

We assume that the eligibility criteria for a patient to enter the second phase of the trial

are fixed. Upon completion of the first phase, the i-th patient continues to phase 2 if

δ1(Xi0, T1) > XiT1 > δ2(Xi0, T1).

The two bounds δ1 and δ2 depend on the tumor volume at the beginning of the trial Xi0 and

on the length of the first stage T1. The lower bound is motivated by the need to continue the

treatment for a patient who is appreciably benefitting from the treatment. The upper bound

implements the desired enrichment strategy of the design intended to select a homogenous

group of patients who may be benefitting from the cytostatic activity of the new agent.

The optimal strategy d∗ is computed by a Monte Carlo optimization algorithm. We approx-

imate the expected utility U(d) for any point d in D by iteratively simulating population

parameters φ and hypothetical experimental outcomes X from the prior model. At each

iteration the utility u(d, φ,X) is computed. Simulation of X is carried out using the prior

construction described before, in Section 4. In similar applications, when no historical data

were available one would proceed by simulating from the hierarchical model described in

Section 3.2 to generate future data X. We will use the hierarchical prior for the simulation

study reported later, in Section 6.

In order to efficiently obtain approximations of Ũ(d) for every design d the algorithm

carry out one (or few) simulation for H designs dh, h = 1, . . . , H, and fit a smooth surface

Ũ(d) to the Monte Carlo samples (dh, uh). That is, we do not carry out several simulations

for each design d. The approach has been considered in detail in Müller and Parmigiani

(1995). Note that the algorithm approximates the expected utility U(d) using not only
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results of simulations associated with d but also borrowing strength from results associated

with neighboring designs. In summary,

Step 1. Select H designs {dh ∈ D, h = 1, . . . , H}, and generate random quantities uh equal

in distribution to u(dh, φ,X).

Step 2. Fit a least squares multivariate polynomial regression to (dh, uh), h = 1, . . . , H. The

fitted surface Ũ(d) approximates the expected utility surface U(d).

Step 3. Maximize Ũ(d) to find the (approximate) optimal design d∗.

The algorithm reduces the evaluation of the expected utility surface to a standard statistical

regression problem. The maximization in Step 3 is fully deterministic. The multivariate

polynomial regression in Step 2 involves model selection; it is necessary to select from a large

number of possible models, ranging from first-order polyonomials to the saturated model.

Many parsimonious model selection procedures have appeared in the literature (Bursham

and Anderson, 1998). Most commonly used selection criteria guarantee the almost sure

convergence of the estimates {Ũ(d)}d∈D to the expected utility surface U(d) with increasing

Monte Carlo sample size H.

6. Simulation Example

We apply the proposed optimization procedure to a hypothetical decision problem. We

evaluate the operating characteristics for a new study without historical data by using the

hierarchical model from Sections 3. The prior probability that the novel agent has cytostatic

activity is p(π > 0) = 0.5 and p(π|π > 0) = Unif(0, 1). Figure 3 summarizes the first 250

days of the random trajectories after the tumors reach the minimal threshold ε = 0.02. The

threshold ε defines the minimum detectable tumor size. The randomization in the second

phase is balanced. Half the patients receive the control treatment. Patients enroll into the

trial after a time varying from 4 to 6 months after the tumor has reached the threshold ε.
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The eligibility criteria that determine participation in the second (randomized and blinded)

phase are defined by two thresholds of the relative variation of the tumor mass during the first

(open) phase: δ1(X0, T1) = 1.2X0 and δ2(X0, T1) = 0.7X0. This corresponds to the RECIST

response criteria (Therasse et al., 2000) used in many oncology trials, such as Stadler et al.

(2005). The primary end point for the second phase of the trial is dichotomous as in many

oncology phase II trials. The disease is considered stable if the tumor mass increase is less

than 20%. The decision for recommending the agent for phase III is based on a hypothesis

test.We use a Fisher’s exact test with significance level α = 0.05.

The action space is D = {(N, T1, T2) ∈ (0, 1, . . . , 400)×(0, 1, . . . , 300)2}. In particular, the

alternative of not performing the trial (N = 0), as well as a traditional two-arm randomized

trial (T1 = 0) are options.

[Figure 3 about here.]

The optimal strategies corresponding to alternative utility functions are determined using

Monte Carlo samples of H = 107 simulated trials with tuning parameters (dh;h = 1, . . . , H)

randomly spread across the action space. Alternatively one could use a sparse regular grid.

Figure 4 shows orthogonal sections of the fitted surfaces Ũ(d) intersecting the optimal designs

d∗ = (N∗, T ∗1 , T
∗
2 ).

Recall that the utility function includes three trade-off parameters, c1, c2 and c3. Comparing

the optimal choices under the alternative utility functions demonstrates the sensitivity of

the decision problem with respect to c1, c2, c3. The efficiency of the outlined computational

procedure (Müller and Parmigiani, 1995) is particularly helpful for comparing the optimal

designs under different utility functions and prior distributions. Such comparisons provide

the investigator with a clear representation of the sensitivity of the decision framework.

[Figure 4 about here.]

In the example illustrated in Figure 4, a rational decision maker favors the RDD under
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all three considered utility functions. The optimal discontinuation strategy d? guarantees

a superior expected utility compared to a standard two-arm trial designs. The optimal

choices (T ∗1 , T
∗
2 ) are appreciably stable while, as expected, increasing the costs associated

with enrolling a patient in the trial, leads to a clear decrease of the optimal sample size N∗.

As mentioned earlier, the operating characteristics of an RDD with dichotomous final

end point are determined by three probabilities. These are the eligibility probability pe and

the response probabilities p0 and p1. Table 1 illustrates the power of the optimal design

d∗ = (N∗ = 216, T ∗1 = 66, T ∗2 = 102) for hypothetical values of pe, p0 and p1.

[Table 1 about here.]

We can then assess the operating characteristics of the optimal design d∗ by comparisons

with two arm randomized trials. Table 2 shows the power of alternative upfront randomized

trials for alternative sample sizes N and hypothetical probabilities of stable disease under

the control p0 and treatment p1 regimens. In this case the follow up period could differ

from T ∗2 . Such comparison has to consider that the a priori expectations of (p0, p1) for the

two alternative designs are usually considerably different. In the RDD, p0 and p1 relate to

patients with stable disease at T1 and not to the whole population of patients, as with upfront

randomization. A feature of the RDD is that the first phase of the design selects a subpopu-

lation of patients likely of benefitting from the novel agent. This selection mechanism results

in substantial differences between the response probabilities (p0, p1) of a RDD evaluating

a cytostatic agent compared to those of an upfront randomized trial; several examples are

given in Fedorov and Liu (2005). The upfront randomization, in most cases, corresponds to

narrower differences between p0 and p1.

[Table 2 about here.]
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7. An RDD for a Cytostatic Agent Targeting Renal Cell Carcinoma

We apply the proposed approach to implement an RDD for the trial described in Section 2.

In contrast to Section 6 we now use the historical data for specifying the prior, as described

in Section 4. We use historical tumor growth data from a subgroup of 61 patients enrolled

in the recent multicenter trial of a multikinase inhibitor for renal cell carcinoma (Stadler et

al., 2005). We adopt a utility function similar to the earlier example, using c1 = c2 = 0.001

and c3 = 3.3× 10−5. The prior probability for cytostatic activity of the novel agent is fixed

at π = 0.7. The prior for ψi is parameterized such that, conditionally on {E = 1}, the

mean growth of the tumor mass after 4 months from the baseline measurement is 12% under

the treatment regimen versus 24% under the control regimen. The primary end point for

the randomized phase is still assumed binary. The disease is considered stable if the tumor

mass increase, from the time of enrollment, is less than 20%. The eligibility criteria for the

randomized second stage are:

δ1(X0;T1) = 1.2X0 and δ2(X0;T1) = 0.8X0 .

The action space is D = {d = (N, T1, T2) ∈ (0, 1, . . . , 300)3}. Again we use the proposed

Monte Carlo procedure to find the optimal rule. We find the optimal design at d∗ = (N∗ =

221, T ∗1 = 72, T ∗2 = 145), with time in days.

The validation of the optimal design includes the computation of operative characteristics

under hypothetical scenarios; these can be evaluated for a grid of possible values of (pe, p0, p1)

as in Table 1. A complementary approach consists in evaluating the operative characteristics

for possible parameterization of the probability model. We computed, for example, the design

power for several values of π, assuming the treatment reduces the average tumor growth

of susceptible patients, after 4 months from baseline measurement, from 24% to 12%. The

design power decreases as the susceptible subpopulation proportion π decreases; power values
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above the 75% are observed for π > 50%. A synthetic table reporting these computations is

provided in the online appendix.

8. Discussion

Recent applications of RDDs in cancer have shown that it can be an interesting alternative

to a standard two arm randomized design for assessing the cytostatic activity of novel agents.

The main features of the RDD are the highly increased acceptance of the design by potential

patients (Stadler, 2007) and the ability of the design to focus the investigation on a relatively

homogeneous cohort of patients who may be benefitting from the new treatment. Several

recent studies have shown potential benefits of RDD protocols over alternative up-front

randomization, but also cautioned that the benefits are easily lost with a bad choice of the

design parameters (Fedorov and Liu 2005, Stadler 2009).

We have proposed a decision-theoretic approach for choosing the tuning parameters for a

randomized discontinuation design (RDD). We assumed that the final result of the clinical

trial—typically the decision to perform a phase III clinical trial or to consider the novel

treatment lacks activity—has to be based exclusively on the experimental data and does not

depend on the prior elicitation. On the other hand, we recognized the need to use initial

knowledge about the treatment and control regimens to design the trial appropriately.

A decision-theoretic approach can be considered as a formalization of another widely

recommended step in clinical trial design, viz., simulation. Simulations of possible realizations

of a clinical trial are widely recommended (Nestorov et al., 2001) and are usually conducted

to compare competing designs.A simulation study has two major components: a set of alter-

native designs (dj) and a set of probability models or scenarios (φoj). The purpose is to identify

the design with the best overall performance. This approach implies an a priori guess about

likely or potentially harmful scenarios φoj and the ability to evaluate each combination of

design d, scenario φ, and experimental outcomes X. A Bayesian decision-theoretic approach
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formalizes the evaluation of combinations of designs, scenarios and outcomes by means of the

utility function u(d, φ,X). An explicit utility function is particularly useful when evaluating

different experimental schemes. As an example, consider a comparison of an RDD and a

two-arm randomized trial.If different costs are associated with the randomization of the

patients at the beginning of the trial and with the randomization of a subgroup after the

first stage, then one should not base the evaluation exclusively on power or average sample

size. Recent RDD trials have shown exceptionally high accrual rates, reflecting strong patient

preference for receiving the new drug initially, followed by possibly later randomization. A

good utility function will reflect the different nature of the up-front randomization in the

two-arm randomized trial versus the later randomization in the RDD.

A limitation of the proposed decision process is the need for extensive prior elicitation, at

least when no historical data are available. A prior probability model and prior elicitation

need to capture complicated aspects of the relationship of tumor mass and growth rate,

the degree of predictability of a future tumor growth trajectory conditional on observations

for an initial time interval, the degree of heterogeneity in the relevant patient population,

and the level of certainty about any such judgement. Various simplifications in the proposed

probability model mitigate some of these difficulties.

We finally indicate a possible enhancement of the proposed approach that would allow

one to incorporate information from the first stage in decision making. Rosner et al. (2002)

applied a Beta prior to the proportion of patients going on the randomization at T1, that

is, pe. If the observed proportion of patients going on to randomization is too small, then

one would consider stopping the study. One could develop the tumor growth model further

to allow for extrapolation from the early stage of the trial to the subsequent outcomes. The

extrapolation within the context of a predictive distribution of the future outcomes could

allow for a coherent early stopping decision. This is a matter for further investigation.
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Figure 1. Boxplots of the a priori distribution of the proportion pe of patients eligible for
the second stage of the trial across discontinuation trials having alternative durations of the
first stage. The a priori distributions are computed through a simple data driven procedure;
the adopted procedure for specifying the prior is discussed in Section 4. The lines in boxplots
indicate the 5-th ,25-th, 50-th, 75-th and 95-th percentiles.
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Figure 3. Panel (i): The upper trajectory shows observed historical tumor growth data (�)
under the control regimen. The lower trajectory shows imputed measurements and trajectory
under the treatment regimen. Panels (ii) and (iii): Median trajectories, 80% confidence bands
and 50% confidence bands of X1

i,t ∼ GP(ãj − ψ̃j b̃j, b̃j, σ̃j | X1
i,t0

= X̃1
j,t0
, . . . , Xi,tk = X̃1

j,tk
)

under two alternative prior distributions for {ψ̃j}Mj=1.

Figure 2. Panel (i): The upper trajectory shows observed historical tumor growth data (�)
under the control regimen. The lower trajectory shows imputed measurements and trajectory
under the treatment regimen. Panels (ii) and (iii): Median trajectories, 80% confidence bands
and 50% confidence bands of X1

i,t ∼ GP(ãj − ψ̃j b̃j, b̃j, σ̃j | X1
i,t0

= X̃1
j,t0
, . . . , Xi,tk = X̃1

j,tk
)

under two alternative prior distributions for {ψ̃j}Mj=1.
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Figure 3. Summary curves showing the distribution of projected tumor growth during
the first 250 days after the tumor reaches the minimal threshold ε = 0.02. Solid lines: the
median function and the 80% confidence band of the growth process Xt. Dashed lines: the
80% confidence band of the conditional expectations E(Xt | θ).
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pe = 0.2 pe = 0.4 pe = 0.6 pe = 0.8

p0 p0 p0 p0
p1 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6

0.4 0.30 0.57 0.75 0.86
0.6 0.79 0.27 0.98 0.51 1.00 0.68 1.00 0.81
0.8 0.99 0.79 0.30 1.00 0.98 0.57 1.00 1.00 0.75 1.00 1.00 0.87

Table 1
Probabilities of rejecting the null hypothesis of ineffectiveness of the novel treatment for hypothetical values of pe, p0

and p1 at the optimal design d∗ = (N∗ = 216, T ∗
1 = 66, T ∗

2 = 102).
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N = 100 N = 150 N = 200 N = 250

p0 p0 p0 p0
p1 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6

0.4 0.64 0.80 0.91 0.95
0.6 0.99 0.54 0.99 0.72 1.00 0.85 1.00 0.92
0.8 1.00 0.99 0.64 1.00 0.99 0.80 1.00 1.00 0.90 1.00 1.00 0.95

Table 2
Probabilities of rejecting the null hypothesis of ineffectiveness of the novel treatment for hypothetical values of

(p0, p1) for alternative upfront randomize trials by sample size per treatment.


