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Abstract

We consider inference for data from a clinical trial of treatments for metastatic

prostate cancer. Patients joined the trial with diverse prior treatment histories. The

resulting heterogenuous patient population gives rise to challenging statistical infer-

ence problems when trying to predict time to progression on different treatment arms.

Inference is further complicated by the need to include a longitudinal marker as a co-

variate. To address these challenges, we develop a semi-parametric model for the joint

inference on longitudinal data and an event time. The proposed approach includes

the possibility of cure for some patients. The event time distribution is based on a

non-parametric Pólya tree prior. For the longitudinal data we assume a mixed effects

model. Incorporating a regression on covariates in a non-parametric event time model

in general, and for a Pólya tree model in particular, is a challenging problem. We

exploit the fact that the covariate itself is a random variable. We achieve an imple-

mentation of the desired regression by factoring the joint model for the event time and

the longitudinal outcome into a marginal model for the event time and a regression

of the longitudinal outcomes on the event time, i.e., we implicitly model the desired

regression by modeling the reverse conditional distribution.

KEYWORDS: Bayesian non-parametric models, Pólya tree, survival, regression
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1 Introduction

We discuss inference for data from a phase III clinical trial for treatments of metastatic

prostate cancer. The challenging features are patient heterogeneity due to prior treatment

history and the need to include a regression on prostate specific antigen (PSA) as an impor-

tant longitudinal marker. We conduct semi-parametric Bayesian inference to address these

challenges.

To achieve the desired data analysis we develop joint inference for event time data and

longitudinal observations of a covariate, with the possibility that some patients are cured.

Let T be the event time and Y be the longitudinal covariate. Most existing approaches are

based on factoring the joint model as P (T, Y ) = P (Y )P (T | Y ). The first factor is the

longitudinal submodel P (Y ), typically assumed to be a mixed model. The second factor is

the survival submodel P (T | Y ). In the following discussion, we use event time, survival

time, time to progression and failure time exchangably.

There is an extensive literature on the joint modeling of longtitudinal and event time

data without cured fraction (De Gruttola and Tu, 1994; Tsiatis et al., 1995; Lavalley and

De Gruttola, 1996; Wulfsohn and Tsiatis, 1997; Dafni and Tsiatis, 1998; Henderson et al.,

2000; Xu and Zeger, 2001; Lin et al., 2002; Ibrahim et al., 2004). A review can be found

in Tsiatis and Davidian (2004). Less work has been published on the joint modeling of

longitudinal and event time data with cure. Law et al. (2002) proposed a model with

the longitudinal process described by an exponential-decay-exponential-growth model and a

mixture model to accomodate cure. The imputed values of the longitudinal measurements

are covariates in a proportional hazard model. Brown and Ibrahim (2003) and Chen et al.

(2004) implemented inference with alternative cure models. The former assumed that the

trajectory of longitudinal process affects the hazard function of MCT cells’ progression times.

The latter assumed that the longitudinal process affects the mean of the Poisson distribution.

Yu et al. (2004) provide a recent review of joint longitudinal-survival-cure models.
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Specific to modeling PSA, Carter et al. (1992) demonstrated that the use of PSA readings

over time leads to more accurate diagnoses. Lin et al. (2002) considered a latent class model

to uncover subpopulation structure for both PSA trajectories and a survival outcome. An

important feature is that given latent class membership, the longitudinal marker and outcome

are assumed independent. A semi-parametric frailty model is assumed, which includes class-

specific baseline hazard functions and accommodates possibly time-dependent covariates.

In the joint analysis of longitudinal and event time data, most researchers assume para-

metric or semi-parametric models for P (T | Y ). It is difficult to implement non-parametric

models for P (T | Y ) because most non-parametric models do not allow straightforward

incorporation of a regression on covariates. We propose to use the alternative factoriza-

tion, P (T, Y ) = P (T )P (Y | T ). We proceed under the Bayesian paradigm. Choosing a

non-parametric model for P (T ) is the traditional problem of non-parametric inference for

an event time. As a scaler, event time T can be included as a covariate into a parametric

P (Y | T ) with great ease and flexibility. Furthermore, it is straightforward to apply non-

parametric Bayesian models for P (T ), such as a Dirichlet process prior or a Pólya tree (PT)

prior. For P (Y | T ), we propose a mixed effects model as a default choice. Both factoriza-

tions leads to the joint model, P (T, Y ), describing the mutual dependence between T and Y .

It is this joint model that ultimately allows improved prediction of the event given repeated

measurements of the marker. Pawitan and Self (1993) jointly models event time process and

longitudinal marker under the framework of P (T, Y ) = P (T )P (Y | T ). Weibull models are

assumed for the infection time and disease occurrence time of AIDS. A generalized linear

model is specified for the longitudinal measurements of T4 counts and T4/T8 ratio, with

the intercept and slope being functions of the event times. Maximum likelihood estimates

are obtained for the parameters.

We use a PT prior to model the failure time process, which can be constructed to

give probability one to the set of continuous or absolutely continuous probability measures

(Lavine, 1992; Mauldin et al., 1992). Muliere and Walker (1997) implemented PT models in
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a survival analysis. Walker and Mallick (1997; 1999) demonstrated the application of PT in

hierarchical generalized linear models, frailty models, and accelerated failure time models.

Hanson and Johnson (2002) developed a general approach to model residual distributions

with a mixture of PT. Neath (2003) used PT distributions to model censored data. Paddock

et al. (2003) developed randomized PT models, which uses random partitions to smooth

out the effect of partitions on posterior inference. See Hanson (2006) for a review of recent

development in finite PT models.

Hanson et al. (2007) used mixtures of PTs to construct a joint model for time dependent

covariates and survival time. They introduced flexible PT priors for the baseline distributions

in the Cox model, the proportional odds model, and an accelerated failure time model

accommodating time-dependent covariates. Their approach uses the factorization P (T, Y ) =

P (Y )P (T | Y ).

2 A Clinical Study

Androgen ablation (AA) is the preferred treatment for metastatic prostate cancer. AA ther-

apy alters the natural history of the disease by disrupting the growth promoting effects

mediated by androgen receptor signaling, which is usually accomplished by medical suppres-

sion of testicular endocrine function. Unfortunately, most patients with clinically detectable

metastatic disease when the AA therapy started will eventually progress to androgen in-

dependent prostate cancer (AIPC). AIPC is a relentlessly progressive disease state, and is

the cause of death for the vast majority of men in whom it develops. By this mechanism,

prostate cancer leads to an annual death toll of more than 27,000 men in the United States.

To date, no treatment has been found to be curative for AIPC, and it is only fairly recently

that some therapies are shown to alter the natural history of the disease. A chemotherapy

demonstrated a survival advantage over historical results in a phase II trial conducted at

M.D. Anderson Cancer Center (Ellerhorst et al., 1997). This therapy, dubbed KA/VE, treats
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patients with ketoconazole and doxorubicin alternating with vinblastine and estramustine.

Then a phase III trial of conventional AA therapy versus AA therapy plus three 8-week

cycles of KA/VE was conducted at M.D. Anderson Cancer Center. The aim of this trial was

to investigate whether better clinical benefit can be achieved by applying the chemotherapy

“early”, i.e., before the metastatic prostate cancer develops into the far-advanced AIPC.

The two treatment arms are denoted by AA and CH, respectively. The patient population

includes metastatic prostate cancer patients whose high risk of developing AIPC justifies

long-term, sustained, androgen ablation. The primary endpoint is the time to progression

(TTP) to AIPC, which is diagnosed by the following criteria: 1) Symptoms attributed by the

treating physician to reflect progressive cancer; 2) Radiographic progression; 3) Rising PSA,

with value greater than 1 and doubling time < 9 months; 4) Treatment with chemotherapy.

The first 3 also require demonstration of testosterone < 50 and withdrawal of antiandrogens.

More details about the clinical trial can be found in Milikan et al. (2007).

Besides the TTP, we also observed the longitudinal measurements of prostate specific

antigen (PSA) level from each patient. Carter et al. (2006) demonstrated that PSA velocity

is associated with prostate cancer death even 10-15 years before diagnosis. To further improve

the understanding of this important marker we propose to build a joint model of the TTP

and the PSA measurements.

To statisticians, a challenge posed by this clinical trial is that considerable heterogeneity

exists among the patients. Before coming to M.D. Anderson Cancer Center to seek treatment

for the metastatic prostate cancer, these patients had been treated by different physicians

with different therapies at different institutions. These differences might have a long-term

impact on the development of prostate cancer. Second, there is no completely satisfactory

way to define “early” in the natural history of metastatic prostate cancer. As a practical

solution, the clock start of the trial is defined as the initiation of the AA therapy. Thus at

the beginning of the trial, the true stage of cancer might not be exactly the same for each

patient.
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3 Notation and Model

We use v = 1, 2 to denote the two treatment arms (1 for CH and 2 for AA). Let nv be the

number of subjects in each arm. For the i-th subject on arm v, we use yvi = {yvij, j =

1, · · · , mvi} to denote the longitudinal measurements, where mvi is the total number of

repeated measurements for patient i under treatment v. We define Tvi to be the TTP, which

is the time between the start of the CH/AA treatment and the progression to AIPC. We

use tvi to denote the censoring time for censored observations, and the actual TTP for non-

censored observations. We introduce a failure indicator dvi with dvi = 1 if Tvi = tvi and

dvi = 0 if Tvi > tvi. The number of observed and unobserved TTP in each arm are denoted

by nv1 and nv0 respectively. In summary, the observed data from each subject is (yvi, tvi, dvi).

We use [X] and [X | Y ] to generically indicate the probability model for a random variable

X and the conditional distribution of X given Y .

3.1 The Likelihood

We define the sampling model for the observed data (yvi, tvi, dvi) from each patient. If

dvi = 1, the progression time Tvi is observed. Therefore all subjects with dvi = 1 belong to

the susceptible group. On the other hand, we only observe Tvi > tvi when dvi = 0. In this

case the subject could be either in the susceptible group or in the cure group. We define

a variable ωvi = 0/1 indicating membership in the cure/susceptible group. For dvi = 1, we

have ωvi ≡ 0 by definition, and Tvi = tvi. The following discussion simplifies greatly by

introducing latent variables Tvi and ωvi for subjects with censored TTP, dvi = 0.

If ωvi = 0, the subject is at risk of developing the endpoint event. We assume Tvi to be

a random sample from a distribution Gv, i.e., [Tvi | ωvi = 0, Gv] = gv(Tvi). Here gv(·) is the

density function of Gv. If ωvi = 1, the subject is a long-term survivor. We assume Tvi = tc,

where tc is an extremely long TTP that could not be observed in the clinical trial. Thus

the model for TTP is [Tvi | ωvi, Gv] = {δ(tc)}ωvi{gv(Tvi)}1−ωvi , where δ(tc) denotes a point
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mass at tc. We assume ωvi | pv
iid∼ Bernoulli(pv) with pv being the probability of cure in

treatment arm v. This model assumes that Tvi arises from the mixture of a point mass and

a continuous distribution. We interpret Gv as the therapy-specific marginal distribution of

TTP in the susceptible group.

Given Tvi, the longitudinal measurements yvi are assumed to arise from a mixed effects

model [yvi | Tvi,Ψ], indexed by parameters Ψ. We include Tvi in [yvi | Tvi,Ψ] via a regression

on u(Tvi), as a subject-specific covariate. Here u(·) is some function of Tvi. With different

specifications of u(Tvi) and [yvi | Tvi,Ψ], we can model various effects of progression time

Tvi on longitudinal profile yvi.

In summary, the likelihood factors corresponding to (yvi, tvi, dvi) are

Lvi1 = [yvi | Tvi,Ψ][Tvi = tvi | ωvi = 0, Gv][ωvi = 0 | pv], for dvi = 1,

Lvi0 = [yvi | Tvi,Ψ]I(Tvi > tvi)[Tvi | ωvi, Gv][ωvi | pv], for dvi = 0. (1)

Note that Lvi0 is an augmented likelihood with latent variable Tvi and ωvi.

For Lvi0, the two values taken by ωvi lead to two models of different dimensions. If ωvi = 0,

we have a model with Tvi being a random parameter. In contrast, Tvi is fixed at Tvi = tc if

ωvi = 1. Such a change in dimension complicates posterior simulation (Green, 1995). We use

the pseudo prior approach by Carlin and Chib (1995) to avoid this complication. In words,

we augment the smaller probability model under ωvi = 1 by defining a prior probability

model for a hypothetical Tvi (but keep tc in the regression for yvi). The new variable Tvi

has no meaningful interpretation under ωvi = 1. It is only introduced to match the model

dimensions. See Zhang et al. (2008) for details of the pseudo prior choice.

3.2 The Prior Probability Model

We assume prior independence, [Ψ, pv, Gv, v = 1, 2] = [Ψ] ·
∏2

v=1[pv] · [Gv]. The prior

specification [Ψ] and posterior inference for mixed models of repeated measurements have

been discussed extensively. See, for example, Ibrahim et al. (2004) and Guo and Carlin
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(2004). For priors [pv], v = 1, 2, we assume pv ∼ Beta(ap, bp) with ap and bp being fixed

hyperparameters.

For the unknown survival distribution Gv, we consider two choices. The first choice is

a parametric model, which assumes Gv to be indexed by a finite-dimensional parameter

vector. In this case the prior specification only involves assigning prior distributions to these

parameters. Recall that Gv is the therapy-specific marginal distribution of TTP for the

susceptible groups, which contains patients that are different in many important aspects.

A parametric model may not suffice to characterize the complexity of Gv. This difficulty

motivates the second choice, adopting a non-parametric method. A Bayesian non-parametric

prior defines Gv as a random probability measure, i.e., we assume a distribution for the

unknown distribution Gv. Specifically, we assume Gv to have a PT prior, denoted by

PT (Πv,Av). Here Πv and Av are hyper-parameters of the PT prior. See, for example,

Hanson (2006) for a recent review of PT priors. We define the parameters (Av, Πv) such

that E(G) = G̃v for a given probability model G̃v. See Zhang et al. (2008) for a details. Note

that Gv is not subject-specific but the posterior TTP distribution given PSA measurements

may have very different forms for each subject.

3.3 Posterior Inference and Model Validation

To facilitate discussion, we define the following notation. The set of observed and unobserved

TTPs under treatment v are denoted by t1
v = {tvi : dvi = 1} and T 0

v = {Tvi : dvi = 0},

respectively. We also define ω0
v = {ωvi : dvi = 0} to be the set of unknown indicators of

cure. Without loss of generality, we assume that dvi = 0 for i = 1, · · · , nv0, and dvi = 1 for

i = nv0+1, · · · , nv. Let Λ denote the collection of model parameters, including Ψ, Gv, T
0
v , ω0

v

and pv. We have the full posterior distribution:

[Λ | Y , t, d] ∝
2∏

v=1

{(
nv0∏
i=1

Lvi0

nv∏
i=nv0+1

Lvi1

)
[pv][Gv]

}
[Ψ], (2)
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where (Y , t, d) = {(yvi, tvi, dvi) : v = 1, 2; i = 1, · · · , nv}. We implement posterior inference

by Markov Chain Monte Carlo (MCMC) posterior simulation.

Before proceeding with posterior MCMC, we analytically marginalize (2) with respect

to Gv. Recall that each subject with ωvi = 0 is assumed to have a TTP arising from Gv.

Define T s
v = t1

v

⋃
{Tvi; dvi = ωvi = 0} to be the set of observed and unobserved TTP in

the susceptible group. The size of T s
v is nvs = nv −

∑nv

i=1 ωvi. Finally, let T s
vj denote the

j-th element in T s
v , with the index j assigned arbitrarily. The joint probability model of

T s
v and Gv is [T s

v , Gv] =
∏nvs

j=1[T
s
vj | Gv] · [Gv]. We marginalize Gv by replacing [T s

v , Gv]

with [T s
v ] =

∏nvs

j=2[T
s
vj | T s

v1, . . . , T
s
v,j−1] · G̃v(T

s
v1), where [T s

vj | T s
v1, · · · , T s

v,j−1] is defined in

Expression (5) of Zhang et al. (2008). The marginalization is important. Instead of working

with the infinite dimensional random distributions Gv, it allows us to manipulate only the

(finite dimensional) set of event times T s
v . Details of the MCMC transition probabilities are

in Zhang et al. (2008).

We compare the proposed model with four natural alternatives. Details of the com-

peting models and results are described later, in Section 5. We use the conditional pre-

dictive ordinates (CPO) proposed by Gelfand et al. (1992) to compare different models.

The CPO for subject i in group v (henceforth subject (v, i)) is defined as the posterior

predictive distribution evaluated for the observation from subject (v, i), conditional on all

the data minus the response from subject (v, i). Formally, letting (Y(−vi), t(−vi), d(−vi)) =

(Y , t, d) \ (yvi, tvi, dvi), we define CPOvi = [yvi, tvi, dvi | Y(−vi), t(−vi), d(−vi)]. Then we com-

pute a summary statistic called the logarithm of the pseudomarginal likelihood (LPML),

LPML =
∑2

v=1

∑nv

i=1 log(CPOvi). A small value of LPML suggests disagreement between

the observations and the model. Gelfand et al. (1992) show how the CPO for each subject,

in our case v = 1, 2 and i = 1, . . . , nv, can be evaluated through an importance sampling

scheme. We describe the computation of CPO in Zhang et al. (2008). We validate the

survival and cure aspect of the model based on subject specific martingale residuals (Barlow

and Prentice, 1988; Therneau et al., 1990; Lin et al., 2002).
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4 A Phase III Study of Prostate Cancer

We return to the clinical trial from Section 2. The phase III trial for advanced prostate

cancer had a total enrollment of 286 patients, with n1 = 137 in the CH arm and n2 = 149 in

the AA arm. Starting from the diagnosis of prostate cancer, the PSA level of each patient

was monitored for up to 10 years. On average, about 30 PSA measurements were collected

from each patient. We use yvij (j = 1, · · · , mvi) to denote the log-transformed longitudinal

PSA measurement, yvij = log(1 + PSA). The age at which yvij was recorded is denoted by

svij. As reference points, the age at diagnosis of prostate cancer is denoted by uvi0, and the

age at the initiation of the CH/AA treatment is denoted by uvi1. The number of observed

TTP events in the two treatment arms are n11 = 87 and n21 = 98, respectively. Figure 1

shows the Kaplan-Meier estimates of the survival function under the two treatments. There

are plateaus at the end of the curves. This observation suggests that a significant portion of

subjects might have an excessively long event time and a cure model is appropriate.

PSA level normally increases as the prostate enlarges with age. When prostate cancer

develops, however, it increases much faster. The typical effect of a treatment on PSA level is

a sharp drop in PSA level immediately after the treatment. Then gradually, the body adjusts

to offset the treatment effect, and the PSA level bounces back. The speed of rebound depends

on the progress of cancer. Figure 2 plots the longitudinal profiles of four randomly selected

patients. Note the variability among the profiles. Exploratory analysis indicates a negative

correlation between the PSA slope and TTP. Based on these considerations, the longitudinal

submodel [yvi | Tvi,Ψ] is specified as yvij = fvi(svij) + evij with

fvij(svij) = θ0vi + θ1visvij + γ2vi

(
e−φ0vi(svij−uvi0)+ − 1

)
+ ηv

(
e−φ1v(svij−uvi1)+ − 1

)
+

γ1v(svij − uvi1)
+ + (θ1vi + γ1v)(e

−ξvTvi − 1)(svij − uvi1)
+, (3)

where (x)+ = x if x > 0, and (x)+ = 0 otherwise. We assume independent normal residuals,

evij
iid∼ N(0, σ2). The first two terms define a line with intercept θ0vi and slope θ1vi, describing
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the baseline linear trend of PSA over age. The coefficients are subject-specific. Parameters

ηv and φ1v model the size and the slope of the drop after the intervention with CH or AA.

As age svij moves beyond uvi1, ηv{exp[−φ1v(svij − uvi1)
+]− 1} drops from 0 and eventually

levels off at −ηv, i.e., ηv controls the depth and φ1v controls the slope of the drop. A smaller

value of φ1v indicates that the treatment effect persists longer. Similarly, parameters γ2vi

and φ0vi model the size and the slope of the drop due to the initial therapy right after

the diagnosis of prostate cancer. Since we have no information about the initial therapy,

we assume γ2vi and φ0vi to vary individually. We use γ1v to model the average change of

slope in the baseline trend, induced by treatment v. Finally, model (3) reflects our belief

that subjects with flatter longitudinal profiles take longer to progress. To see this, first

we observe that in (3) the slope after treatment, i.e., the coefficient of (svij − uvi1)
+, is

θ1vi + γ1v + (θ1vi + γ1v)[exp(−ξvTvi) − 1]. Here ξv is constrained to be positive. With Tvi

changing between 0 and +∞, the slope changes from θ1vi + γ1v to 0. We substitute a

realistic upper bound for the limiting Tvi → ∞ using tc = 18 years. Matching with the

earlier notation [yvi | Tvi,Ψ] used in (2), we have Ψ = (θ0, θ1, γ1, γ2, η, φ0, φ1, ξ, σ2). Here

θ0 = {θ0vi, v = 1, 2; i = 1, · · · , nv}, η = {ηv, v = 1, 2}, and θ1,γ2, φ0, φ1, ξ are defined in

the same fashion. In (3) we use u(Tvi) = exp(−ξvTvi) − 1. In summary, besides TTP, the

covariates considered include age, treatment, and time under treatment. The dotted lines in

Figure 2 show the fitted values of the PSA profiles.

As for the PT priors, Gv ∼ PT (Πv,Av), we use Π1 = Π2 = Π and A1 = A2 = A. Thus

E(Gv) = G̃ for v = 1, 2. That is, the two PTs are centered around the same distribution

a priori. The matching hyperprior parameters for the two PT priors ensures that posterior

inference about differences between the two treatment groups reflects the evidence from data.

For the centering measure G̃, we assume a Weibull distribution, G̃(t) = Weibull(t; τ, β). Here

β and τ are, respectively, the shape and scale parameter. The partition Π is specified by

the dyadic quantile sets of G̃. The elements of A at the mth level are specified to be c ·m2,

with c being a constant.
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The mixture probability pv is assumed to be Unif(0, 1), i.e., ap = bp = 1. The prior of Ψ

and other hyperprior parameters are specified as follows. We assume (θ0vi, θ1vi, γ2vi)
′ | µ,Σ ∼

N3(µ,Σ), γ1v ∼ N(0, 100), ηv ∼ N(0, 100), ξv ∼ Ga(a, b), φ0vi ∼ Ga(a, b), φ1v ∼ Ga(a, b),

and 1/σ2 ∼ Ga(a, b), all with a = b = 0.01. The parameterization of Ga(a, b) is such that

the mean is a/b. We further assume µ ∼ N3(0, 100I) and Σ ∼ IW (3, 0.01I3). Here IW

indicates an inverse Wishart prior. The specification of hyper-parameter (τ, β) for G̃ is

based on estimation of the Weibull model M2, described in Section 5. We set τ = 4.52 and

β = 1.23, which are the posterior means of Weibull parameters from the CH group.

5 Results

Model Selection. To validate the proposed model we consider comparisons with four al-

ternative models. Let M1 denote the proposed model (2). The second model, M2, is also

based on the factorization P (T, Y ) = P (T )P (Y | T ), with P (Y | T ) being the same as

(3). The survival submodel P (T ), however, is fully parametric. We assume a Weibull

regression model for (Tvi | ωvi = 0) with an indicator of treatment being the covariate.

The third model, M3, assumes no cure group. It is obtained from model (2) by setting

ωvi = 0 for all patients. The last two models, M4 and M5, are constructed under the fac-

torization P (T, Y ) = P (Y )P (T | Y ), where the longitudinal submodel P (Y ) is specified as

yvij = fvi(svij) + evij with

fvi(svij) = θ0vi + θ1visvij + γ2vi{e−φ0vi(svij−uvi0)+−1}+

ηv{e−φ1v(svij−uvi1)+−1}+ γ1vi(svij − uvi1)
+

and evij ∼ N(0, σ2). The survival submodel P (T | Y ) is assumed to be a proportional hazard

model with a cure fraction pv. The mean longitudinal process, fvi(svij), together with the

PSA slope, f ′
vi(svi) = ∂fvi(svi)/∂svi, are included as time-dependent covariates (Yu et al.,
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2004). We assume the following hazard function,

hvi(t) = hv0(t) exp[ζ1vfvi(uvi1 + t) + ζ2vf
′
vi(uvi1 + t)], (4)

where hv0(t) is the baseline hazard and (ζ1v, ζ2v) are scaling parameters. Under M4, we model

hv0(t) by a piecewise constant function. For 0 < q1 < q2 < · · · < qJ−1 < ∞, we assume

hv0(t) = κv1 if t ≤ q1, hv0(t) = κv2 if q1 < t ≤ q2, · · · , and hv0(t) = κvJ if t > qJ−1. Gamma

priors are assumed for κvj (j = 1, · · · , J) to impose positive constraint. More details can

be found in Ibrahim et al. (2004). Under M5, we model hv0(t) by a Weibull hazard, with

Gamma priors for the scale and shape parameters. The priors of the other parameters are

specified as in M1.

The estimated LPML under M1-M5 are 4833.6, 5115.2, 5007.9, 4889.1, and 5155.0, re-

spectively. Clearly M1 achieves the best performance. The nonparametric PT model allows

the density function to deviate from the form imposed by the Weibull assumption. Assuming

a cure group also improves the model fit. Model M4 has the second best performance, which

indicates that the PSA trajectory does play an important role in prostate cancer progression.

The inferior performance of M5 suggests that the Weibull hazard assumption might be too

restrictive for our data.

The marginal distribution of TTP. The estimated cure probabilities pv (v = 1, 2) for the CH

and AA treatments are 0.167 and 0.154, respectively. For advanced prostate cancer patients,

here “cure” means that those patients take a very long time to progress to AIPC. Figure 3a

shows the estimated densities of TTP in the susceptible group, E(Gv | Y , t, d), under the two

treatments. The horizontal axis is in years after the treatments. For comparison, Figure 3b

plots the posterior estimate of Weibull densities under M2. Figure 3 clearly shows deviation

from the parametric Weibull distribution. For example, there is a small bump in the CH

density curve around 7.5, which is also visible in the Kaplan-Meier estimates in Figure 1.

This feature can not be captured by M2. In Figure 1 we also plot the posterior estimate of

the survival function under model M1, where TTP are assumed to arise from the mixture
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of a point mass at tc and an unknown distribution Gv. Finally, posterior uncertainty on Gv

is illustrated in Figure 4 by plotting ten random samples from the posterior distributions.

Because Pólya trees with a fixed partition have discontinuities at the partition points, we

have conducted kernel smoothing on the PT densities in both Figure 3 and 4.

The dependence of event times on longitudinal profiles. Under model M1, different PSA

profiles lead to different posterior distributions of Tvi. In Figure 5 we compare the PSA

profiles in the first column, the estimated posterior probability of “cure” P (ωvi = 1) and

the conditional densities of (Tvi | ωvi = 0) in the second column, and the estimated hazard

curves given ωvi = 0 in the third column, from four patients with censored TTP. Each row

corresponds to one patient, with the first two under treatment CH, and the last two under

AA. We only plot the PSA profiles after initiation of the therapies. Figure 5 demonstrates

the flexible nature of M1. Each patient has a hazard curve of a different shape.

The longitudinal model parameters. Figure 2 plots the longitudinal PSA profiles of four

patients together with their fitted values. Table 1 lists the posterior means and standard

deviations of some of the parameters in M1. The posterior estimates of ξv (v = 1, 2) are

practically identical, implying that the impact of TTP on the trajectory of PSA profiles are

similar across the two treatments. The estimates of γ1v indicate that the PSA profiles of

patients in the AA arm on average have a larger slope after treatment. The level and slope

of the drop in PSA after the CH/AA treatment are modeled by lv(t) = ηv[exp(−φ1vt)− 1],

where t ≥ 0 is the time from the start of treatment v. A larger value of ηv suggests a deeper

initial drop in PSA level. On the other hand, the larger the value of φ1v, the sooner the

treatment effect wears out (lv(t) becomes flat). We plot lv(t) in Figure 6. The patients under

CH therapy experience a deeper drop in PSA level compared to those under AA therapy.

Furthermore, the drop induced by CH therapy lasts longer.
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Continuously reassessing the risk of progression. Given a currently observed PSA profile,

we can use the proposed method to obtain the predictive distribution of TTP. The predictive

distribution provides a good assessment of progression risk. With additional PSA measure-

ments being observed, the predictive distribution can be updated to reflect newly obtained

information.

We demonstrate this learning process in Figure 7. The left panel plots the PSA profiles

of two hypothetical patients from the AA arm. Each point denotes a PSA measurement.

The two patients have their PSA level measured at the same time points after treatment.

Within the first two years the two PSA profiles are identical, and then they deviate: the

first patient’s PSA level stays low, while the second patient’s PSA level gradually goes up.

The center panel shows the continuously updated posterior estimates of P (ω = 1 | data),

based on accumulated PSA measurements up to the points marked by the corresponding

grey shades in the left panel. We interpret P (ω = 1 | data) as the individual probability

of long term survival. The solid(dotted) line denotes the first(second) patient. Similarly,

the right panel shows the continuously updated posterior estimates of E(T | ω = 0, data).

The first patients has a flat PSA profile. With more PSA measurements being collected,

both the estimates of E(T | ω = 0, data) and P (ω = 1 | data) increase steadily. The second

patient presents a different situation. The PSA profile is flat in the first two years, and then

it goes up. The proposed model captures this change. The estimated P (ω = 1 | data) first

increases, but goes down as PSA level rises. It literally drops to zero when there is strong

evidence of cancer progression. The estimates of E(T | ω = 0, data) show a similar change.

This learning process helps physicians to continuously reassess the risk of progression, and

make appropriate medical decisions.

Sensitivity analysis We conducted a sensitivity analysis to explore the impact of tc and c on

posterior inference, where tc is the assumed extremely long TTP that could not be observed

by the clinical trial and c is a parameter in the PT prior controlling how much Gv can
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deviate from G̃. Smaller values of c allow greater flexibility. We tried two values for c, (0.1,

1), and three values for tc, (15, 18, 20). The posterior means of pv and LPML are listed in

Table 2. Model fit as summarized by the LPML remains essentially uunchanged across the

considered models. The estimated cure rate slightly increases with larger c. Larger values

for c imply stronger shrinkage of Gv to the parametric centering measure G̃. The parametric

Weibull model G̃ can not represent the secondary mode that we see in the data and in the

non-parametric inference for Gv. Compensating the missing secondary mode by an increased

cure fraction could explain the change in the posterior means of pv.

6 Discussion

We have proposed an approach for the joint modeling of event times and longitudinal mea-

surements. The proposed model allows researchers to relax parametric assumptions on the

survival submodel imposed by existing methods. When we assign non-parametric PT priors

for the survival submodel, each subject can have a hazard curve of a different shape.

An important limitation of the model is that P (T, Y ) = P (T )P (Y | T ) describes the effect

of survival times T on longitudinal profiles Y , but it does not explicitly state how T is affected

by Y . Given a particular longitudinal profile, we need to carry out posterior simulation to

learn about the survival distribution. Under the traditional framework P (T, Y ) = P (T |

Y )P (Y ), the impact of longitudinal profiles on survival times is described by the longitudinal

submodel P (T | Y ). For example, in a proportional hazard model, there are expressions that

explicitly describe the relationship between the hazard function and the individual-specific

random effects derived from longitudinal measurements.

The proposed approach can readily be generalized to problems with more than two treat-

ments. Also, the longitudinal data model (3) is appropriate for the discussed application to

the prostate cancer trial. In general, any other model with a regression on the event time

could be used.
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Figure 1: The horizontal axis indicates years after treatment. The censoring times are marked

by +. “K-M Est.” denotes Kaplan-Meier estimates. “Model Est.” denotes estimates based

on model M1, where TTP are assumed to arise from the mixture of a point mass at tc and

an unknown distribution Gv. For T < 6 the Kaplan-Meier estimates and the model based

estimates of the survival curves are virtually indistinguishable.
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Figure 2: The observed longitudinal profiles and fitted values of 4 randomly selected patients.

The vertical axis indicates log(PSA+1), and the horizontal axis is age in years. Each point

denotes a PSA measurement. The dotted lines plot fitted values of the longitudinal profiles.

The vertical line marks the initiation of the AA/CH therapy.
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Table 1: Parameter Estimates in M1

Posterior Mean Standard deviation

σ2 0.209 0.005

µθ0 -23.310 1.382

σ2
θ0

13.903 2.681

µθ1 0.483 0.023

σ2
θ1

0.004 0.001

γ11 0.447 0.122

γ12 0.689 0.139

µγ2 3.654 0.211

σ2
γ2

0.131 0.016

φ11 11.077 0.864

φ12 9.471 0.585

η1 1.447 0.046

η2 1.948 0.047

ξ1 0.325 0.034

ξ2 0.326 0.034

Table 2: Sensitivity Analysis

c=0.1 c = 1

tc = 15 (0.169, 0.153), -4930.50 (0.188, 0.159), -4889.98

tc = 18 (0.167, 0.154), -4833.62 (0.182, 0.160), -4936.39

tc = 20 (0.164, 0.154), -4979.03 (0.181, 0.160), -4845.34

In each cell we list the posterior estimations of (p1, p2) and LPML.
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Figure 5: Posterior prediction for four patients with PSA profiles shown in the first column.

The horizontal axis is time in years from the start of the AA/CH therapy.
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Figure 7: The left panel plots the PSA profiles of two hypothetical patients from the AA arm.

The horizontal axis is time in years from the initiation of treatment. Each point denotes a

PSA measurement. The first patient’s PSA level stays low, while the second patient’s PSA

level gradually rises. The center panel shows the continuously updated posterior estimates

of P (ω = 1 | data), based on accumulated PSA measurements up to the point marked by the

corresponding grey shades in the left panel. The solid(dotted) line denotes the first(second)

patient. Similarly, the third panel shows the continuously updated posterior estimates of

E(T | ω = 0, data).
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