
M375T/M396C: Topics in Complex Networks Spring 2013

Lecture 01 — 01/15/13
Lecturer: Ravi Srinivasan Scribe: N/A

1.1 Introduction

Welcome to M375T/M396C. In this course we will consider mathematical concepts that
underlie the study of complex networks and, in particular, social networks. A list of topics
to be covered, the class syllabus, and any course material (lecture notes, problem sets, links
to articles, etc.) is available on the course website:

http://www.ma.utexas.edu/users/rav/ComplexNetworks/

1.2 Social networks and small-world property

In order to study mathematical models that have some basis in reality, we need to have a
sense of the properties that real-world networks share. One particularly important one is
the small-world property.

Most of us have had the experience that one of our friends knows—or is friends with
someone who knows—a person we believed to be socially distant, like a celebrity or a famous
politician. This property has garnered fame under the notion of “six degrees of separation,”
which hypothesizes that we are each connected to any other person on the planet by only
six links, on average. The small-world effect is necessary for many important features of a
social network to take hold: fast and widespread propagation of information, tipping point
phenomena where small changes have large effects, and network robustness and resiliency.

1.2.1 Milgram’s experiment

The first evidence of a small-world property was discovered in a series of groundbreaking
experiments by the sociologist Stanley Milgram in the 1960’s. At the time there was no
notion of what a social graph looked like—remember, Facebook didn’t exist yet! To infer
the underlying network structure, Milgram picked a “target” in Boston and sent folders
with a description of the target to an arbitrary sample of people across the country. These
participants were asked to add their name to the folder and send it to a friend or acquaintance
who would be most likely to know the target or someone who does (i.e., greedy routing).
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Figure 20.1: Social networks expand to reach many people in only a few steps.

people brings us to more than 100 · 100 · 100 = 1, 000, 000 people who in principle could be

three steps away. In other words, the numbers are growing by powers of 100 with each step,

bringing us to 100 million after four steps, and 10 billion after five steps.

There’s nothing mathematically wrong with this reasoning, but it’s not clear how much

it tells us about real social networks. The difficulty already manifests itself with the second

step, where we conclude that there may be more than 10, 000 people within two steps of you.

As we’ve seen, social networks abound in triangles — sets of three people who mutually

know each other — and in particular, many of your 100 friends will know each other. As a

result, when we think about the nodes you can reach by following edges from your friends,

many of these edges go from one friend to another, not to the rest of world, as illustrated

schematically in Figure 20.1(b). The number 10, 000 came from assuming that each of your

100 friends was linked to 100 new people; and without this, the number of friends you could

reach in two steps could be much smaller.

So the effect of triadic closure in social networks works to limit the number of people

you can reach by following short paths, as shown by the contrast between Figures 20.1(a)
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Figure 1.1. Which one looks more realistic?

Two experiments showed that of the ∼ 25% of folders that were actually received by the
target, their paths had an average length of 6.2 links—hence, “six degrees of separation.”
It was noted that these paths were not random, with local links correlated to gender and
friends/family and global links typically related to hometown or work. Furthermore, several
intermediaries received multiple folders, ensuring that they somehow play a central role in
this routing network.

Milgram’s observations have been confirmed in modern settings, most notably in an
online experiment by Dodds and Watts using e-mail forwarding. The small-world property
is also evident in networks where the social graph is known, like when computing one’s Erdős
number (distance to Paul Erdős in a co-authorship network) or Bacon number (distance to
Kevin Bacon in an acting collaboration network). In an analysis of the largest social graph
to date, a 2011 study of Facebook’s 721 million users found an average number of 4.74 links
between users. These experiments provide good evidence that it is, in fact, “a small world,
after all.”

1.2.2 A first guess at a mathematical model

To build a nave model of a social graph, consider the following reasoning. Suppose you have
500 direct acquaintances, each of which has 500 direct acquaintances, and so forth. If each
person’s set of acquaintances is disjoint, then the resulting graph is a tree. The result is
that 500 people (0.00017% of US population) are one link away from you, 250K (0.083% of
US population) are two links away, and 125 million (42% of US population) are three links
away. Notice that we have a small-world effect in this model.

More generally, suppose each person has λ acquaintances. The total number of people d
links away equals n = λd. Then d = lnn/ lnλ, so that the diameter of this simple network
scales logarithmically with the number of people. This is a tell-tale sign of a small-world
effect which we will observe in a variety of settings throughout the course. Is this model
sufficient to understand a real-world network?

The answer, of course, is no. The unrealistic assumption of disjoint sets of direct contacts
rules out the phenomenon of clustering. In any social context, it is reasonable to expect that
that your friends are likely to be friends with each other. This leads to cross-connections
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Networks: Lecture 1 Introduction

Visual Examples—1

Figure: The network structure of political blogs prior to the 2004 U.S. Presidential
election reveals two natural and well-separated clusters (Adamic and Glance, 2005)

4

Figure 1.2. A typical real-world network. Note the existence of two dense clusters that are well-separated,
and that some nodes may have many more connections than others.

across levels of the simple tree model, i.e., triads (see Figure 1.1). A quick calculation demon-
strates that if each acquaintance only has a fraction m ∈ (1/λ, 1] of “new” acquaintances
then the maximum distance from you is d = (lnm+lnn)/(lnm+lnλ) ≈ lnn/(lnm+lnλ) for
large n. Thus, it is possible to drop the disjointness assumption and still have the diameter
still grow logarithmically, albeit at a faster rate.

Another reason that the simple model is incorrect is that social acquaintances are biased,
and often lead to people who are significantly more well-connected than others. The appear-
ance of power-law distributions in the number of contacts per person, etc., is something we
will look at in greater detail later.

To summarize, there are several criterion that we would like our models to satisfy in
order to be in accordance with reality:

• Small-world effect : small diameter of social graph

• Clustering : prevalence of triads

• Algorithmic small-world : efficiency of greedy routing

• Power-laws : some people are significantly better-connected than others

1.3 Landau symbols

We will make frequent use of Landau notation (i.e., big-O notation) throughout this course.
Landau symbols are used to describe the asymptotic behavior of a function relative to another
function, as we define precisely below.

Let f : N→ R and g : N→ R. We say that

f = O(g) ⇐⇒ lim sup
n→∞

∣∣∣∣f(n)

g(n)

∣∣∣∣ < +∞.
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Equivalently, f = O(g) if and only if there exist constants C and N such that |f(n)| ≤
C|g(x)| for all n > N . This implies that f grows no faster (or decays no slower) than g as
n→∞.

Next, we say that

f = o(g) ⇐⇒ lim
n→∞

∣∣∣∣f(n)

g(n)

∣∣∣∣ = 0.

In this case, f grows strictly slower (or decays strictly faster) than g as n→∞.
We can use big-O and little-O notation to define all the other Landau symbols. In

particular,

f = Ω(g) ⇐⇒ g = O(f)

f = ω(g) ⇐⇒ g = o(f)

f = Θ(g) ⇐⇒ f = O(g) and g = O(f).

A handy table of analogies to inequalities is given below:

Notation Analogy

f = O(g) f ≤ g
f = o(g) f < g
f = Ω(g) f ≥ g
f = ω(g) f > g
f = Θ(g) f = g
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