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2.1 Mathematical description of a network

The most elementary notion of a network is simply that of a graph—a set of vertices
and adjoining edges. Let V,, = {1,...,n} be a set of n € N nodes, and E, = {(i,7) :
there is an edge connecting i € V,, to j € V,} be the set of edges. We define the graph
G, = (Vy, E,). The edges connecting the nodes can be directed or undirected depending on
the network under consideration. To illustrate, a network with undirected edges is the Face-
book social graph (friendship is considered to be mutual), while an example with directed
edges is the graph of Twitter users (users can follow others without reciprocation).

In our discussion we will often find it useful to refer to the distance between two arbitrary
nodes. Define d;; to be the length of the shortest path that connects node ¢ and node j (if
there is no such path, define d;; = +00). Then, the diameter d of the graph G, is defined
to be the length of the “longest” shortest path,” i.e.

iam (G,,) lrglea&i j
In addition, we will say that a subset V' C V,, is connected if there exists a path between
any two nodes in V’. Equivalently, the subgraph G' = (V', E’) of G,, (where E’ consists of
all edges between nodes in V) is connected if the diameter of G is finite.

2.2 Random graph models

To begin studying networks, we seek simple mechanisms from which we can generate inter-
esting and mathematically tractable models. Since the typical network we observe in reality
is the byproduct of random processes with some underlying structure, it seems reasonable
for us to use random graphs as a first approximation. We can then determine whether the
model in question has properties that we observe in empirical studies (e.g., small-world effect,
clustering, power law distributions, etc.). To summartize, we use the following method:

1. For a fixed n € N, put a probability distribution P,, on the set G,, of undirected graphs
with n nodes. Since an edge may exist between any pair of nodes, the number of such

graphs is |G, | = 2(3).
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Figure 2.1. Tree structure of a Galton-Watson branching process.

2. Consider large networks, i.e., take n — co.

3. Determine if desired properties are retained in the limiting graph. That is, for a given
property A we would like to check that P, (G, satisfies property A) — 1 as n — 0.

There is a vast array of random graph models, each of which has been proposed to reflect
particular desired properties. In this course, we will only discuss a subset of such models
which have played an especially significant role in improving our understanding of network
structure.

2.3 Galton-Watson branching processes

The simplest example of a random graph is a Galton- Watson branching process, introduced
by Sir Francis Galton in 1873 to represent the geneology of a population. This process is
characterized by the probability distribution of the number of children of any given individ-
ual, known as the offspring distribution. Starting with one root node, we suppose that each
node has a random number of children. Let £ denote the number of children of the i*" mem-
ber of the n'™ generation. We assume that the set {£'}; ,en is comprised of independent and
identically distributed (iid) random variables, with the same distribution as some random
variable £. It can be seen that the resulting random graph is a tree, which we denote T .

In our study of branching processes, we will observe what are known as phase transitions
(sometimes referred to as tipping points in sociological literature). The most important of
these in the context of population dynamics is a threshold for the probability pey that the
population goes extinct. We will show that this transition is expressed in terms of the mean
value 1 = E[¢] of the offspring distribution, i.e., the average number of children of any given
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individual. In particular, we observe the following three regimes

Subcritical: p <1 = Pext = 1
Critical: p=landP(=1)<1 = pe =1
Supercritical: pu > 1 = Pext < 1

The intuition for this result is as follows. If each individual has, on average, less than one
child then we can expect the population to become extinct since we expect each subsequent
generation to consist of less individuals than the one before it. Analogously, if each individual
has more than one child on average, we should expect that there is at least some nonzero
chance that the population will survive. In the critical case, as long as we rule out the
deterministic situation in which each individual has exactly one child, extinction should
occur as well.

We will restate and prove this intuitive result next time but first we require a little more
setup.

Y

Definition. The probability generating function of a random variable Y is ¢y (s) = E [SY]

which is well-defined for all s € C such that |s| < 1.

If Y takes values in N, then
dy(s) =Y P(Y =k)s" =P(Y =0)+ Y P(Y = k)s*.
k=0 k=1

Notice that ¢y(0) = P(Y = 0) and ¢, (0) = P(Y = 1). In general, we see that the
distribution of Y can be recovered from the probability generating function since ¢§f ) (0)/k! =
P(Y = k). Note that ¢} (s) and ¢ (s) are both strictly positive for 0 < s < 1 if P(Y = 0)
and P(Y = 1) are nonzero. In this case, ¢y (s) is an increasing function which is convex (i.e.,
concave up). In the next lecture, we will use these properties to study the behavior of the
branching process in the regimes discussed above.
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