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3.1 Galton-Watson branching processes (cont’d)

Recall that ξni be the number of children of parent i in generation n of the randomly generated
tree T . Here, the {ξni }i,n∈N are iid with the same distribution as some random variable ξ
with given distribution pk = P(ξ = k), k ∈ N (i.e., the offspring distribution). Define Xn to
be the number of children in generation n, so that

Xn+1 =
Xn∑
i=1

ξni .

Let µ = E[ξ] denote the mean of the offspring distribution and φξ = E
[
sξ
]

=
∑∞

k=0 s
kpk the

probability generating function of ξ. Furthermore, let pext = P(|T | <∞) be the probability
that the tree T has finite size—that is, the probability that the population goes extinct. We
will now how this extinction probability varies as a function of µ.

3.1.1 Phase transition for extinction probability

Theorem 3.1. Let µ, φξ, and pext be defined as before. Then the following statements hold:

1. Subcritical regime: If µ < 1, then pext = 1.

2. Critical regime: If µ = 1 and p1 < 1, then pext = 1.

3. Supercritical regime: If µ < 1, then pext < 1 and pext is the smallest solution of
s = φξ(s).

Proof: Let p
(n)
ext = P(Xn = 0) be the probability that extinction happens at or before

generation n. Note here that {Xn = 0} ⊆ {Xn+1 = 0} for all n ∈ N, since if the number
of individuals in the nth generation is zero then the number of individuals in all subsequent
generations remains zero. So p

(n)
ext is increasing in n and is bounded above by 1. Hence,

pext = limn→∞ p
(n)
ext exists, but it remains to be seen what its value is. As we now show, pext

satisfies the equation pext = φξ(pext) and is therefore the smallest fixed point of the map
s 7→ φξ(s).
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Define φn(s) = E
[
sXn
]

to be the probability generating function of Xn. The number
of children in generation n depends on the number of children in generation n − 1, which
depends on the number of children in generation n−2, and so on. In particular, the number
of children in generation n depends on the number of children X1 in the first generation.
Conditioning on X1 and using the tower property of conditional expectation, we have

E
[
sXn
]

= E
[
E
[
sXn|X1

]]
=
∞∑
k=0

E
[
sXn|X1 = k

]
P(X1 = k).

Let us denote by X̃
(j)
n−1 the total number of individuals of generation n which are descendants

of the jth member of the first generation. Then,

E
[
sXn|X1 = k

]
= E

[
sX̃

(1)
n−1+···+X̃

(k)
n−1

]
= E

[
sX̃

(1)
n−1

]
· · ·E

[
sX̃

(k)
n−1

]
=
(
E
[
sXn−1

])k
.

Here, we have used that the subtrees T1, . . . , Tk generated from individuals of the first gen-

eration are independent and have the same distributional properties, so that the
{
X̃

(j)
n−1

}k
j=1

are iid with the same distribution as Xn−1. Since P(X1 = k) = pk we obtain

φn(s) =
∞∑
k=0

(
E
[
sXn−1

])k
pk

=
∞∑
k=0

(φn−1(s))
k pk

= φξ (φn−1(s)) .

Using that φn(0) = P(Xn = 0) = p
(n)
ext, the previous display implies p

(n)
ext = φξ

(
p
(n−1)
ext

)
. We

take n→∞ to find pext = φξ(pext).
Alternatively, we can use a depth-first argument in contrast to the breadth-first argument

given above to show the same result. To see this, note that

pext = P(|T | <∞) =
∞∑
k=0

P(|T | <∞|X1 = k)P(X1 = k).

Since

P(|T | <∞|X1 = k) = P(|T1| <∞, · · · , |Tk| <∞)

= P(|T1| <∞) · · ·P(|Tk| <∞)

= (P(|T | <∞))k ,
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Figure 3.1. The graph of φξ(s) versus s for 0 ≤ s ≤ 1 in the subcritical, critical, and supercritical cases,
respectively.

we again find that

pext =
∞∑
k=0

(pext)
k pk = φξ(pext).

To finish the proof, consider the behavior of φξ for different values of µ. Recall from the
previous lecture that we can recover the distribution of a random variable from its probability
generating function by differentiating it repeatedly. In particular,

φ′ξ(s) =
∞∑
k=1

ksk−1pk ≥ 0, φ′′ξ (s) =
∞∑
k=1

k(k − 1)sk−2pk ≥ 0

which implies that φξ is increasing and convex for 0 ≤ s ≤ 1. If, in addition, p0 + p1 < 1
then we must have pk > 0 for some k ≥ 2, so that φ′′(s) > 0 and φξ is strictly convex. It is
also easy to check that φξ(0) = p0, φξ(1) = 1, and φ′ξ(1) =

∑∞
k=1 kpk = µ. To conclude:

1. If µ < 1, convexity implies that the only fixed point of the map s 7→ φξ(s) is s = 1.
Therefore, pext = 1.

2. If µ = 1 and p1 < 1, we must have that p0 + p1 < 1 (since otherwise pk = 0 for all
k ≥ 2 which implies µ = 0 · p0 + 1 · p1 < 1). So φξ is strictly convex and again the only fixed
point of the map s 7→ φξ(s) is s = 1, giving pext = 1.

3. If µ > 1, convexity implies that the map s 7→ φξ(s) has two fixed points, the smaller
of which is pext < 1. In particular, if p0 = 0 then φξ(0) = 0 and pext = 0. On the other hand,
if p0 > 0 then pext > 0 as well. �

3.1.2 Branching processes and random walks

Remarkably, there exists a connection between branching processes and one of the most fun-
damental objects in probability theory: a random walk. This correspondence will allow us to
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study properties of branching processes using classical results. A random walk {Sn : n ≥ 0}
on Z is defined by

Sn = Sn−1 +Xn, n ≥ 1
S0 = 0

where {Xn}∞n=1 are iid random variables with some known distribution.
How can we construct a correspondence to branching processes? Recall that the two

most common methods of exploring a given tree T are:

• Breadth-first search: Here, we visit all children of a node i ∈ T before visiting any
grandchildren of node i.

• Depth-first search: For a given node i ∈ T we choose one of its children and recursively
visit descendants of that child before visiting any other children of node i.

As we now show, one-by-one exploration of nodes in a breadth-first manner yields a random
walk. This is seen as follows. Construct a queue Q so that for each time k ≥ 0, we say that
a node is active if it resides in Q. At each time step, we pick any one node in Q for removal
(i.e., deactivate it) and add its children to Q. Only the root node resides in Q at k = 0.
Letting Ak be the number of active nodes at time n, we find that {Ak : k ≥ 0} satisfies

Ak = Ak−1 − 1 + ξk, k ≥ 1
A0 = 1

where {ξk}k∈N
iid∼ ξ are sampled from the offspring distribution. Therefore, the number of

active nodes follows a random walk and the total population equals the first time the queue
is empty:

|T | = min {k ≥ 0 : Ak = 0} .

3.1.3 Chernoff bounds and population size

Since when µ < 1 we know that the population is finite with probability 1, it is natural to
ask if we can estimate the size of the total population. In particular, can we find an upper
bound on the probability that the size of the tree at extinction exceeds k? Indeed we can,
and this bound is exponentially decreasing in k with a rate given in terms of the offspring
distribution.

We will prove this result using a concentration inequality known as a Chernoff bound.
If X1, . . . , Xn are iid random variables with the same distribution as a random variable X,
the law of large numbers guarantees limn→∞ P (n−1

∑n
i=1Xi ≥ E[X] + ε) = 0 for all ε > 0.

Chernoff bounds allow us to quantify how quickly this probability goes to 0 in terms of a
rate function

h(x) = sup
θ≥0

{
θx− logE

[
eθX
]}
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(for those familiar with more advanced probability, note that this quantity is of prime impor-
tance in large deviation theory). Before we state and prove this, we first recall the following
elementary result:

Lemma 3.2. (Markov’s inequality) For a non-negative random variable X ≥ 0 and a ≥ 0,

P (X ≥ a) ≤ E[X]

a
.

Proof: Let I{X≥a} be the indicator function that the event {X ≥ a} occurs. Since aI{X≥a} ≤
X, taking the expected value of each side implies aP (X ≥ a) = aE

[
I{X≥a}

]
≤ E[X]. �

Lemma 3.3. (Chernoff bound) If {Xi}i∈N
iid∼ X, then for any a ∈ R one has

P

(
n∑
i=1

Xi ≥ na

)
≤ e−nh(a).

Proof: Letting θ ≥ 0, we have

P

(
n∑
i=1

Xi ≥ na

)
= P

(
eθ

∑n
i=1Xi ≥ enθa

)
≤ e−nθaE

[
eθ

∑n
i=1Xi

]
by Markov’s inequality (which we can apply since eθ

∑n
i=1Xi is a non-negative random vari-

able). Since

E
[
eθ

∑n
i=1Xi

]
= E

[
eθX1eθX2 · · · eθXn

]
=
(
E
[
eθX
])n

= en logE[eθX],

substituting back into the last expression implies

P

(
n∑
i=1

Xi ≥ na

)
≤ exp

(
−n
{
θa− logE

[
eθX
]})

.

The result follows by choosing the value of θ ≥ 0 which minimizes the r.h.s. �

The Chernoff bound is only useful for a such that h(a) > 0. Assume that there exists
b > 0 such that E[ebX ] < ∞, since otherwise h(a) = 0 for all a. This also guarantees
g(θ) = θa− logE

[
eθX
]

is finite and differentiable for 0 ≤ θ < b. Then for a > E[X], we have
g′(0) > 0 so h(a) is strictly positive.

Applying the previous result we have the following bound on the total population of a
Galton-Watson branching process:
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Theorem 3.4. Let h(x) = supθ≥0
{
θx− logE

[
eθξ
]}

be the rate function associated to the
offspring distribution. Then for all k ∈ N,

P(|T | > k) ≤ e−kh(1).

This bound is only useful when h(1) > 0, which we can guarantee when µ < 1 (i.e., the
subcritical case).

Proof: Let {Ak : k ≥ 0} be the one-by-one exploration process of T . Then

P (|T | > k) = P (A1 > 0, . . . , Ak > 0)

≤ P (Ak > 0)

≤ P

(
A0 +

k∑
i=1

ξi > k

)

= P

(
k∑
i=1

ξi ≥ k

)
≤ e−kh(1).

�
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