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5.1 Thresholds for Erdős-Rényi random graphs (cont’d)

Recall that in the last lecture, we used average analysis to give a derivation of threshold
functions for two properties of Erdős-Rényi random graphs G(n, p). We now present argu-
ments that illustrate how this heuristic, along with the so-called second moment method, can
be used to obtain rigorous proofs of these transitions.

Theorem 5.1. The threshold for the existence of an edge (i.e., a tree with 2 nodes) is
t(n) = n−2.

Proof: Let N denote the number of edges. There are two claims to prove:
(a) P (N ≥ 1)→ 0 as n→∞ if p(n) = o (n−2)
(b) P (N ≥ 1)→ 1 as n→∞ if p(n) = ω (n−2).
By Markov’s inequality, we have P (N ≥ 1) ≤ E[N ]. Therefore, if p(n) = o (n−2) then

E[N ] =
(
n
2

)
p(n) = Θ (n2p(n))→ 0 and we have shown (a) holds. To prove (b), notice that

P (N ≥ 1) = 1− P (N = 0)

= 1− (1− p(n))(
n
2)

= 1− exp

[(
n

2

)
log(1− p(n))

]
.

From the Taylor series representation of f(x) = log(1− x) about x = 0, we observe that

log(1− p(n)) = −
∞∑
k=1

p(n)k

k
.

Now suppose p(n) = ω (n−2). Since
(
n
2

)
= Θ (n2), we find that

−
(
n

2

)(
p(n) +

p(n)2

2
+ . . .

)
→ −∞

so exp
[(

n
2

)
log(1− p(n))

]
→ 0 as n→∞. Therefore, (b) holds as well. �

05-1



M375T/M396C Lecture 05 — 01/29/13 Spring 2013

5.1.1 Second-moment method

Proving a transition for the appearance of a tree with k nodes will require bounds on the
variance of a sum of random variables. While we only illustrate this method in the case
k = 3, a similar argument can be used to prove that t(n) = n−k/(k−1) is a threshold for any
given k. We leave this to the interested reader.

Theorem 5.2. The threshold for the existence of a tree with 3 nodes is t(n) = n−3/2.

To show this first requires the following two lemmas:

Lemma 5.3. (Chebyshev’s inequality) For any random variable X,

P (|X − E[X]| ≥ k) ≤ V ar(X)

k2
.

Proof: Apply Markov’s inequality to the non-negative random variable |X − E[X]|. �

Lemma 5.4. If X =
∑n

i=1 Yi where Y1, . . . , Yn are random variables such that 0 ≤ Yi ≤ 1
for every i, then

V ar(X) ≤ E[X] +
∑
i 6=j

Cov (Yi, Yj) .

Proof: To begin,

V ar(X) = V ar

(∑
i

Yi

)
=
∑
i

V ar (Yi) +
∑
i 6=j

Cov (Yi, Yj) .

Now observe that

V ar (Yi) = E
[
Y 2
i

]
− (E [Yi])

2 ≤ E
[
Y 2
i

]
≤ E [Yi]

since 0 ≤ Yi ≤ 1 gives Y 2
i ≤ Yi. Substituting

∑
i E [Yi] = E[X], we conclude the proof. �

We will now be able to prove Theorem 5.2:

Proof: Let N be the number of trees with 3 nodes. Again we must show
(a) P (N ≥ 1)→ 0 as n→∞ if p(n) = o

(
n−3/2

)
(b) P (N ≥ 1)→ 1 as n→∞ if p(n) = ω

(
n−3/2

)
.

As before, the proof of (a) follows by applying Markov’s inequality and using the average
analysis from the previous lecture. To prove (b), note that we cannot simply use Markov’s
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inequality again since the bound would be in the wrong direction. Instead, we begin by
noting the following containment of events:

{N = 0} ⊆ {|N − E[N ]| ≥ E[N ]} .

Combining with Chebyshev’s inequality yields

P (N = 0) ≤ V ar(N)

E[N ]2
.

Our plan is to bound the right hand side of this inequality by applying the lemma above.
To do so, we must express N as a sum of [0, 1]-valued random variables. For an unordered
pair of nodes e = (i, j), let Ie = I(i,j) denote the indicator function of the event that an edge
exists between (i, j). Then we have

N =
∑

(i,j),(j,k)

I(i,j)I(j,k) =
∑

{e,e′} adj.

IeIe′ .

where the last sum is taken over pairs that share a node (i.e., over all adjacent edges). By
the previous lemma,

V ar(N) ≤ E[N ] +
∑

{e,e′}6={f,f ′}

Cov (IeIe′ , IfIf ′) .

Here, {e, e′} and {f, f ′} are unordered pairs of adjacent edges. Now if {e, e′} ∩ {f, f ′} = ∅
then Cov(IeIe′ , IfIf ′) = 0. How many non-zero terms remain? To begin with, there are(
n
3

)(
3
2

)
pairs of adjacent edges {e, e′}. Given {e, e′} there are two possibilities for an edge f

such that either f = e or f = e′. Finally, there are n− 2 remaining choices for an additional
edge f ′ adjacent to f . Altogether, this gives

(
n
3

)(
3
2

)
2(n − 2) = Θ(n4) non-zero terms of the

form Cov(IeIe′ , IfIf ′). For these terms, we have

Cov(IeIe′ , IfIf ′) ≤ E[IeIe′IfIf ′ ] = p(n)3.

To see that the last equality holds, suppose that f = e′. Then IeIf ′ = I2e = Ie, so

E[IeIe′IfIf ′ ] = E[IeIe′If ′ ] = E[Ie]E[Ie′ ]E[If ′ ] = p(n)3.

Combining these computations with the lemma above and the fact that E[N ] = Θ
((
n3/2p(n)

)
2
)

(shown in the last lecture), we obtain

P (N = 0) ≤ V ar(N)

E[N ]2

≤
Θ
((
n3/2p(n)

)
2
)

+ Θ (n4p(n)3)

Θ ((n3/2p(n)) 4)

≤ C

(
1

(n3/2p(n))2
+

1

n2p(n)

)
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for some constant C > 0. The right hand side converges to 0 as n → ∞ if p(n) =
ω
(
n−3/2

)
. �

5.1.2 Giant component, connectivity, and diameter

There are several significant phase transitions in the Erdős-Rényi model, which we now
summarize.

Let Ci denote the ith largest connected component of the graph G(n, p). A dramatic
change in the structure of the graph occurs at the threshold t(n) = n−1. Below the threshold,
all components of G(n, p) are disconnected trees. Above it, we observe the formation of a
single giant component which contains a positive fraction of the nodes:

• |C1| = O(log n), if p(n) = o (n−1)

• |C1| = Θ
(
n2/3

)
and |C2| = O(log n), if p(n) = Θ (n−1)

• |C1| = Θ(n) and |C2| = O(log n), if p(n) = ω (n−1).

If we increase p(n) past the threshold t(n) = n−1, we observe transitions in the connectedness
and diameter of the random graph as well. Below the threshold t(n) = n−1 (log n + ω(1)),
the graph is disconnected (i.e., it has isolated nodes), while above it the graph is connected.
Furthermore, we should expect that by increasing p(n) further the diameter of the connected
graph will become small. Indeed, above the threshold t(n) = n−1ω(log(n)) the diameter
of the graph is O(log n) and G(n, p) has the small-world property. We will discuss these
transitions at length in the next lecture.
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