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6.1 Proofs for emergence of giant component

We now sketch the main ideas underlying the formation of a giant component in the Erdos-
Rényi model, referring the interested reader to the references for additional details.

To begin, let A = np denote the average degree as n — oo and p = p(n) — 0. First
we consider the subcritical regime A < 1 and the supercritical regime A > 1, for which we
can use branching processes to estimate the size of the largest component. For the critical
case A = 1, we provide an elegant scaling argument that utilizes more advanced topics in
probability theory: martingales and Brownian motion.

6.1.1 Subcritical regime (A < 1)

As before, we let C; be the it® largest component of G(n,p). In addition, we will say that
an event A happens almost surely (denoted a.s.) if P(A) = 1.

Theorem 6.1. If A\ < 1, a graph in G(n, p) has no connected component of size larger than
O(logn) a.s. That is, there exists a constant « such that P (|C}| > alog(n)) — 0 asn — oo.

Proof: (Sketch) Recall the Chernoff bound on the tail distributions in the Galton-Watson
branching process:

P(|T|> k) <e k@), h(z) = sup {0z — logE ["] } . (6.1)
0>0

We examine the size of the largest component as follows. Let v be some node in the graph
G(n,p). We will bound the size of the component to which v belongs by comparing its
breadth-first spanning tree to a Galton-Watson branching process T with offspring distribu-

tion & ~ Binomial(n — 1, p) ~ Poisson(A). This is seen as follows.
Let w be a neighbor of v and 7 be the number of neighbors of v. We see that v has
n — 7 — 1 neighbors other than w, and each has a probability p of being w’s neighbor. We can
view these nodes as possible children of w in the spanning tree. Note that w hasn —j — 1
possible children, less than the n — 1 possible children we had from the branching process
T. Therefore, repeating this procedure for every node in the breadth-first spanning tree of
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v, we obtain a modified Galton-Watson process in which the number of possible children
decreases with each generation and thus dominated in size by T.
Now denote by C(v) be the connected component to which v belongs. According to the

preceding argument,
P(|C(v)| > k) <P(|T| > k) < e ¥

where h is the rate function corresponding to an approximately Poisson(\) offspring distri-
bution. But what is h? Assuming £ is exactly Poissonian, we have

E [%] = ieek 6_];)‘k _ i ()\eelz:“e‘A e — A1)

k= k=0

[e=]

Now set g(d) = 0z — logE [¢®] = 0z — A(e” — 1). Note that ¢'(f) = = — e’ = 0 at
0 = log(z/X). Since ¢"(#) = —Xe? < 0 for all § > 0, we know that g(f) reaches its maximum
at 0. Therefore,

A x x
h(z) = supg(0) = g(B) = zlog (2) = A (% —1
(x) 22139” 9(0) xog(Q <A )
and h(1) = —log(A\) + A —1 > 0 for any A # 1. Fix § > 0 and let £ = h(1)"*(1 + J) logn.
Then,
P<|C(U>| > k}) < e—(1+5)logn _ n—(l—i—é)

and the probability that the size of the largest component exceeds k satisfies

P(|Cy]| > k) <P (m?x |C(vy)] > k‘) < ZIP’(|C(Uj)| > k) = nn 019 = 9,
j=l.n

j=1

Since ¢ is arbitrary, we conclude P (|Cy| > alog(n)) — 0 as n — oo for all « sufficiently large
U

6.1.2 Supercritical regime (A > 1)

Theorem 6.2. If A > 1, a graph in G(n,p) has a unique giant component containing a
positive fraction of the vertices while no other component contains more than O(logn)
vertices. Precisely, let pex(11) be the extinction probability of a Galton-Watson branching
process with parameter . Then for any € > 0 and some constant o, we have

"

IO _ (1 = pou)| < ¢ and |6] < alogn) 1
n

as n — oQ.
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Proof: (Sketch) For simplicity, we only consider the case 1 < A < 2. We again identify
the connected component C'(v) of some vertex v by considering its breadth-first spanning
tree. In this case, we will bound the size of C'(v) from below using another Galton-Watson
branching process. The procedure is less straightforward than in the subcritical case since
we would like to show existence of a giant component, but the breadth-first spanning tree
of v has a decreasing number of possible offspring with each generation. To remedy this, we
consider a branching process with a strictly smaller average number of offspring but which
still remains supercritical.

Let d = VA > 1, and define 7 = (2 — d)n and § = d/n. Note that as long as our
breadth-first process has explored less than (d — 1)n nodes, there are at least n unexplored
nodes. In this case, each node in the spanning tree has at least n possible children, each
with probability p > p. This implies that this tree is larger in size than a branching process
with offspring distribution £ ~ Binomial (72, p). Ordering the vertices in C'(v), we now apply
the following procedure starting with ¢ = 1:

1) Consider node v;.

2) The component to which v; belongs to in the limiting graph as n — oo has infinite size
with constant probability at least 1 — pey(d). In this case, we have successfully identified a
giant component of size |C(v;)| > (d — 1)n.

3) Otherwise, by the argument given in the proof of the subscritical case we have that
|C(v;)| > alogm with probability at most n=? for some § > 0.

Now repeat the same process with the next unexplored vertex v;,;. The probability we
have not found a giant component after k < n steps equals (pext(d))”, which is less than n~"
for any given v > 0 if & > —~logn/logpexi(d). The number of nodes belonging to small
components which have been explored after k steps is then O ( (log n)2) < n, so there remain
enough unexplored nodes for this procedure to work.

Lastly, we would not only like the existence of a giant component with high probability,
but that |C1] = (1 — pext(A)) n. While we do not show this here, it is reasonable that this
should be true by the law of large numbers (in the number of nodes). That is, |Cy| /n should
converge to the probability that the spanning tree started from a node does not become
extinct, which is approximately 1 — pey (). O

6.1.3 Critical regime (A =1)

Theorem 6.3. If A = 1, then G(n,p) has a largest component whose size is of order n*?
a.s. That is, there exist constants ai,as > 0 such that P (a;n*? < |Cy] < agn®?) — 1 as
n — 0o.

To show this, we will use a result from probability theory known as the martingale central
limit theorem.
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Definition. A stochastic process { X} : k > 0} is a martingale if E [| X|] < oo and
E[X; — Xe1|Xo,. .., Xpa] = 0

for every k > 1. That is, a martingale is a process in which the average of any increment is
zero given its past history.

Lemma 6.4. (Martingale central limit theorem) Suppose { X}, : k > 0} is a martingale such
that | Xy — Xy_1| < M and |Xo| < M a.s. for some fixed M and for all k > 1. Assume
further that Var [ X — Xy_1|Xo, ..., Xx_1] =1 as k — oo. Then for all t > 0,

X o+ X
L it 2w,
vm

as m — oo, where (W), is a standard Brownian motion.

Using this we obtain a proof for the critical regime:

Proof: (Sketch) Let {Ay : k£ > 0} be the random walk associated to the one-by-one explo-
ration of the breadth-first spanning forest of the graph (where the forest is comprised of the
spanning trees of the various disconnected components). Recall that

Ay =Apr —14+&, k2>1
A(]:l

where Ay, is the size of the queue of explored nodes at time k, and &, is the number of children
of the k™ deactivated node. Given Ao, ..., Ap_1,

&k ~ Binomial (n — k — 1 — Aj_1,p) ~ Binomial(n — k, p)

for n > k.

To examine the size of largest component at the critical value, we consider A = 14¢cn~1/3
—00 < ¢ < 00. As ¢ passes 0 we should observe the emergence of a giant component whose
size scales like n?/3. As the following argument shows, the —1/3 exponent of the perturbative
term is the appropriate scaling in which to see this critical behavior.

To begin, since p = A\/n = n~! + en™4/3,

E[Ay — Ag1|Ao, ..., A ) =E[&] -1~ (n—kp—-1=— — — — —=

Var [Ak — Ak,1|A0, Ce. ,Akfl] =Var [gk] ~ (n — k)p(l — p) ~
Letting

c k. ck
Xk:Ak_Ak—l_(m___W)a
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Figure 6.1. Example of a breadth-first spanning forest.

we see that {X}, : £ > 0} is a martingale. Now, for any m > 1 define the process

mt
(m) Z B emt  mt(mt—1) cmt(mt —1)
Xem =2 K= A — 1= [nl/?’ B 2n B InA/3 '
k=1

for t € m™'N and by linear interpolation for all nonnegative ¢ ¢ m~'N. Taking m = n?/?
yields

—(m 1
Xt( ) = An2/3t — n1/3 (Ct — §t2> + 0(1)

Therefore, by the martingale central limit theorem
2/3)

Ap2rsy L, Xt(n —2/3\ _d
7 —(ct—§t = =17 +0 (n7?%) =W,

for all t > 0 as n — oo, where (W;),~, is Brownian motion.
To summarize, we have that A2/, ~ n'/3Z, for large n, where

1
Zt = Wt+Ct— §t2

The size of the i*® component is the i'" time the queue is empty:
G =min{k>0: A4, =1—i}~n? min{t >0:2,=(1—-i)n3}.

We conclude that the size of the largest component can be estimated by n?/3 times the length
7 of the largest excursion of Z; above zero. Since E[Z;] = ¢t — 3t* = 0 when ¢ = 2¢, we
expect the distribution of 7 to be concentrated about 2¢ when ¢ > 0 and about zero when

¢ < 0. This yields the desired result. O
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Figure 6.2. Plot of Z; = W} 4 ct — %t2 for ¢ > 0.

6.2 Connectivity and diameter

For completeness, let us state the existence of thresholds for the connectivity and diameter
of Erdos-Rényi random graphs. Additional discussion along with proofs can be found in the
references.

For connectedness we have:

Theorem 6.5. A sharp threshold for the connectedness of G(n,p) is t(n) = n 'logn. In
other words, if p(n) < (1 —e)n~'logn for some € > 0, then G(n,p) almost surely contains
isolated nodes (so it is disconnected) in the limit n — oo. If p(n) > (1+¢&)n~!logn for some
e >0, G(n,p) is almost surely connected as n — 0.

Moving past the threshold for connectivity, the diameter of the graph can be estimated with
high probability:

Theorem 6.6. Assume that for n large, logn < A < n'/?. Then as n — oo,

logn i logn
—4 < < .
P ([log)\—‘ 4 < diam (G(n,p)) < LOg)\—‘ + 1) — 1
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