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6.1 Proofs for emergence of giant component

We now sketch the main ideas underlying the formation of a giant component in the Erdős-
Rényi model, referring the interested reader to the references for additional details.

To begin, let λ = np denote the average degree as n → ∞ and p = p(n) → 0. First
we consider the subcritical regime λ < 1 and the supercritical regime λ > 1, for which we
can use branching processes to estimate the size of the largest component. For the critical
case λ = 1, we provide an elegant scaling argument that utilizes more advanced topics in
probability theory: martingales and Brownian motion.

6.1.1 Subcritical regime (λ < 1)

As before, we let Ci be the ith largest component of G(n, p). In addition, we will say that
an event A happens almost surely (denoted a.s.) if P(A) = 1.

Theorem 6.1. If λ < 1, a graph in G(n, p) has no connected component of size larger than
O(log n) a.s. That is, there exists a constant α such that P (|C1| > α log(n))→ 0 as n→∞.

Proof: (Sketch) Recall the Chernoff bound on the tail distributions in the Galton-Watson
branching process:

P (|T | > k) ≤ e−kh(a), h(x) = sup
θ≥0

{
θx− logE

[
eθξ
]}
. (6.1)

We examine the size of the largest component as follows. Let v be some node in the graph
G(n, p). We will bound the size of the component to which v belongs by comparing its
breadth-first spanning tree to a Galton-Watson branching process T with offspring distribu-
tion ξ ∼ Binomial(n− 1, p) ≈ Poisson(λ). This is seen as follows.

Let w be a neighbor of v and j be the number of neighbors of v. We see that v has
n−j−1 neighbors other than w, and each has a probability p of being w’s neighbor. We can
view these nodes as possible children of w in the spanning tree. Note that w has n− j − 1
possible children, less than the n − 1 possible children we had from the branching process
T . Therefore, repeating this procedure for every node in the breadth-first spanning tree of
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v, we obtain a modified Galton-Watson process in which the number of possible children
decreases with each generation and thus dominated in size by T .

Now denote by C(v) be the connected component to which v belongs. According to the
preceding argument,

P (|C(v)| > k) ≤ P (|T | > k) ≤ e−kh(1)

where h is the rate function corresponding to an approximately Poisson(λ) offspring distri-
bution. But what is h? Assuming ξ is exactly Poissonian, we have

E
[
eθξ
]

=
∞∑
k=0

eθk
e−λλk

k!
=
∞∑
k=0

(λeθ)ke−λ

k!
= e−λeλe

θ

= eλ(e
θ−1).

Now set g(θ) = θx − logE
[
eθξ
]

= θx − λ(eθ − 1). Note that g′(θ) = x − λeθ = 0 at

θ̂ = log(x/λ). Since g′′(θ) = −λeθ < 0 for all θ ≥ 0, we know that g(θ) reaches its maximum
at θ̂. Therefore,

h(x) = sup
θ≥0

g(θ) = g(θ̂) = x log
(x
λ

)
− λ

(x
λ
− 1
)

and h(1) = − log(λ) + λ − 1 > 0 for any λ 6= 1. Fix δ > 0 and let k = h(1)−1(1 + δ) log n.
Then,

P (|C(v)| > k) ≤ e−(1+δ) logn = n−(1+δ)

and the probability that the size of the largest component exceeds k satisfies

P (|C1| > k) ≤ P
(

max
j=1..n

|C(vj)| > k

)
≤

n∑
j=1

P (|C(vj)| > k) = nn−(1+δ) = n−δ.

Since δ is arbitrary, we conclude P (|C1| > α log(n))→ 0 as n→∞ for all α sufficiently large
. �

6.1.2 Supercritical regime (λ > 1)

Theorem 6.2. If λ > 1, a graph in G(n, p) has a unique giant component containing a
positive fraction of the vertices while no other component contains more than O(log n)
vertices. Precisely, let pext(µ) be the extinction probability of a Galton-Watson branching
process with parameter µ. Then for any ε > 0 and some constant α, we have

P
(∣∣∣∣ |C1|

n
− (1− pext(λ))

∣∣∣∣ ≤ ε and |C2| ≤ α log n

)
→ 1

as n→∞.
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Proof: (Sketch) For simplicity, we only consider the case 1 < λ < 2. We again identify
the connected component C(v) of some vertex v by considering its breadth-first spanning
tree. In this case, we will bound the size of C(v) from below using another Galton-Watson
branching process. The procedure is less straightforward than in the subcritical case since
we would like to show existence of a giant component, but the breadth-first spanning tree
of v has a decreasing number of possible offspring with each generation. To remedy this, we
consider a branching process with a strictly smaller average number of offspring but which
still remains supercritical.

Let d =
√
λ > 1, and define ñ = (2 − d)n and p̃ = d/n. Note that as long as our

breadth-first process has explored less than (d− 1)n nodes, there are at least ñ unexplored
nodes. In this case, each node in the spanning tree has at least ñ possible children, each
with probability p > p̃. This implies that this tree is larger in size than a branching process
with offspring distribution ξ ∼ Binomial (ñ, p̃). Ordering the vertices in C(v), we now apply
the following procedure starting with i = 1:

1) Consider node vi.
2) The component to which vi belongs to in the limiting graph as n→∞ has infinite size

with constant probability at least 1− pext(d). In this case, we have successfully identified a
giant component of size |C(vi)| ≥ (d− 1)n.

3) Otherwise, by the argument given in the proof of the subscritical case we have that
|C(vi)| ≥ α log n with probability at most n−δ for some δ > 0.

Now repeat the same process with the next unexplored vertex vi+1. The probability we
have not found a giant component after k < n steps equals (pext(d))k, which is less than n−γ

for any given γ > 0 if k > −γ log n/ log pext(d). The number of nodes belonging to small
components which have been explored after k steps is then O

(
(log n)2

)
� n, so there remain

enough unexplored nodes for this procedure to work.
Lastly, we would not only like the existence of a giant component with high probability,

but that |C1| ≈ (1− pext(λ))n. While we do not show this here, it is reasonable that this
should be true by the law of large numbers (in the number of nodes). That is, |C1| /n should
converge to the probability that the spanning tree started from a node does not become
extinct, which is approximately 1− pext(λ). �

6.1.3 Critical regime (λ = 1)

Theorem 6.3. If λ = 1, then G(n, p) has a largest component whose size is of order n2/3

a.s. That is, there exist constants a1, a2 > 0 such that P
(
a1n

2/3 ≤ |C1| ≤ a2n
2/3
)
→ 1 as

n→∞.

To show this, we will use a result from probability theory known as the martingale central
limit theorem.
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Definition. A stochastic process {Xk : k ≥ 0} is a martingale if E [|Xk|] <∞ and

E [Xk −Xk−1|X0, . . . , Xk−1] = 0

for every k ≥ 1. That is, a martingale is a process in which the average of any increment is
zero given its past history.

Lemma 6.4. (Martingale central limit theorem) Suppose {Xk : k ≥ 0} is a martingale such
that |Xk −Xk−1| < M and |X0| < M a.s. for some fixed M and for all k ≥ 1. Assume
further that V ar [Xk −Xk−1|X0, . . . , Xk−1] = 1 as k →∞. Then for all t ≥ 0,

X1 + · · ·+Xbmtc√
m

d−→ Wt

as m→∞, where (Wt)t≥0 is a standard Brownian motion.

Using this we obtain a proof for the critical regime:

Proof: (Sketch) Let {Ak : k ≥ 0} be the random walk associated to the one-by-one explo-
ration of the breadth-first spanning forest of the graph (where the forest is comprised of the
spanning trees of the various disconnected components). Recall that

Ak = Ak−1 − 1 + ξk, k ≥ 1
A0 = 1

where Ak is the size of the queue of explored nodes at time k, and ξk is the number of children
of the kth deactivated node. Given A0, . . . , Ak−1,

ξk ∼ Binomial (n− k − 1− Ak−1, p) ≈ Binomial(n− k, p)

for n� k.
To examine the size of largest component at the critical value, we consider λ = 1+cn−1/3

−∞ < c <∞. As c passes 0 we should observe the emergence of a giant component whose
size scales like n2/3. As the following argument shows, the −1/3 exponent of the perturbative
term is the appropriate scaling in which to see this critical behavior.

To begin, since p = λ/n = n−1 + cn−4/3,

E [Ak − Ak−1|A0, . . . , Ak−1] = E [ξk]− 1 ≈ (n− k)p− 1 =
c

n1/3
− k

n
− ck

n4/3
,

V ar [Ak − Ak−1|A0, . . . , Ak−1] = V ar [ξk] ≈ (n− k)p(1− p) ≈ 1.

Letting

Xk = Ak − Ak−1 −
(

c

n1/3
− k

n
− ck

n4/3

)
,
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Figure 6.1. Example of a breadth-first spanning forest.

we see that {Xk : k ≥ 0} is a martingale. Now, for any m ≥ 1 define the process

X̄
(m)
t =

mt∑
k=1

Xk = Amt − 1−
[
cmt

n1/3
− mt (mt− 1)

2n
− cmt (mt− 1)

2n4/3

]
.

for t ∈ m−1N and by linear interpolation for all nonnegative t /∈ m−1N. Taking m = n2/3

yields

X̄
(m)
t = An2/3t − n1/3

(
ct− 1

2
t2
)

+O(1).

Therefore, by the martingale central limit theorem

An2/3t

n1/3
−
(
ct− 1

2
t2
)

=
X̄

(n2/3)
t

n1/3
+O

(
n−2/3

) d−→ Wt

for all t ≥ 0 as n→∞, where (Wt)t≥0 is Brownian motion.

To summarize, we have that An2/3t ≈ n1/3Zt for large n, where

Zt = Wt + ct− 1

2
t2.

The size of the ith component is the ith time the queue is empty:

|Ci| = min {k ≥ 0 : Ak = 1− i} ≈ n2/3 min
{
t ≥ 0 : Zt = (1− i)n−1/3

}
.

We conclude that the size of the largest component can be estimated by n2/3 times the length
τ of the largest excursion of Zt above zero. Since E [Zt] = ct − 1

2
t2 = 0 when t = 2c, we

expect the distribution of τ to be concentrated about 2c when c > 0 and about zero when
c ≤ 0. This yields the desired result. �
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Figure 6.2. Plot of Zt = Wt + ct− 1
2 t

2 for c > 0.

6.2 Connectivity and diameter

For completeness, let us state the existence of thresholds for the connectivity and diameter
of Erdős-Rényi random graphs. Additional discussion along with proofs can be found in the
references.

For connectedness we have:

Theorem 6.5. A sharp threshold for the connectedness of G(n, p) is t(n) = n−1 log n. In
other words, if p(n) < (1 − ε)n−1 log n for some ε > 0, then G(n, p) almost surely contains
isolated nodes (so it is disconnected) in the limit n→∞. If p(n) > (1 + ε)n−1 log n for some
ε > 0, G(n, p) is almost surely connected as n→∞.

Moving past the threshold for connectivity, the diameter of the graph can be estimated with
high probability:

Theorem 6.6. Assume that for n large, log n� λ� n1/2. Then as n→∞,

P
(⌈

log n

log λ

⌉
− 4 ≤ diam (G(n, p)) ≤

⌈
log n

log λ

⌉
+ 1

)
−→ 1.
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