M375T/M396C: Topics in Complex Networks

Spring 2013

Lecture 06 - 01/31/13

Lecturer: Ravi Srinivasan

Scribe: Tianran Geng

6.1 Proofs for emergence of giant component

We now sketch the main ideas underlying the formation of a giant component in the Erdős-Rényi model, referring the interested reader to the references for additional details.

To begin, let $\lambda = np$ denote the average degree as $n \to \infty$ and $p = p(n) \to 0$. First we consider the subcritical regime $\lambda < 1$ and the supercritical regime $\lambda > 1$, for which we can use branching processes to estimate the size of the largest component. For the critical case $\lambda = 1$, we provide an elegant scaling argument that utilizes more advanced topics in probability theory: martingales and Brownian motion.

6.1.1 Subcritical regime ($\lambda < 1$)

As before, we let C_i be the *i*th largest component of G(n, p). In addition, we will say that an event A happens *almost surely* (denoted a.s.) if $\mathbb{P}(A) = 1$.

Theorem 6.1. If $\lambda < 1$, a graph in G(n, p) has no connected component of size larger than $O(\log n)$ a.s. That is, there exists a constant α such that $\mathbb{P}(|C_1| > \alpha \log(n)) \to 0$ as $n \to \infty$.

Proof: (Sketch) Recall the Chernoff bound on the tail distributions in the Galton-Watson branching process:

$$\mathbb{P}\left(|\mathcal{T}| > k\right) \le e^{-kh(a)}, \qquad h(x) = \sup_{\theta \ge 0} \left\{\theta x - \log \mathbb{E}\left[e^{\theta\xi}\right]\right\}.$$
(6.1)

We examine the size of the largest component as follows. Let v be some node in the graph G(n, p). We will bound the size of the component to which v belongs by comparing its breadth-first spanning tree to a Galton-Watson branching process \mathcal{T} with offspring distribution $\xi \sim \text{Binomial}(n-1, p) \approx \text{Poisson}(\lambda)$. This is seen as follows.

Let w be a neighbor of v and j be the number of neighbors of v. We see that v has n-j-1 neighbors other than w, and each has a probability p of being w's neighbor. We can view these nodes as possible children of w in the spanning tree. Note that w has n-j-1 possible children, less than the n-1 possible children we had from the branching process \mathcal{T} . Therefore, repeating this procedure for every node in the breadth-first spanning tree of

v, we obtain a modified Galton-Watson process in which the number of possible children decreases with each generation and thus dominated in size by \mathcal{T} .

Now denote by C(v) be the connected component to which v belongs. According to the preceding argument,

$$\mathbb{P}\left(|C(v)| > k\right) \le \mathbb{P}\left(|\mathcal{T}| > k\right) \le e^{-kh(1)}$$

where h is the rate function corresponding to an approximately $Poisson(\lambda)$ offspring distribution. But what is h? Assuming ξ is exactly Poissonian, we have

$$\mathbb{E}\left[e^{\theta\xi}\right] = \sum_{k=0}^{\infty} e^{\theta k} \frac{e^{-\lambda}\lambda^k}{k!} = \sum_{k=0}^{\infty} \frac{(\lambda e^{\theta})^k e^{-\lambda}}{k!} = e^{-\lambda} e^{\lambda e^{\theta}} = e^{\lambda(e^{\theta}-1)}.$$

Now set $g(\theta) = \theta x - \log \mathbb{E}\left[e^{\theta\xi}\right] = \theta x - \lambda(e^{\theta} - 1)$. Note that $g'(\theta) = x - \lambda e^{\theta} = 0$ at $\hat{\theta} = \log(x/\lambda)$. Since $g''(\theta) = -\lambda e^{\theta} < 0$ for all $\theta \ge 0$, we know that $g(\theta)$ reaches its maximum at $\hat{\theta}$. Therefore,

$$h(x) = \sup_{\theta \ge 0} g(\theta) = g(\hat{\theta}) = x \log\left(\frac{x}{\lambda}\right) - \lambda\left(\frac{x}{\lambda} - 1\right)$$

and $h(1) = -\log(\lambda) + \lambda - 1 > 0$ for any $\lambda \neq 1$. Fix $\delta > 0$ and let $k = h(1)^{-1}(1+\delta)\log n$. Then,

$$\mathbb{P}\left(|C(v)| > k\right) \le e^{-(1+\delta)\log n} = n^{-(1+\delta)}$$

and the probability that the size of the largest component exceeds k satisfies

$$\mathbb{P}(|C_1| > k) \le \mathbb{P}\left(\max_{j=1..n} |C(v_j)| > k\right) \le \sum_{j=1}^n \mathbb{P}(|C(v_j)| > k) = nn^{-(1+\delta)} = n^{-\delta}.$$

Since δ is arbitrary, we conclude $\mathbb{P}(|C_1| > \alpha \log(n)) \to 0$ as $n \to \infty$ for all α sufficiently large .

6.1.2 Supercritical regime $(\lambda > 1)$

Theorem 6.2. If $\lambda > 1$, a graph in G(n, p) has a unique giant component containing a positive fraction of the vertices while no other component contains more than $O(\log n)$ vertices. Precisely, let $p_{\text{ext}}(\mu)$ be the extinction probability of a Galton-Watson branching process with parameter μ . Then for any $\varepsilon > 0$ and some constant α , we have

$$\mathbb{P}\left(\left|\frac{|C_1|}{n} - (1 - p_{ext}(\lambda))\right| \le \varepsilon \text{ and } |C_2| \le \alpha \log n\right) \to 1$$

as $n \to \infty$.

Proof: (Sketch) For simplicity, we only consider the case $1 < \lambda < 2$. We again identify the connected component C(v) of some vertex v by considering its breadth-first spanning tree. In this case, we will bound the size of C(v) from below using another Galton-Watson branching process. The procedure is less straightforward than in the subcritical case since we would like to show existence of a giant component, but the breadth-first spanning tree of v has a *decreasing* number of possible offspring with each generation. To remedy this, we consider a branching process with a strictly smaller average number of offspring but which still remains supercritical.

Let $d = \sqrt{\lambda} > 1$, and define $\tilde{n} = (2 - d)n$ and $\tilde{p} = d/n$. Note that as long as our breadth-first process has explored less than (d - 1)n nodes, there are at least \tilde{n} unexplored nodes. In this case, each node in the spanning tree has at least \tilde{n} possible children, each with probability $p > \tilde{p}$. This implies that this tree is larger in size than a branching process with offspring distribution $\xi \sim \text{Binomial}(\tilde{n}, \tilde{p})$. Ordering the vertices in C(v), we now apply the following procedure starting with i = 1:

1) Consider node v_i .

2) The component to which v_i belongs to in the limiting graph as $n \to \infty$ has infinite size with constant probability at least $1 - p_{\text{ext}}(d)$. In this case, we have successfully identified a giant component of size $|C(v_i)| \ge (d-1)n$.

3) Otherwise, by the argument given in the proof of the subscritical case we have that $|C(v_i)| \ge \alpha \log n$ with probability at most $n^{-\delta}$ for some $\delta > 0$.

Now repeat the same process with the next unexplored vertex v_{i+1} . The probability we have not found a giant component after k < n steps equals $(p_{\text{ext}}(d))^k$, which is less than $n^{-\gamma}$ for any given $\gamma > 0$ if $k > -\gamma \log n / \log p_{\text{ext}}(d)$. The number of nodes belonging to small components which have been explored after k steps is then $O\left((\log n)^2\right) \ll n$, so there remain enough unexplored nodes for this procedure to work.

Lastly, we would not only like the existence of a giant component with high probability, but that $|C_1| \approx (1 - p_{\text{ext}}(\lambda)) n$. While we do not show this here, it is reasonable that this should be true by the law of large numbers (in the number of nodes). That is, $|C_1|/n$ should converge to the probability that the spanning tree started from a node does not become extinct, which is approximately $1 - p_{\text{ext}}(\lambda)$.

6.1.3 Critical regime $(\lambda = 1)$

Theorem 6.3. If $\lambda = 1$, then G(n, p) has a largest component whose size is of order $n^{2/3}$ a.s. That is, there exist constants $a_1, a_2 > 0$ such that $\mathbb{P}(a_1 n^{2/3} \leq |C_1| \leq a_2 n^{2/3}) \to 1$ as $n \to \infty$.

To show this, we will use a result from probability theory known as the martingale central limit theorem.

Definition. A stochastic process $\{X_k : k \ge 0\}$ is a martingale if $\mathbb{E}[|X_k|] < \infty$ and

$$\mathbb{E}\left[X_k - X_{k-1} | X_0, \dots, X_{k-1}\right] = 0$$

for every $k \ge 1$. That is, a martingale is a process in which the average of any increment is zero given its past history.

Lemma 6.4. (Martingale central limit theorem) Suppose $\{X_k : k \ge 0\}$ is a martingale such that $|X_k - X_{k-1}| < M$ and $|X_0| < M$ a.s. for some fixed M and for all $k \ge 1$. Assume further that $Var[X_k - X_{k-1}|X_0, \ldots, X_{k-1}] = 1$ as $k \to \infty$. Then for all $t \ge 0$,

$$\frac{X_1 + \dots + X_{\lfloor mt \rfloor}}{\sqrt{m}} \stackrel{d}{\longrightarrow} W_t$$

as $m \to \infty$, where $(W_t)_{t>0}$ is a standard Brownian motion.

Using this we obtain a proof for the critical regime:

Proof: (Sketch) Let $\{A_k : k \ge 0\}$ be the random walk associated to the one-by-one exploration of the breadth-first spanning forest of the graph (where the forest is comprised of the spanning trees of the various disconnected components). Recall that

$$A_k = A_{k-1} - 1 + \xi_k, \quad k \ge 1$$

 $A_0 = 1$

where A_k is the size of the queue of explored nodes at time k, and ξ_k is the number of children of the k^{th} deactivated node. Given A_0, \ldots, A_{k-1} ,

$$\xi_k \sim \text{Binomial} (n - k - 1 - A_{k-1}, p) \approx \text{Binomial} (n - k, p)$$

for $n \gg k$.

To examine the size of largest component at the critical value, we consider $\lambda = 1 + cn^{-1/3}$ $-\infty < c < \infty$. As c passes 0 we should observe the emergence of a giant component whose size scales like $n^{2/3}$. As the following argument shows, the -1/3 exponent of the perturbative term is the appropriate scaling in which to see this critical behavior.

To begin, since $p = \lambda/n = n^{-1} + cn^{-4/3}$,

$$\mathbb{E}\left[A_{k} - A_{k-1} | A_{0}, \dots, A_{k-1}\right] = \mathbb{E}\left[\xi_{k}\right] - 1 \approx (n-k)p - 1 = \frac{c}{n^{1/3}} - \frac{k}{n} - \frac{ck}{n^{4/3}}$$
$$Var\left[A_{k} - A_{k-1} | A_{0}, \dots, A_{k-1}\right] = Var\left[\xi_{k}\right] \approx (n-k)p(1-p) \approx 1.$$

Letting

$$X_k = A_k - A_{k-1} - \left(\frac{c}{n^{1/3}} - \frac{k}{n} - \frac{ck}{n^{4/3}}\right),$$

Figure 6.1. Example of a breadth-first spanning forest.

we see that $\{X_k : k \ge 0\}$ is a martingale. Now, for any $m \ge 1$ define the process

$$\bar{X}_{t}^{(m)} = \sum_{k=1}^{mt} X_{k} = A_{mt} - 1 - \left[\frac{cmt}{n^{1/3}} - \frac{mt(mt-1)}{2n} - \frac{cmt(mt-1)}{2n^{4/3}}\right]$$

for $t \in m^{-1}\mathbb{N}$ and by linear interpolation for all nonnegative $t \notin m^{-1}\mathbb{N}$. Taking $m = n^{2/3}$ yields

$$\bar{X}_t^{(m)} = A_{n^{2/3}t} - n^{1/3} \left(ct - \frac{1}{2}t^2 \right) + O(1).$$

Therefore, by the martingale central limit theorem

$$\frac{A_{n^{2/3}t}}{n^{1/3}} - \left(ct - \frac{1}{2}t^2\right) = \frac{\bar{X}_t^{(n^{2/3})}}{n^{1/3}} + O\left(n^{-2/3}\right) \stackrel{d}{\longrightarrow} W_t$$

for all $t \ge 0$ as $n \to \infty$, where $(W_t)_{t>0}$ is Brownian motion.

To summarize, we have that $A_{n^{2/3}t} \approx n^{1/3}Z_t$ for large n, where

$$Z_t = W_t + ct - \frac{1}{2}t^2.$$

The size of the i^{th} component is the i^{th} time the queue is empty:

$$|C_i| = \min \{k \ge 0 : A_k = 1 - i\} \approx n^{2/3} \min \{t \ge 0 : Z_t = (1 - i) n^{-1/3}\}.$$

We conclude that the size of the largest component can be estimated by $n^{2/3}$ times the length τ of the largest excursion of Z_t above zero. Since $\mathbb{E}[Z_t] = ct - \frac{1}{2}t^2 = 0$ when t = 2c, we expect the distribution of τ to be concentrated about 2c when c > 0 and about zero when $c \leq 0$. This yields the desired result.

Figure 6.2. Plot of $Z_t = W_t + ct - \frac{1}{2}t^2$ for c > 0.

6.2 Connectivity and diameter

For completeness, let us state the existence of thresholds for the connectivity and diameter of Erdős-Rényi random graphs. Additional discussion along with proofs can be found in the references.

For connectedness we have:

Theorem 6.5. A sharp threshold for the connectedness of G(n,p) is $t(n) = n^{-1} \log n$. In other words, if $p(n) < (1 - \varepsilon)n^{-1} \log n$ for some $\varepsilon > 0$, then G(n,p) almost surely contains isolated nodes (so it is disconnected) in the limit $n \to \infty$. If $p(n) > (1 + \varepsilon)n^{-1} \log n$ for some $\varepsilon > 0$, G(n,p) is almost surely connected as $n \to \infty$.

Moving past the threshold for connectivity, the diameter of the graph can be estimated with high probability:

Theorem 6.6. Assume that for n large, $\log n \ll \lambda \ll n^{1/2}$. Then as $n \to \infty$,

$$\mathbb{P}\left(\left\lceil \frac{\log n}{\log \lambda} \right\rceil - 4 \le diam\left(G(n, p)\right) \le \left\lceil \frac{\log n}{\log \lambda} \right\rceil + 1\right) \longrightarrow 1.$$

References

 Aldous, D. (2007). STAT 260, Random Graphs and Complex Networks, Spring 2007 [Lecture notes]. Retrieved from: http://www.stat.berkeley.edu/~aldous/Networks/

- 2. Draief, M., & Massoulié, L. (2010). Epidemics and rumours in complex networks. Cambridge University Press.
- 3. Durrett, R. (2006). Random graph dynamics (Vol. 20). Cambridge University Press.
- 4. Spielman, D. (2010). Applied Mathematics 462, Graphs and Networks, Fall 2010 [Lecture notes]. Retrieved from: http://www.cs.yale.edu/homes/spielman/462/

Last edited: March 21, 2013