M375T/M396C: Topics in Complex Networks Spring 2013
Lecture 7 — 02/07/2013

Lecturer: Ravi Srinivasan Scribe: Matthew Garcia

7.1 The Configuration Model

At the end of the previous lecture we discussed the Configuration model and saw that it
has degree distribution d(k) ~Bin(n — 1,p) where n € N. We also observed that as we let
n — oo , Bin(n — 1, p) — Poisson(\) for some parameter A\. We use this model to construct
a random graph with fixed degree distribution and do this with probability p = 1.

We may think of the Configuration model as the Erdés-Réyni random graphs G(n, p)
with fixed degree distribution. Properties from the Erdos-Réyni random graphs survive in
the Configuration model; such as phase transition and connectedness, amongst other things.
In this respect, the Configuration model looks very much like Erdoés-Réyni. It is in fact the
case that both Erdos-Réyni and the Configuration model both locally look like trees. Let
us consider the following example.

7.1.1 Random d-Regular Graphs
A random graph G is said to be d-regular if all of its nodes have degree d.

e Ifd =1, every node has one edge. Therefore, a random 1-regular graph G is a collection
of disjoint pairs.

o If d =2, G is a collection of disjoint cycles. This graph is almost surely not connected
(i.e., P (G is connected) = 0).

o If d = 3, we have that G is a connected graph with probability not equal to zero. That
is, P (G is connected) # 0.

For d > 3, we have the following theorem:

Theorem 7.1. Let d € N such that d > 3. If G is a random d-regular graph, then G is y -
expander.
7.2 ~ - Expander Graphs

Let V' be a set of vertices, E be a set of edges and v > 0. A graph G(V, E) is said to be
y-expander if for any A C V with |A| < |V, we have

|0(A, A%)| = ~]A] (7.1)

7-1



M375T/M396C Lecture 7 — 02/07/2013 Spring 2013

where 0(A, A°) denotes the set of edges between A and A¢, and |A| denotes the size of A.
With this definition, we may sketch a idea of a proof for the following lemma.

Lemma 7.2. Suppose G(V, E) is a y-expander graph with degree at most d. Then,
2d

D(G) < = log(n) + 1 (7.2)

where D(G) denotes the diameter of the graph G.
Proof: (Idea/Sketch) Let Sy = {s} be a root node and define
Sj+1=5;UN(S}) (7.3)

where N(S;) = {v € V : v ¢ S; and there exists u € S; such that (u,v) € E}. That is,
N(S;) is the set of all neighbors of elements in S;. So then,

1551 = 1551 + [N (S5)] :
> |55 +71S;] (7.5)
= (1+9)15;]
for |S;| < £|V|. Hence,
[Sjeal = (LANIS; = > (L + ) So] = (L +7) " (7.7)
This implies that D(G) = O(log(n)). O

Example: Let T be the tree for which each node at generation n has only two offspring
stemming from it, where n € N; and consider the lattice £. It follows that 7 is y-expander
with v = 1. However, L is not y-expander. To see this, consider a circle of radius R centered
at the point p. Tt turns out that |9(C'(R))| &~ 27R and |C(R)| ~ 7wR? for large R. Now
consider the quotient
0(C(R))]

Q R (7.8)
It is easy to see that Q — 0 as R — oo. Therefore, £ is not y-expander. From this we see
that expander graphs (locally) look more like trees, rather than lattices.

7.3 Strong and Weak Ties

Suppose we wanted to ask the question
How do people find and switch to new jobs?

Is it through close friends (strong ties) or through acquaintances (weak ties)? It happens to
be the case that weak ties is the correct answer to this question. A detailed discussion of
the strength of weak ties can be found in the Granovetter article on the course webpage.
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7.3.1 Strong Triadic Closure

The Strong Triadic Closure Property states that if a node has strong ties to two neighbors,
then these neighbors must have at least a weak tie between them. We could also require a
probabilistic version of this. Let E be a set of edges and E’ be the set of edges with strong
ties. The the Strong Triadic Closure Property is satisfied when

P((j,k) € E|(i,j) € E', (i,k) € E') > P((j,k) € E). (7.9)

Said in another way, if a node has strong ties to two neighbors, then these neighbors must
have at least a weak tie between them. Notice that from the probabilistic version we can
show that we are more likely to find a job through acquaintances as opposed to a close friend.

Now suppose that e € E is an edge between nodes A and B. If A and B have no common
acquaintances or friends, then e is said to be a local bridge. If e is a local bridge then we
define the span of e as being the length of the path d(A, B) if e is removed. Notice that this
implies that the span of a local bridge must be at least equal to three.

Theorem 7.3. Let A be a node and suppose the strong triadic closure property is satisfied.
If A has at least two strong ties, then any local bridge of A is a weak tie.

Proof: Take some network, and consider a node A that satisfies the strong triadic closure
property and is involved in at least two strong ties. Now suppose A is involved in a local
bridge say, to a node B that is a strong tie. Since A is involved in at least two strong
ties, and the edge to B is only one of them, it must have a strong tie to some other node,
which we’ll call C. Since the (A, B) edge is a local bridge, A and B must have no friends in
common, and so the (B, C) edge must not exist. But this contradicts strong triadic closure,
which says that since the (A, B) and (A, C) edges are both strong ties, the (B, C') edge must
exist. This contradiction shows that our initial premise, the existence of a local bridge that
is a strong tie, cannot hold, finishing the argument. 0

7.4 Clustering
Suppose we wanted to keep track of the proportion of strong ties in a network. The way we

do this is by using the clustering ceofficient C'. It is defined by
3T

T

C (7.10)

where 7' is the number of triangles and 7 is the number of triads. The clustering coefficient
for a single node u is given by

o 2{v,w € N(u) : (v,w) € E}|
' [N (w)|(IN ()] - 1)

(7.11)

where N (u) is the set of neighbors of u and F is the set of edges in the network.
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Remark: The clustering coefficient of the Erdés-Réyni random graph model G(n,p)
goes to zero as n — oo. This is because

C

x =pn) —0 (7.12)

as n — oo, where p(n) = 2 with A a constant.
Now, to capture strong ties in a model we need to move from these unstructured models
to more structured models.

7.5 Watts - Strogratz small-world model

The idea is to start with a lattice-like structure. For example, let us take the ring lattice
R. This structure, as it is, has high clustering and a large diameter which is on the order
of ©(n). Now what we do is, at random, add in short-cuts to other nodes. Doing this also
gives us high clustering but, a small diameter on the order of O(log(n)). The result is what
is known as the Watts - Strogratz small-world model.

Let p denote the associated rewiring probability. If p = ¢ > 0 for € small, we get this
model. If p = 1, we get a random d-regular graph which implies low clustering and small
diameter.

Theorem 7.4. The Watts - Strogratz small-world model satisfies the condition: There ex-
ists a constant C' such that
P(D > C'log(n)) — 0 (7.13)

as n — 0o, where D denotes the diameter.
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