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Lecture 12 — February 21

Lecturer: Ravi Srinivasan Scribe: Chih-Hung Chen

12.1 Preferential attachment models, Yule process

In this lecture, we would like to recap the Barabasi-Albert (BA) model mentioned in our
previous section and move on to Yule process.

12.1.1 Barabasi-Albert (BA) model

Recap: The Barabasi-Albert model is an algorithm to generate random networks using a
preferential attachment process. The network starts with an initial network of m nodes. One
new node is added to the network at each time t ∈ N. The preferential attachment process
is stated as follows,

• With a probability p ∈ [0, 1], this new node connects to m existing nodes uniformly at
random.

• With a probability 1− p, this new node connects to m existing nodes with a probabil-
ity proportional to the (in-)degree (degree for an undirected graph or in-degree for a
directed graph) of node which it will be connected to.

In other words, it is more likely to see the new nodes to connect to the already highly linked
nodes.

Remarks: The term of “connect to” has different meanings. Figure 12.1 (a) shows that
edges have no orientation in an undirected graph. The degree of old node and new node
are one in an undirected graph. On the other hand, edges have particular direction in an
directed graph. The in-degree of a node is defined as the number of head endpoints it has.
Figure 12.1 (b) shows that the old node has in-degree din = 1 and out-degree dout = 0.
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Figure 12.1. An undirected graph and a directed graph.
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Properties: We will show that the degree distribution resulting from the BA model follows
a power law of the form d(k) ∼ k−β, here k is the degree of nodes. The power law exponent
β = 3−p

1−p in an undirected graph and β = 2−p
1−p in a directed graph.

We want to prove the properties above but first we think about the simplest case: when
p = 0, i.e. β = 3 in an undirected graph. A heuristic argument is mentioned as follows:

12.1.2 An undirected graph, β = 3

Definition Let i be a node, di(t) be the degree of node i at time t ∈ N, and ti be the time
that node i appears.

Proof: We think of t as being continuous and take the derivative of di(t) with respect to t
to obtain,

d

dt
(di(t)) =

di(t)∑
j

dj(t)
=
di(t)

2t
,

where
∑
j

dj(t) is the total degree of the entire network at time t and we know that the value

is exactly 2t in an undirected graph. We integrate both sides with respect to t to obtain

log (di(t))− log (di(ti)) =
1

2
log t− 1

2
log ti. (12.1)

Note that di(ti) = 1, then we have

log (di(ti)) = log(1) = 0,

We substitute that into equation (12.1) to obtain

di(t) =

√
t

ti
.

If we assume that ti is uniformly distributed between 0 and t, i.e. ti ∼ unif(0, t), we see

P (di(t) > k) = P
(√

t

ti
> k

)
= P

(
ti <

t

k2

)
=

1

k2
.

Therefore, we get a power-law degree distribution:

P (di(t) = k) ≈ − d

dk
P (di(t) > k) ∼ 1

k3
.

�
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12.1.3 A directed graph, β = 2

We have seen that the BA preferential attachment process generates an undirected graph
with a degree distribution ∼ k−3. Now, we want to show the power law exponent β = 2 in
a directed graph. Again, we start with the simplest case: when p = 0. Let di(t) be the in-
degree of node i at time t. Notice that the total in-degree of the entire network

∑
j

din
i (t) = t

in this case. A similar argument is used and notice that all one half factors are gone this
time. Consequently, we obtain

din
i (t) =

t

ti
.

This leads to a power-law degree distribution with the exponent β = 2, i.e.

P (di(t) = k) ∼ 1

k2
.

12.1.4 Connections to Yule process

The BA model is actually a special case of a general model, Yule process. The dynamics of
a simple balls and bins reinforcement process is also related to the Plya’s urn model, which
is the opposite to sampling without replacement.

Here, we think of a species as a ball contained in a bin which refers to its associated
genus. We assume that a mutation happens in one species which is picked uniformly at
random at each time. This species gives a mutation

• with a probability p, and this mutation creates a new genus. In other words, a new
bin is created and containing one ball.

• with a probability 1 − p, and this mutation creates a new species in the same genus.
In other words, one new ball created in the same bin.

Figure 12.2 shows an example of Yule process.

genera

species
time=t

time=t+1

new species
same genus

genera

new genus
created

genera

Figure 12.2. Sketch: an example of Yule process.
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Theorem 12.1. Let Xi(t) be the number of genera containing exactly i species, here i =
{1, 2, 3, ...}. The following three statements hold:

(i) For each i ≥ 1, ∃ Ci s.t. Xi(t)
t
→ Ci as t→∞.

(ii) C1 = p
2−p , and Ci = Ci−1 (1− β/i+O(i−2)) with β = 2−p

1−p .

(iii) This implies that log(Ci

C1
) ∼ −β log(i)⇒ Ci ∼ i−β.

Proof of (i): We think about this by the following two steps:

(1) Show that E[Xi(t)]/t→ Ci and this implies that Xi(t)/t→ Ci as t→∞.

(2) A concentration result Xi(t) ≈ E[Xi(t)] for large t.

Let N(t) be the number of species at time t and we know N(t) = N(0)+ t, here N(0) = 1
if the system starts with one species. The evolution equation for X1(t) is

Xi(t+ 1)−Xi(t) =


1 with probability p

−1 with probability (1− p) iXi(t)
N(t)

0 with probability 1−
(
p+ (1− p) iXi(t)

N(t)

) (12.2)

Let’s look at i = 1 first. X1 is the number of genus with exactly 1 species. Based on
equation (12.2), we have a recurrence relation for the expected value of X1, which is:

E[X1(t+ 1)]− E[X1(t)] = p− (1− p)E[X1(t)]
N(t)

(12.3)

(12.4)

Let ∆1(t) = E[X1(t)]− C1t. Plugging it into equation (12.3), we see

∆1(t+ 1)−∆1(t) = E[X1(t+ 1)]− E[X1(t)]− C1 (12.5)

= p− (1− p)E[X1(t)]

N(t)
− C1 (12.6)

= p− (1− p)∆1(t) + C1t

N(t)
− C1 (12.7)

After some algebra, we have a recurrence relation for ∆1 as follows,

∆1(t+ 1) = ∆1(t)

(
1− 1− p

N(t)

)
+ (p− C1)−

(1− p)C1t

N(t)

= ∆1(t)

(
1− 1− p

N(t)

)
+

(p− C1)N(0)

N(t)
+

[(p− C1)− (1− p)C1]t

N(t)
(12.8)

Let γt = 1 − 1−p
N(t)

and st = (p−C1)N(0)
N(t)

, and choose C1 = p
2−p to make the last term vanish.

Equation (12.8) becomes
∆1(t+ 1) = γt∆1(t) + st.
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Next, we will say that ∆1(t + 1) is bounded above by log(t) (up to some constant factor).
Given that |γt| ≤ 1, it is easily shown that

|∆1(t+ 1)| ≤ |γt||∆1(t)|+ |st|
≤ |∆1(t)|+ |st|
≤ |∆1(t− 1)|+ |st−1|+ |st|
≤ |∆1(t− 2)|+ |st−2|+ |st−1|+ |st|
≤ ...

≤ |∆1(0)|+
t∑

v=1

|sv|.

Note that the first term |∆1(0)| is a constant and st = (p−C1)N(0)
N(t)

∼ A0

t
, here A0 =

(p− C1)N(0), which is a constant. In addition, we can show that

t∑
v=1

|sv| ∼
t∑

v=1

A0

v
≈ A0 log(t) if t is large.

This implies that ∆1(t) grows no faster than log(t) as t→∞, then we have

|∆1(t)| = O(log(t))⇒ |∆1(t)|
t
→ 0 as t→ 0.

That is
E[X1(t)]

t
→ C1 as t→ 0.

Similarly, we can use this argument to show that this holds for all i. We have already finished
the proof for step (1) but we will not go through the proof for step (2) in this lecture. Please
see the attached notes for details.

Proof of (iii): From (ii), we have

Ci = Ci−1

(
1− β/i+O(i−2)

)
= C1

[
i∏

j=1

(
1− β/j +O(j−2)

)]
.

Take the log of both sides to obtain,

logCi = logC1 +
i∑

j=1

log
(
1− β/j +O(j−2)

)
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Note that log(1 + x) ≈ x for small x, so we have log (1− β/j +O(j−2)) ≈ −β/j + O(j−2)
for large j. Now we can say

logCi ≈ logC1 +
i∑

j=1

(
−β/j +O(j−2)

)
≈ logC1 − β log i

= logC1

(
i−β
)
.

It is found that Ci

C1
∼ i−β. So we have finished the proof for (iii).
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