
M375T/M396C: Topics in Complex Networks

Problem Set 1

Due date: Tuesday, May 07

Instructions: Starred problems (marked with an *) are additional problems for those taking
the course for graduate credit (M396C) that are not necessary for those in M375T. Do not
be intimidated by the length of the problem descriptions—they are purposefully made to
provide a thorough explanation and to guide you through the analysis of several results we
have discussed in lecture. Finally, please feel free to collaborate with others on problems, but
your submitted writeup must be your own.

1 Branching processes

1. Geometric branching process: Consider a Galton-Watson branching process with geometric
offspring distribution with parameter p, i.e.,

P(ξ = k) = p
k(1− p).

(A) Compute the probability of extinction occuring in generation n (using generating func-
tions).

(B) Give a general expression for the probability of extinction.

*(C) Derive an expression for the generating function of

W = lim
n→∞

Xn/ (E (ξ))n ,

where Xn is the number of individuals in generation n.

2. Chernoff bound: Consider a coin with probability p of landing heads and probability 1− p

of landing tails. Suppose the coin is flipped n times, and let Xi ∼ Bernoulli(p) be the indicator
random variable that the ith flip lands heads.

(A) Show that the rate function h(a) corresponding to a Bernoulli(p) random variable is

h(a) = a log

�
a

p

�
+ (1− a) log

�
1− a

1− p

�
.

(B) Use a Chernoff bound to determine a value for n so that the probability that more than
half of the coin flips come out heads is less than 0.001.
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2 Random graphs and phase transitions

1. Subgraphs of random graphs: Fix the probability of any given link forming in an Erdos-Renyi
network to be p with 0 < p < 1. Fix some arbitrary network g on k nodes. Now, consider a
sequence of random networks indexed by the number of nodes n, as n → ∞. Show that the
probability that a copy of the k-node network g is a subnetwork of the random network on
the n nodes goes to 1 as n goes to infinity.

[Hint: Partition the n nodes into as many separate groups of k nodes as possible (with some
leftover nodes) and consider the subnetworks that form on each of these groups. Using inde-
pendence of link formation, show that the probability that none of these match the desired
network goes to 0 as n grows.]

2. Cliques in random graphs: A k-clique in a graph is a subset of k vertices such that any two
of them are directly connected by an edge (i.e., there are

�k
2

�
edges in a k-clique). Cliques are

important objects in many computing problems and they also have simple combinatorial prop-
erties that allows one to analyze them well. This exercise guides you towards understanding
how they may appear in a random graph.

In this exercise, we always work with a sequence of Erdos-Renyi random graphs G(n, p). We
seek a threshold for the event that Gn contains a k-clique. That is, we will find a function
t(n) such that:

• Property (i): limn→∞ P (Gn contains a k-clique) = 0 if p(n) = o(t(n))

• Property (ii): limn→∞ P (Gn contains a k-clique) = 1 if p(n) = ω(t(n)).

(A) What can you say about cliques of size 1 and 2? Can you define a threshold function for
them? Prove that your answers satisfy the definition of a threshold.

We now consider the case k = 4. It is not as easy to directly characterize the probability of
having at least one 4-clique, and we will need to use the second-moment method to prove the
existence of any threshold.

Let Nn be the number of 4-cliques in the graph G(n, p). Since the edges of G(n, p) appear
randomly, Nn is an N-valued random variable. To be precise, there are Ln =

�n
4

�
number of

choices of 4 elements in the n veritices of G(n, p), and any of these can potentially form a
4-clique provided that the associated edges happen to be present. Denote by C1, . . . , CLn all
of these possible choices of 4 elements and for a subset Cl, let Xl be the indicator random
variable that Cl is a clique. That is,

Xl =

�
1 if Cl is a clique
0 otherwise.

Note that Nn =
�

l=1,...,Ln
Xl as a sum of random variables.

(B) Are the variables {Xl}l=1,...,Ln
mutually independent? Are they identically distributed?

(C) What is E [Xl] for a given l? What is E [Nn]?
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(D) Use this average analysis to determine a threshold function t(n) for the existence of a
4-clique.

(E) Using Markov’s inequality, prove that t(n) satisfies property (i).

(F) For this value of the threshold, if we assume that p(n) = ω(t(n)) then what can be said
about the expectation of Nn as n → ∞? Why is this not sufficienty fo conclude that property
(ii) is satisfied?

Now recall the following property of the variance of the sum of {0, 1}-valued random variables:

V ar [Nn] ≤ E [Nn] +
�

l �=m

Cov (Xl, Xm) ,

where Cov(X,Y ) = E [(X − µX)(Y − µY )] with µX and µY the mean of X and Y , respectively.
Note that Cov(X,Y ) ≤ E[XY ] if X and Y are nonnegative random variables.

(G) Show that when Cl and Cm are either disjoint or share a single vertex, then Xl and Xm

are independent. What can you conclude about Cov (Xl, Xm)?

(H) Assuming that Cl and Cm share exactly two vertices, give a bound on Cov (Xl, Xm).
What if these subsets share exactly three vertices?

(I) Use the second-moment method to conclude that the threshold t(n) satisfies property (ii).

(J) We now consider the most general case. Use an average analysis to propose a reasonable
candidate for the threshold function t(n) of the existence of a k-clique in G(n, p). Prove that
this threshold satisfies property (i) using Markov’s inequality. No proof of property (ii) is
required.

*(K) Imagine we wish to apply the same method to determine when chordless cycles appear
in a random graph. A cycle is a sequence of edges in the graph forming a path starting and
ending in the same node, and is chordless if there are no edges between non-neighboring nodes
(i.e., the cycle cannot be made shorter). Will a similar argument hold? Why or why not?

*3. Clustering in the configuration model: Consider a graph g with n nodes generated ac-
cording to the configuration model with a particular degree distribution P (d). Show that the
overall clustering coefficient is given by

C(g) =
�d�
n

��
d2
�
− �d�

�d�2

�2

,

where �d� is the expected degree under distribution P (d), i.e., �d� =
�∞

d=1 dP (d) and similarly�
d2
�
=

�∞
d=1 d

2P (d).

3 Small-world model and routing

1. Clustering in the small-world model: Consider the Watts-Strogatz small-world model, given
by a ring lattice in which each node is connected to all nodes within distance k. Let p be the
rewiring probability.
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(A) Show that when p = 0, the overall clustering coefficient of this graph is given by

C =
3k − 3

4k − 2
.

*(B) Show that when p > 0, the clustering coefficient is C = 3k−3
4k−2(1− p)3.

2. Norm and number of neighbors on lattices in dimension k ≥ 1: This exercise establishes
an important step to ansewr the question in following exercises. It does not directly related
to the proof seen in lecture but it deals with a fundamental property of lattices that is well
worth learning.

A norm on the vector space Rk is any function �·� : Rk → [0,∞) such that for all scalars
a ∈ R and vectors x, y ∈ Rk,

�ax� = |a| �x�
�x+ y� ≤ �x�+ �y�
�x� = 0 ⇐⇒ x = 0.

It is classical that all norms on finite-dimensional spaces are equivalent—that is, for any two
norms �·�A and �·�B there exists c1, c2 > 0 such that for all x ∈ Rk,

c1 �x�A ≤ �x�B ≤ c2 �x�A .

The following functions are all norms:

• lp-norm, 1 ≤ p < ∞:

�x�p =
�

k�

i=1

|xi|p
�1/p

.

In particular, p = 1 and p = 2 give the l1- and l2-norm, respectively:

�x�1 =
k�

i=1

|xi| , �x�2 =

����
k�

i=1

|xi|2.

• l∞-norm:
�x�∞ = max {|x1| , . . . , |xk|} .

(A) Show that in a lattice Zk of dimension k ≥ 1 and for any norm �·�, the following holds:
there exists c1 > 0 and c2 > 0 such that for all u ∈ Zk, we have

c1j
k ≤

���
�
v ∈ Zk : �u− v� ≤ j

���� ≤ c2j
k

for every j > 0.

[Hint: The key to answer this easily is to first show it in a well-chosen norm, and then to use
the equivalence of norms on finite-dimensional spaces.]
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(B) Similarly, show that there exists c1 > 0 and c2 > 0 such that for all u ∈ Zk,

c1j
k−1 ≤

���
�
v ∈ Zk : �u− v� = j

���� ≤ c2j
k−1

for every j > 0.

(C) We have essentially proven that in a lattice or grid, the number of points at distance
j grows polynomially in j (for any distance such as, for example, the number of edges to
traverse in the grid). Does the same hold for any graph (where the distance is again given by
the number of edges on a path)?

3. 1-D analogue of Kleinberg small-world model: Nodes are ordered on a line and each node
u has a single shortcut, which links it with a node v with probability P (u � v) proportional
to �u− v�−α. Redo the heuristic given the lecture notes (i.e., no need to give a proof) to
determine the navigation times for different values of the clustering exponent α. What is the
critical value of α that allows greedy routing to work efficiently?

*4. Analysis of Kleinberg small-world model in Zk, k ≥ 1: A good way to obtain a rigorous
proof for the behavior of greedy routing in the Kleinberg model is to study it for different
graphs. This exercise is a complement to the rigorous proof of the case k = 1 given in the
notes, which we will complete step by step. Here, the probability P (u � v) of a shortcut from
u to v is proportional to �u− v�−r for some constant r > 0 (note that we are now using r

instead of α to denote this exponent!). You may wish to start this exercise immediately after
reading the proof in the lecture notes for the three separate cases r < 1, r = 1, and r > 1
when k = 1.

(A) Deduce from the previous exercise that for a finite lattice of dimension k (with length
L− 1, containing N = Lk nodes) there exists α > 0 and β > 0 independent of N such that

α

�L/2��

j=1

1

jr−(k−1)
≤

�

v �=u

1

�u− v�r ≤ β

�L/2��

j=1

1

jr−(k−1)
.

(B) From this inequality can you briefly justify why the value r = k is critical for dimension
k?

(C) Assuming r < k, show that wherever u and v are located on the lattice the probability
that u is connected to v by a shortcut becomes polynomially small as N grows. In other words,
show that there exists δ > 0 and a constant c1 > 0 such that

P (u � v) ≤ c1N
−δ

.

(D) Let us denote by Il the set of nodes at distance at most l from the target t:

Il = {u ∈ V : �u− t� ≤ l} .

Which one of the following is an upper bound on the probability that at least one of the first
n shortcuts met by the walk drawn using greedy routing connects to a node within Il? (i)
2c1nl/N δ, (ii) 2c1nlk/N δ, (iii) none of the above.
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(E) Conclude that greedy routing needs in expectation at least a constant multiplied by N
k−r

k(k+1)

steps to succeed.

(F) We now assume r > k. Prove that the probability that u shortcuts has length greater
than m is less than c3/m

r−k. Conclude that greedy routing needs in expectation at least a
constant time Nη steps for η > 0.

(G) Assuming r = k, what can you deduce on the normalizing constant? Prove that the
probability for a node in phase j to be connected to a node in phase j� < j does not depend
on j and becomes small slowly with N . This will conclude the proof.

*5. Extension of the small-world result to an infinite lattice: One of the limitation of the above
proof is to deal frequently with normalizing constant and finite networks. In this exercise we
prove that for at least two cases of the one studied above, a formulation using an infinite
lattice can be drawn. In an infinite lattice, one cannot hope to have any bound on the time to
connect two arbitrarily far away nodes. On the other hand, one may hope that on an infinite
lattice that starting from a node at a fixed distance D from the target, greedy routing finds a
path whose length grows slowly with D.

(A) Assuming r > k, can you prove that Kleinberg’s model extends naturally without modi-
fication to an infinite lattice? Why is that impossible when r ≤ 1?

(B) Assuming r > k, quickly justify why there exists a constant C > 0 and η > 0 such that,
in expectation, the path found by greedy routing requires at least CDη steps when starting
from a node at distance D from the target.

We will now prove that Kleinberg model can be modified so that the proof of the critical case
r = k applies to an infinite lattice.

(C) For any ε > 0, let f(x) = 1/ logε(x). What is limx→∞ f(x)? What is f �?

(D) Prove that for any ε > 0, one can naturally extend the Kleinberg model to an infinite
lattice for r = k, assuming that the probability to have a shortcut u � v is

P (u � v) =
1

�u− v�k log1+ε (�u− v�)
.

(E) From that greedy routing in the above model uses at most O(log2+ε(D)) steps when
starting at distance D from the target.

4 Power laws and preferential attachment

1. Analysis of the copying model: Through the analysis of the Yule process, we have seen in
class the consequence of reinforcement. Reinforcement here denotes the fact that a difference
between two entities (e.g. the size of two genera, the number of links received by two webpages)
is itself biasing the dynamics so that the difference continues to increase. As a consequence,
even starting from a small initial set of equivalent entities, minor difference created by ran-
domness could further lead to major differences. In the case of the Yule process, it provided
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a simple model explaining the imbalance of species among genus which is characterized by a
power law. In this exercise, we conduct a very similar analysis to model edges created in a
graph. The main result is to show that a very simple copying strategy leads to big imbalances,
characterized by a power law degree distribution of node in-degrees.

The copying model is given as follows. We start at time t = 1 from a directed graph containing
N(1) nodes such that each of these nodes has exactly one outgoing edge. We introduce at
each time step t = 2, 3, 4, . . . a new node v(t) with a single outgoing edge e(t) that is initially
connected to another node chosen uniformly at random (which we denote by u(t)). We assume
the following evolution:

• With probability p, the process stops there and the new edge connects v(t) to u(t)

• Otherwise (i.e., with probability 1 − p), v(t) examines the edge that is starting at u(t)
and decides to copy this edge. This means that the edge from v(t) to u(t) is rewired to
one that goes from v(t) to the destination of the edge starting in u(t).

We would like to determine the evolution of node degrees. Since the graph is directed, all
nodes have both an out-degree and an in-degree. The out-degree of all nodes in the graph
is always equal to 1. The interesting problem is to analyze the evolution of the in-degree of
nodes in the graph as t becomes large. Denote by Xi(t) the number of nodes in the graph
with an in-degree equal to i ≥ 0.

(A) To begin, assume that at time t = 1 there is a single node and a single edge (i.e., this edge
is a self-loop from this single node to itself). Prove that no other self-loops will be created
later.

(B) How many nodes (denoted by N(t)) and edges (denoted by E(t)) are there in the graph
as a function of t?

(C) Assuming that X0(t) (i.e., the number of nodes with no incoming edge) is known, what
the possible values of X0(t+1) and what are the probabilities that each of these values occur?

(D) Derive from the previous question the evolution equation giving the expected value
E [X0(t+ 1)] as a function of E [X0(t)]. As seen in lecture, this can be done using condi-
tional expectation.

(E) For the next few parts, we assume p < 1. Given a constant c0, define the sequence

∆0(t) = E [X0(t)]− c0t.

Show that there exists a value of c0 such that for all t ≥ 1, |∆0(t)| ≤ |∆0(1)|. What is the
value of c0? (i) c0 = 1/(1− p), (ii) c0 = 1/(2− p), (iii) c0 = 1/(1 + p)

(F) Deduce that the following hypothesis is true for i = 0: For all ε > 0, there exists an A > 0
such that |∆i(t)| ≤ Atε.

(G) For a sequence of constants c0, c1, . . . , define

∆i(t) = E [Xi(t)]− cit.
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Show that for any i > 0, if the sequence satisfies

ci = ci−1

�
1− 2− p

(1 + p) + i(1− p)

�

then we have that

∆i(t+ 1) = ∆i(t)

�
1− p+ i(1− p)

N(t)

�
+∆i−1(t)

�
p+ (i− 1)(1− p)

N(t)

�
.

(H) Assume that the hypothesis of part (F) holds for any i ≥ 0. What does this tell us about
the evolution of degrees in this system? Using that p < 1, show that for i > 0 we have

ci = ci−1

�
1− β

i
+ ε(i)

�
where |ε(i)| ≤ A

i2
and β =

2− p

1− p
.

(I) As shown in lecture, if we neglect the error term ε(i) we have that ci is approximately
following a power law with coefficient β. For which values of p does the power law become the
most imbalanced? How does this compare to your intuition about the dynamics of copying?

(J) Assuming now p = 1, how could you characterize the decrease of ci as i gets large? Relate
this behavior to the dynamics of the copying model.

*(K) Complete the proof by showing that that the hypothesis of part (F) is in fact true for all
i ≥ 0.
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