
Random thoughts on random walks: 
networks, centrality, and tracking the spread of disease
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networks

‣ fancy word for graphs: nodes = vertices, 
connections = edges 

‣ typically directed (Twitter) or undirected 
(Facebook) 

‣ connectedness/giant component, 
irreducibility



adjacency matrix

‣ 1 if edge from i to j (0 otherwise) 

‣ symmetric for undirected graphs 

‣ makes counting easier 

‣ degree of node i: 

‣ # of walks of length t starting from node i: 

!

‣ # of 3-cycles in entire network (triple counting): 
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centrality

http://vax.herokuapp.com/game

‣ what does it mean to be central within a 
network?  context-dependent! 

‣ create your own…
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centrality

‣ {in-, out-, undirected-} degree centrality  
“How many {followers, followees, friends} do I have?” 

‣ eigenvector centrality 
“How influential am I?” 

‣ Katz centrality/PageRank 
“If my friends are important, doesn’t that make me important?” 

‣ closeness centrality 
“How close am I to everyone else, on average?” 

‣ betweenness centrality 
“How many chains of connections include me?” 

‣ …



degree centrality

!

‣   

‣ normalization doesn’t matter 

‣ defined using only local information (up to scaling)

cdegi = di/
P

i di



eigenvector centrality

‣ defined recursively/iteratively: requires global knowledge of network 

!

!

‣ equivalent to dominant eigenvector of adjacency matrix (hence the name)
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PageRank

‣ similar to eigenvector centrality, but using normalized adjacency matrix 

!

!

‣ defined using global information (as before) 

!

‣ add a damping factor to ensure everyone ends up with at least some centrality 

‣ i.e., interpolate original graph with complete graph

Page et. al (1999)

pij =
aij
di

P⇡ = ⇡



(a disservice to) Markov chains

‣ transition probabilities of going from i to j 

!

!

!

‣ stationary distribution satisfies                              (i.e.,               ) 

‣ rate of convergence given by second largest eigenvalue of transition matrix 

‣ example: simple random walk on finite set of states

⇡P = ⇡
X
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PageRank + random walks

‣ interpretation: proportion of time random walker spends at each node, 
assuming at each step neighbor selected at random 

‣ i.e., stationary distribution of Markov process on graph with uniform transition 
probabilities 

‣ technical details: irreducibility, aperiodicity, ergodicity 

‣ damping factor ensures these properties hold 

‣ note for later: only local information used at each step in walk…



degree centrality + random walks

‣ for undirected networks, PageRank (w/o damping) is the simple random walk 

‣ has degree centrality as its stationary distribution if network is connected 

‣ check this yourself! show that 
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degree centrality + random walks

‣ moments of degree distribution: 

‣ if we sample a node uniformly at random: 

!

‣ instead, after performing random walk “long enough”, we are sampling nodes 
according to their degree centralities: 

!

‣ intuition: In the limit, every edge is traversed same proportion of times. So, we 
are sampling a node at the end of an edge chosen uniformly at random!

Lovasz (1993)

P (X = i) = 1/N =) E(deg(X)) = hdi
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sampling using random walks

‣ constructive: If we want to sample according to degree centrality, take any 
node and select neighbor uniformly at random… rinse, repeat… 

‣ principle behind Markov Chain Monte Carlo (MCMC) 

‣ provides way to generate samples from distribution that can’t be sampled directly 

‣ need to specify transition probabilities such that stationary distribution of Markov chain is 
the desired sampling distribution



real-world implications

‣ Christakis & Fowler (2010) 

‣ flu outbreak among Harvard student population 
from Sep.-Dec. ’09 

‣ 2009 H1N1 pandemic: ~60M infected in US, 
~300K hospitalizations 

‣ two groups: random vs. friends of random (FoR) 

‣ epidemic curve in FoR tracked progression in 
random group ~14d in advance 

‣ deal with it: on average, your friends have more 
friends than you

Strogatz, New York Times (2012)

and the same person was frequently nominated several times.
Hence, our data collection procedures wound up yielding
information about 1,789 unique, inter-connected students who
were either surveyed or were identified as friends by those who
took part in the study. A connected component of 714 people was
in turn apparent within these 1,789 individuals. We illustrate the
spread of flu in this component in Figure 4, which shows the
tendency of the flu to ‘‘bloom’’ in more central nodes of the
network, and also in a 122-frame movie of daily flu prevalence
available online (see Supporting Information Video S1).

Sampling a densely interconnected population also allowed us
to actually measure egocentric network properties like in-degree
(number of times a subject was nominated as a friend),
betweenness centrality (the number of shortest paths in the
network that pass through an individual), coreness (the number of
friends an individual has when all individuals with fewer friends
are iteratively removed from the network), and transitivity (the
probability that two of one’s friends are friends with one another).
This would not be possible in a deployment of the friends’
technique in larger populations (wherein surveyed individuals
would be much less likely to actually be connected to each other).
The results showed that, as expected, the friend group differed
significantly from the random group for all these measures,
exhibiting higher in-degree (Mann Whitney U test p,0.001),
higher centrality (p,0.001), higher k-coreness (p,0.001), and
lower transitivity (p = 0.039).

We hypothesized that each of these measures could help to
identify groups that could be used as social network sensors when
full network information is, indeed, available (see Figure 5). For
example, we expect in-degree to be associated with early

contagion because more friends means more paths to others in
the network who might be infected. NLS estimates suggest that
each additional nomination shifts the flu curve left by 5.7 days
(95% C.I. 3.6–8.1) for flu diagnoses by medical staff and 8.0 days
(95% C.I. 7.3–8.5) for self-reported symptoms. On the other hand,
the same is not true for out-degree (the number of friends a person
names). Pertinently, this is the only quantity that would be
straightforwardly ascertainable by asking respondents about
themselves. However, there is low variance in this measure in
the present setting since most people named three friends (the
maximum allowed by our survey).

We also expect betweenness centrality to be associated with
early contagion. NLS estimates suggest that individuals with
maximum observed centrality shift the flu curve left by 16.5 days
(95% C.I. 1.9–28.3) for flu diagnoses by medical staff and 22.9
days (95% C.I. 20.0–27.2) for self-reported symptoms, relative to
those with minimum centrality. A related measure, k-coreness, also
suggests that people at the center of the network get the flu earlier.
NLS estimates suggest that increasing the measure k by one (the
range is from 0 to 3) shifts the flu curve left by 4.3 days (95% C.I.
1.8–6.5) for flu diagnoses by medical staff and 7.5 days (95% C.I.
6.8–8.2) for self-reported symptoms. Moreover, both betweenness
centrality and k-coreness remain significant even when controlling
for both in-degree and out-degree, suggesting that it is not just the
number of friends that is important with respect to flu risk, but also
the number of friends of friends, friends of friends of friends, and
so on [6].

Finally, we expect transitivity to be negatively associated with
early contagion. People with high transitivity may be poorly
connected to the rest of the network because their friends tend to

Figure 3. Empirical differences in flu contagion between ‘‘friend’’ group and randomly chosen individuals. We compared two groups,
one composed of individuals randomly selected from our population, and one composed of individuals who were nominated as a friend by members
of the random group. The friend group was observed to have significantly higher measured in-degree and betweenness centrality than the random
group (see Supporting Information Text S1). In the left panel, a nonparametric maximum likelihood estimate (NPMLE) of cumulative flu incidence
(based on diagnoses by medical staff) shows that individuals in the friend group tended to get the flu earlier than individuals in the random group.
Moreover, predicted daily incidence from a nonlinear least squares fit of the data to a logistic distribution function suggests that the peak incidence
of flu is shifted forward in time for the friends group by 13.9 days (right panel). A significant (p,0.05) lead time for the friend group was first detected
with data available up to Day 16. Raw data for daily flu cases in the friend group (blue) and random group (red) is shown in the inset box (right panel).
doi:10.1371/journal.pone.0012948.g003

Social Network Sensors
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http://opinionator.blogs.nytimes.com/2012/09/17/friends-you-can-count-on/


an aside

‣ long history of using (random) walks to infer properties of the social graph 

‣ Milgram’s small-world experiment (1967) 

‣ Watts-Strogatz model: shortcuts in highly clustered networks 

‣ Kleinberg model: distribution of shortcut lengths and efficient routing
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an aside

Watts-Strogatz (1998);  Kleinberg (2000)

Erdos-Renyi (tree-like)
Watts-Strogatz (lattice + shortcuts)

Kleinberg (distribution of shortcuts)
small diameter, no clustering

small diameter, high clustering
greedy routing finds shortcuts!



disease surveillance

‣ what do public health officials and CDC care about? 

‣ situational awareness 

‣ early detection of epidemic onset 

‣ peak timing and intensity 

‣ practical reasons 

‣ vaccine supply and distribution 

‣ allowing hospitals to run at high capacity and prepare for 
large influx of patients 

‣ difficulties both mathematical/statistical and 
practical

3

FIG. 1: Schematic representation of the proposed surveillance strategies. Red nodes are selected for surveillance.

FIG. 2: Surveillance objectives. To evaluate strategies, we compare the epidemic curve (prevalence time series) of the subset
of nodes under surveillance (green lines) with the epidemic curve for the whole population (blue lines). We calculate the time
lag between the surveillance group and whole population reaching 7% prevalence, except for the Montreal network, where we
use 1% prevalence (early warning), the time lag between the surveillance group and whole population reaching their epidemic
peaks and the ratio of the magnitudes of the two peaks (peak forecasting), and the complement of the normalized mean absolute
error (MAE) (situational awareness).

strategies are illustrated in Figure 1 for a scale-free net-
work, where each surveillance subset includes five of the
100 nodes (in red).

The most connected strategy assumes complete knowl-
edge of the network structure, whereas the random and
random acquaintance strategies do not.

D. Evaluation of surveillance strategies

We assess the performance of each surveillance strat-
egy with respect to several di↵erent public health goals
(Figure 2). For each strategy-network combination, we
build surveillance subsets by selecting 1% of all nodes

(unless otherwise specified) via the strategy. We then
estimate performance by running stochastic SEIR simu-
lations, and make the following four comparisons between
the prevalence time-series in the whole population to that
of surveillance subset:

1. Early warning: The lag between the surveillance
subset reaching 7% prevalence and the entire popu-
lation reaching 7% prevalence (except for the Mon-
treal network, where we use 1%).

2. Peak timing: The lag between the surveillance sub-
set reaching its epidemic peak and the entire pop-
ulation reaching its epidemic peak.



let’s do a little math

Newman (book);  message passing: Karrer-Newman (2013)

‣ SIR model on a graph (recall Andy’s talk!) 
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Figure 17.2: Time evolution of the SIR model. The three curves in this figure show 
the fractions of the population in the susceptible, infected, and recovered states as a 
function of time. The parameters are f3 = 1, 'Y = 0.4, So = 0.99, Xo = 0.01, and ro = O. 

Unfortunately, in practice we can't evaluate the integral in closed form. We can 
however evaluate it numerically. An example is shown in Fig. 17.2. 

There are a number of notable things about this figure. The fraction of 
susceptibles in the population decreases monotonically as susceptibles are in-
fected and the fraction of recovered individuals increases monotonically. The 
fraction infected, however, goes up at first as people get infected, then down 
again as they recover, and eventually goes to zero as t -----t 00, 

Note however that the number of susceptibles does not go to zero; a close 
inspection shows that the curve for s (t) ends a little above the axis. This is be-
cause when x --> ° there are no infected individuals left to infect the remaining 
susceptibles. Any individuals who survive to late enough times without being 
infected will probably never get the disease at all. They are the lucky ones who 
made it through the outbreak and out the other side. Similarly the fraction of 
recovered individuals does not quite reach one as t -----t 00. 

The asymptotic value of r has an important practical interpretation: it is 
the total number of individuals who ever catch the disease during the entire 
course of the epidemic-the total size of the outbreak. It can be calculated from 
Eq. (17.l3) as the value at which dr Idt = 0, which gives r = 1 - soe-f'h. 

, 
The initial conditions for the model can be chosen in a variety of ways, 

but the most common is to assume that the disease starts with either a single 
infected individual or a small number c of individuals and everyone else in 
the susceptible state. In other words, the initial values of the variables are 
So = 1 - cln, Xo = cln, and ro = 0. In the limit of large population size 
n -} 00, we can then write So 1, and our final value of r satisfies 

(17.15) 

Interestingly, this is the same as the equation we derived in Section 12.5 for the 
size 5 of the giant component of a Poisson random graph, Eq. (12.15), provided 
we equate f31'Y with the mean degree of the random graph, and this correspon-
dence allows us immediately to say several useful things. First, we know what 
the size of the epidemic must look like (in the limit of large n) as a function 
of the parameters f3 and T it will look like the plot of giant component size 
shown in the right-hand panel of Fig. 12.1 on page 406, with c = f3h. Second, 
it tells us that the size of the epidemic goes continuously to zero as f31'Y ap-
proaches one from above and for f3 I "I -<: 1, or equivalently f3 -<: "I, there is no 
epidemic at all. The simple explanation for this result is that if f3 -<: "I then in-
fected individuals recover faster than susceptible individuals become infected, 
so the disease cannot get a toehold in the population. The number of infected 
individuals, which starts small, goes down, not up, and the disease dies out 
instead of spreading. 

The transition between the epidemic and non-epidemic regimes happens 
at the point f3 = "I and is called the epidemic transition. Note that there was no 
epidemic transition in the simpler 51 model: in that model the disease always 
spreads because individuals once infected never recover and hence the number 
of infected individuals cannot decrease. (One can think of the 51 model as the 
special case olthe SIR model in which "I = 0, so that f3 can never be less than "I.) 

An important quantity in the study of epidemics is the basic reproduction 
number, denoted Ro, which is defined as follows. Consider the spread of a dis-
ease when it is just starting out, when there are only a few cases of the disease 
and the rest of the population is susceptible-what is called a naive population in 
the epidemiology jargon-and consider a susceptible who catches the disease 
in this early stage of the outbreak. The basic reproduction number is defined 
to be the average number of additional people that such a person passes the 
disease onto before they recover. For instance, if each person catching the dis-
ease passes it onto two others on average, then Ro = 2. If half of them pass it 
on to just one person and the rest to none at all, then Ro = and so forth. 

If we had Ro = 2 then each person catching the disease would pass it on 
to two others on average, each of them would pass it on to two more, and so 

17.3 THE SIR MODEL 
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the fractions of the population in the susceptible, infected, and recovered states as a 
function of time. The parameters are f3 = 1, 'Y = 0.4, So = 0.99, Xo = 0.01, and ro = O. 
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function of time. The parameters are f3 = 1, 'Y = 0.4, So = 0.99, Xo = 0.01, and ro = O. 
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early detection + eigenvector centrality

‣ problem: not possible* without knowing 
entire network to begin with! 

‣ never really know the underlying social 
graph, can only infer global properties 
from local subnetworks 

‣ is there a random walk whose stationary 
distribution is eigenvector centrality?



correlation of centrality measures

‣ could use degree centrality (locally 
recoverable) as a proxy for eigenvector 
centrality 

‣ can we do better: is there a random walk 
whose stationary distribution is eigenvector 
centrality?
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FIG. 7: Scatter plots of eigenvector centrality vs. (scaled) degree centrality of nodes in the (A) scale-free, (B) student, and
(C) Montreal networks. Both eigenvector and degree centralities are scaled to have maximum value 1, and log-log plots are
shown for (A) and (C). The student network shows strong correlation between the two centrality measures, with a Spearman
rank correlation coe�cient of 0.819, while for the scale-free and Montreal networks the measures have more moderate rank
correlation coe�cients of 0.441 and 0.620, respectively.

kP (k)/hki. If hk3i < 1, which is true for any finite
graph but will be violated for power-law networks with-
out cuto↵, the mean and standard deviation of D1 are
given by

µ1 =
hk2i
hki , �1 =

s
hk3i
hki �

✓
hk2i
hki

◆2

. (9)

By comparison, the distribution of randomly sampled
nodes (D0) has mean µ0 = hki and standard distribu-
tion �0 =

p
hk2i � hki2. Thus, the random walk sample

is biased towards nodes with larger degrees. For inter-
mediate values of m, the distribution of D

m

can only be
derived with full knowledge of the underlying graph. In-
stead, note that this distribution converges to that ofD1
at a rate that depends on the second largest eigenvalue
of the adjacency matrix of the graph. If this eigenvalue
is close to one, which is usually the case for connected
networks with high modularity, convergence is very slow
and random walk sampling may require many steps to
achieve its optimal performance. Biased methods in-
cluding Metropolis sampling are likely to be more use-
ful in this setting hLauren: Ravi, insert referencei.
We also note that an alternative random walk algo-
rithm directly increases eigenvector centrality—namely,
the maximal entropy random walk (MERW) [61]. How-
ever, MERW has transition probabilities that depend on
global information about the network and is therefore
impractical to implement without approximation as part
of any sampling strategy.

Equations 9 provide a theoretical upper bound to the
mean centrality that can be achieved when using a ran-
dom walk on a network to design a surveillance system.

In particular, for a random-walk surveillance subset of
size M = ✏N with fixed ✏ and N large, the empirical
mean of the sample will become approximately normal
with mean µ1 and standard deviation �1/

p
M , as illus-

trated for our three study networks (Figure 8).

IV. CONCLUSIONS

The success of both traditional surveillance systems
like the U.S. Outpatient Influenza-like Illness Surveil-
lance Network (ILINet) and next generation partici-
patory systems like FluNearYou [17, 18], depends on
targeted recruitment of reliable, informative providers.
With Meaningful Use and the advent of digital disease
detection, we are moving from an era of sparse, volunteer-
based data into an era of data inundation [16, 56].
Yet, we still face the challenge of finding reliable data
sources. E↵ective mining of electronic medical records,
social media and other internet source data, such as
Google, Twitter or Facebook, requires sifting through
petabytes of data for streams that can provide early and
accurate information about emerging outbreaks. While
random representative sampling is a good rule-of-thumb
and has guided the development of numerous surveil-
lance systems, we can improve performance by exploit-
ing our evolving understanding of social networks and
their impacts on infectious disease dynamics [24, 28–
30, 41, 44, 47–50, 57, 58].
In an ideal scenario where both the contact network

and the reproduction number (R0) of the disease are
known in advance, public health agencies can monitor
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maximal entropy random walk (MERW)

Burda (2010)

pij =
aijvj
vi

transition probabilities

Av = v =)
X

j

pij j =
1


vi
X

j

aijvj = v2i =  i

 i = v2i

stationary distribution!

but transition probabilities given in terms of e-vector centralities!



maximal entropy random walk

‣ why maximal entropy? 

‣ uniform distribution on a set has maximal 
entropy among all distributions on that set 

‣ transition probabilities of MERW put equal 
probability on all paths of length t starting 
from a given node, as t goes to ∞
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entropy rate

probability of particular path

S(t) = �
X

i1,...,it

p(i, i1, . . . , it) ln p(i, i1, . . . , it)

Entropy of set of paths of length t starting at i

entropy rate

h = lim
t!1

lnS(t)

t



entropy rate

‣ minimal entropy: all probability is put on one path starting from i: 

!

!

‣ maximal entropy: uniform probability on all paths of length t starting from i:

0 for all paths except one!

minimal entropy

S(t) = �
X

i1,...,it

p(i, i1, . . . , it) ln p(i, i1, . . . , it) = 0

S(t) = �
X

i1,...,it

1

Mi(t)
ln

✓
1

Mi(t)

◆
= lnMi(t)

uniform probability on all paths

maximal entropy

Mi(t) =
P

i1,i2,...,it
aii1ai1i2 · · · ait�1it



transition probabilities of MERW

Sinatra et. al (2011)
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obtained with only a limited and local knowledge of the
topology of the graph.
The optimal random walk on a given graph can be

rigorously determined on mathematical grounds by con-
sidering the entropy rate h of the stochastic processes
associated to different random walks [12]. A trajectory
of t steps generated by a random walk starting at a fixed
node i is described by the sequence of occupied nodes
i, i1, i2, . . . , it, where i1,..., it are all indices that can take
integer values between 1 and N . This means that the
walker first moves from i to node i1, then it jumps to
node i2 and so on. In practice, there is a maximum
of M(t) different allowed sequences of length t, corre-
sponding to all possible walks of length t (and starting
at node i) on the graph under study. Depending on the
rules of the random walk, not all possible sequences will
appear, while some of them will occur with a probabil-
ity higher than the others. If we denote as joint proba-
bility p(i, i1, i2, . . . , it) the probability that the sequence
i, i1, i2, . . . , it is generated by a given random walk, then
the entropy rate of the random walk, h, is defined as:

h = lim
t→∞

St

t
, (1)

where St is the Shannon entropy of the set of tra-
jectories of length t starting at node i: St =
−
∑

i1,i2,...,it
p(i, i1, . . . , it) ln p(i, i1, . . . , it). The mini-

mum possible value of the entropy rate, hmin = 0, is
obtained when, for large time t, only one trajectory
dominates. On the other hand, the maximum possible
value is obtained when, for large time t, all the M(t)
allowed trajectories have equal probability to occur, i.e.
p(i, i1, . . . , it) = 1/M(t) if i, i1, . . . , it is a walk on the
graph originating in i, and p(i, i1, . . . , it) = 0 other-
wise. The maximum value of the entropy is equal to:
hmax = limt→∞

M(t)
t

. Now, in the most general case, the
probability of having a sequence of t nodes originating at
a given node i can be written (for any t > 1) in terms of
conditional probabilities as:

p(i, i1, . . . , it) = p(i1|i)p(i2|i, i1) . . . p(it|i, i1, . . . , it−1).

Summing both ends over i2, i3, . . . , it, and using the nor-
malization conditions

∑
it
p(it|i, i1, i2, . . . , it−1) = 1 for

t ≥ 2, we get an expression for the conditional proba-
bility at the first step as a function of the t-times joint
probabilities:

p(i1|i) =
∑

i2,i3,...,it

p(i, i1, . . . , it) . (2)

This means that, no matter how long is the me-
mory in the random walker, we can always describe
it as a Markov random walker, provided that we de-
fine the transition matrix of the Markov chain π(i1|i)
in terms of the joint probabilities p(i, i1, . . . , it) as in
Eq.(2). In particular, if we want to construct a maximal-
entropy random walk, we have to set p(i, i1, i2, . . . , it) =

1/M(t) iff i, i1, i2, . . . , it is a walk on the graph, and
p(i, i1, i2, . . . , it) = 0 otherwise. The number of walks of
length t originating in i can be written in terms of the ad-
jacency matrix as: M(t) =

∑
i1,i2,...,it

aii1ai1i2 . . . ait−1it .
Hence, the joint probability of a trajectory i, i1, i2, . . . , it
reads:

p(i, i1, . . . , it) =
aii1ai1i2 . . . ait−1it∑

i1,i2,...,it
aii1ai1i2 . . . ait−1it

, (3)

and the transition matrix of the Markov random walker
with the maximal entropy is finally given by:

π(i1|i) = lim
t→∞

aii1
∑

i2
ai1i2 . . .

∑
it
ait−1it∑

i1
aii1

∑
i2
ai1i2 . . .

∑
it
ait−1it

. (4)

The value of the entropy rate in Eq. (1) can then be cal-
culated directly from matrix π, as for any ergodic Markov
chain, from [12]:

h = −
∑

i,j

π(j|i) · w∗(i) ln [π(j|i)] . (5)

where w∗(i) is the ith component of the stationary
distribution. From Eq. (4) it is clear that, in the most
general case, in order for a walker at a node i to select
one of its first neighbors to step on, the walker needs
to know not only which node is in Ni, but also the
neighborhood of first neighbors, the neighborhood of
second neighbors, and so on. In practice, the local
choice of moving from i to one particular neighbor i1,
depends on the whole adjacency matrix of the graph.
However, as we demonstrate below, this global informa-
tion is not necessary in most of the cases. Uncorrelated
networks.- Uncorrelated graphs can be described by
the degree sequence of the nodes {k(1), k(2), . . . , k(N)},
corresponding to a degree distribution Pk, since the
degree of a node does not depend on the degree of its
first neighbors. In mathematical terms, this means that
the conditional probability Pk′|k does not depend on k,
and can be written in terms of the degree distribution
as: P unc

k′|k = k′Pk′/⟨k⟩ where the right hand side is

the probability to end up in a node of degree k′ by
choosing an edge at random with uniform probability.
Consequently, the average degree of the neighbors of
node j, knn(j) = 1/k(j)

∑
l ajlk(l), does not depend

on the degree of j, knn(j) = knn ∀j, and the last two
summations in the numerator and in the denominator of
Eq. (4), namely

∑
it−2

ait−3it−2

∑
it−1

ait−2it−1
k(it−1) =∑

it−2
ait−3it−2

k(it−2)knn(it−2) can be written as

knn
∑

it−2
ait−3it−2

k(it−2). The constant knn at the
numerator and at the denominator cancels out, so that
the same argument can be repeated again and again.
Finally, the formula factorizes into:

π1(i1|i) =
aii1k(i1)∑
i1
aii1k(i1)

. (6)

where, by the symbol π1 we mean the first order ap-
proximation to the transition matrix π in Eq. (4). This

uniform probability on all paths
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first neighbors. In mathematical terms, this means that
the conditional probability Pk′|k does not depend on k,
and can be written in terms of the degree distribution
as: P unc

k′|k = k′Pk′/⟨k⟩ where the right hand side is

the probability to end up in a node of degree k′ by
choosing an edge at random with uniform probability.
Consequently, the average degree of the neighbors of
node j, knn(j) = 1/k(j)

∑
l ajlk(l), does not depend

on the degree of j, knn(j) = knn ∀j, and the last two
summations in the numerator and in the denominator of
Eq. (4), namely

∑
it−2

ait−3it−2

∑
it−1

ait−2it−1
k(it−1) =∑

it−2
ait−3it−2

k(it−2)knn(it−2) can be written as

knn
∑

it−2
ait−3it−2

k(it−2). The constant knn at the
numerator and at the denominator cancels out, so that
the same argument can be repeated again and again.
Finally, the formula factorizes into:

π1(i1|i) =
aii1k(i1)∑
i1
aii1k(i1)

. (6)

where, by the symbol π1 we mean the first order ap-
proximation to the transition matrix π in Eq. (4). This
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obtained with only a limited and local knowledge of the
topology of the graph.
The optimal random walk on a given graph can be

rigorously determined on mathematical grounds by con-
sidering the entropy rate h of the stochastic processes
associated to different random walks [12]. A trajectory
of t steps generated by a random walk starting at a fixed
node i is described by the sequence of occupied nodes
i, i1, i2, . . . , it, where i1,..., it are all indices that can take
integer values between 1 and N . This means that the
walker first moves from i to node i1, then it jumps to
node i2 and so on. In practice, there is a maximum
of M(t) different allowed sequences of length t, corre-
sponding to all possible walks of length t (and starting
at node i) on the graph under study. Depending on the
rules of the random walk, not all possible sequences will
appear, while some of them will occur with a probabil-
ity higher than the others. If we denote as joint proba-
bility p(i, i1, i2, . . . , it) the probability that the sequence
i, i1, i2, . . . , it is generated by a given random walk, then
the entropy rate of the random walk, h, is defined as:

h = lim
t→∞

St

t
, (1)

where St is the Shannon entropy of the set of tra-
jectories of length t starting at node i: St =
−
∑

i1,i2,...,it
p(i, i1, . . . , it) ln p(i, i1, . . . , it). The mini-

mum possible value of the entropy rate, hmin = 0, is
obtained when, for large time t, only one trajectory
dominates. On the other hand, the maximum possible
value is obtained when, for large time t, all the M(t)
allowed trajectories have equal probability to occur, i.e.
p(i, i1, . . . , it) = 1/M(t) if i, i1, . . . , it is a walk on the
graph originating in i, and p(i, i1, . . . , it) = 0 other-
wise. The maximum value of the entropy is equal to:
hmax = limt→∞

M(t)
t

. Now, in the most general case, the
probability of having a sequence of t nodes originating at
a given node i can be written (for any t > 1) in terms of
conditional probabilities as:

p(i, i1, . . . , it) = p(i1|i)p(i2|i, i1) . . . p(it|i, i1, . . . , it−1).

Summing both ends over i2, i3, . . . , it, and using the nor-
malization conditions

∑
it
p(it|i, i1, i2, . . . , it−1) = 1 for

t ≥ 2, we get an expression for the conditional proba-
bility at the first step as a function of the t-times joint
probabilities:

p(i1|i) =
∑

i2,i3,...,it

p(i, i1, . . . , it) . (2)

This means that, no matter how long is the me-
mory in the random walker, we can always describe
it as a Markov random walker, provided that we de-
fine the transition matrix of the Markov chain π(i1|i)
in terms of the joint probabilities p(i, i1, . . . , it) as in
Eq.(2). In particular, if we want to construct a maximal-
entropy random walk, we have to set p(i, i1, i2, . . . , it) =

1/M(t) iff i, i1, i2, . . . , it is a walk on the graph, and
p(i, i1, i2, . . . , it) = 0 otherwise. The number of walks of
length t originating in i can be written in terms of the ad-
jacency matrix as: M(t) =

∑
i1,i2,...,it

aii1ai1i2 . . . ait−1it .
Hence, the joint probability of a trajectory i, i1, i2, . . . , it
reads:

p(i, i1, . . . , it) =
aii1ai1i2 . . . ait−1it∑

i1,i2,...,it
aii1ai1i2 . . . ait−1it

, (3)

and the transition matrix of the Markov random walker
with the maximal entropy is finally given by:

π(i1|i) = lim
t→∞

aii1
∑

i2
ai1i2 . . .

∑
it
ait−1it∑

i1
aii1

∑
i2
ai1i2 . . .

∑
it
ait−1it

. (4)

The value of the entropy rate in Eq. (1) can then be cal-
culated directly from matrix π, as for any ergodic Markov
chain, from [12]:

h = −
∑

i,j

π(j|i) · w∗(i) ln [π(j|i)] . (5)

where w∗(i) is the ith component of the stationary
distribution. From Eq. (4) it is clear that, in the most
general case, in order for a walker at a node i to select
one of its first neighbors to step on, the walker needs
to know not only which node is in Ni, but also the
neighborhood of first neighbors, the neighborhood of
second neighbors, and so on. In practice, the local
choice of moving from i to one particular neighbor i1,
depends on the whole adjacency matrix of the graph.
However, as we demonstrate below, this global informa-
tion is not necessary in most of the cases. Uncorrelated
networks.- Uncorrelated graphs can be described by
the degree sequence of the nodes {k(1), k(2), . . . , k(N)},
corresponding to a degree distribution Pk, since the
degree of a node does not depend on the degree of its
first neighbors. In mathematical terms, this means that
the conditional probability Pk′|k does not depend on k,
and can be written in terms of the degree distribution
as: P unc

k′|k = k′Pk′/⟨k⟩ where the right hand side is

the probability to end up in a node of degree k′ by
choosing an edge at random with uniform probability.
Consequently, the average degree of the neighbors of
node j, knn(j) = 1/k(j)

∑
l ajlk(l), does not depend

on the degree of j, knn(j) = knn ∀j, and the last two
summations in the numerator and in the denominator of
Eq. (4), namely

∑
it−2

ait−3it−2

∑
it−1

ait−2it−1
k(it−1) =∑

it−2
ait−3it−2

k(it−2)knn(it−2) can be written as

knn
∑

it−2
ait−3it−2

k(it−2). The constant knn at the
numerator and at the denominator cancels out, so that
the same argument can be repeated again and again.
Finally, the formula factorizes into:

π1(i1|i) =
aii1k(i1)∑
i1
aii1k(i1)

. (6)

where, by the symbol π1 we mean the first order ap-
proximation to the transition matrix π in Eq. (4). This

3

formula tells us that the best diffusion process on a uncor-
related graph is a random walk whose motion is linearly
biased on node degrees. Thus, a walker at a given node,
only needs to have information on its first neighbors and
their degree. Since the degrees of different nodes are not
correlated, local information of the degree of first neigh-
bors is, in this case sufficient to construct the diffusion
process with maximal entropy. Such information is “lo-
cally available” to the walkers, meaning that a walker at
node i has complete information on the degree of each
node in its neighborhood Ni. Now, it is intuitive that a
random walk choosing a node j proportionally to k(j), so
that all the trajectories of length 2 starting in i will occur
with the same probability, will be more random than a
walker selecting uniformly the first neighbors of i.
Formula (6) gives theoretical grounds to the results of

Ref.[17], where random walks with power law dependence
π(i1|i) ∝ kα(i1) were explored as a function of α (α > 0
indicates a bias toward high-k neighbors, while α < 0
means preferring low-k nodes), and it was numerically
found indication of α = 1 as the best value of α if the
graph is uncorrelated. Of course, if all nodes have the
same degree, as in a regular graph, the transition matrix
reduces to that of an unbiased walker:

π0(i1|i) =
aii1∑
i1
aii1

. (7)

This is the lowest possible approximation for π in Eq. (4):
in the case of no available information, each neighbor has
the same probability to be selected. The values of h ob-
tained numerically with transition matrices π0 and π1 in
different models of uncorrelated networks are reported in
Table I. In agreement with our predictions, in regular
lattices and in random regular graphs, h(π0) is equal to
the maximal possible entropy hmax = lnλ. In Erdős-
Rényi (ER) random graphs not all nodes have the same
degree, so that a random walk linearly biased on degree
has an entropy h(π1) that is much closer to the maxi-
mum, than h(π0). This effect is even more evident in
scale-free graphs, i.e. in graphs with a very heteroge-
neous degree distribution.
Networks with degree-degree correlations.- Graphs with

degree-degree correlations are described in terms of their
degree distribution Pk, and of a non-trivial Pk′|k. This is
because the probability that a link from a node of degree
k arrives at a node of degree k′ does not simply factorize
in terms of the degree distribution. In such graphs the
average degree of the first neighbors of a node j, knn(j),
does depend on k(j). Therefore, in analogy with Eq. (6)
we can define a second order approximation of Eq. (4):

π2(i1|i) =
aii1

∑
i2
ai1i2k(i2)∑

i1
aii1

∑
i2
ai1i2k(i2)

=
aii1k(i1)knn(i1)∑
i1
aii1k(i1)knn(i1)

, (8)

h(π0)
h(π)

h(π1)
h(π)

h(π2)
h(π)

hmax = h(π)

Regular lattice 1.000 1.000 1.000 1.79
Random regular graph 1.000 1.000 1.000 1.79
ER random graph 0.954 0.993 0.998 1.98
Uncorr. scale-free γ = 1.5 0.886 0.992 0.996 2.36
BA model 0.825 0.976 0.996 2.52
Assort. scale-free γ = 1.5 0.876 0.991 0.999 2.44
Disassort. scale-free γ = 1.5 0.937 0.990 0.997 2.18

Regular lattice (1% defects) 0.996 0.997 0.998 1.38
Regular lattice (10% defects) 0.967 0.978 0.981 1.34
Regular lattice (20% defects) 0.931 0.955 0.963 1.29

Internet AS [21] 0.744 0.900 0.980 4.10
US Airports [18] 0.879 0.990 0.997 3.88
E-Mail [22] 0.881 0.983 0.997 3.03
SCN (cond-mat)[23] 0.694 0.867 0.946 3.17
SCN (astro-ph) [23] 0.784 0.941 0.973 4.41
PGP [24] 0.597 0.92 0.976 3.75

TABLE I. The entropies of random walks with no informa-
tion, h(π0), and with local information respectively on near-
est, h(π1), and next-nearest neighbors, h(π2), are compared
to the maximal possible entropy hmax = h(π) = lnλ on differ-
ent graph models with N = 500 and average degree ⟨k⟩ = 6,
on N = 40× 40 regular square lattices with defects (see [27]),
and on various real networks.

describing a Markov walker that, at each time step, se-
lects a first neighbor, i1, of the current node, with a prob-
ability proportional to the sum of the degrees of the first
neighbors of i1. This is equivalent to make equiprobale
all the walks of length 3 originating in i. In conclusion,
to construct high-entropy random walks on correlated
graphs, a walker at a given node needs to know the de-
gree of first and second neighbors of the current node,
which is still local information.
In Table I we report h(π2) for various models and for

real networks. In models of uncorrelated graphs h(π2) is
not very different from h(π1), while in models of corre-
lated graphs, in lattices with defects and in most of the
networks from the real world h(π2) is a much better ap-
proximation of h(π) than h(π1). In most real-world net-
works, degree-degree correlations are such that the aver-
age degree of the first neighbors of a node exhibits a clear
power-law dependence on degree: knn(j) ∼ [k(j)]−ν ,
with ν > 0 (ν < 0) for disassortative (assortative) net-
works [2]. For instance, as shown in the inset of Fig. 1,
ν ≃ 0.4 for the Internet at the autonomous systems level
[21]. Plugging this dependence in Eq. (8), we get an ap-
proximate form for the maximal-entropy random walk
in a correlated random graph in terms of degree-biased
random walks:

π2(i1|i) ≃
aii1 [k(i1)]

1−ν

∑
i1
aii1 [k(i1)]1−ν

. (9)

In practice, on a correlated network, an approximation
for the maximal-entropy random walk can be obtained
by considering a random walk whose motion is biased
as a power of the target node degree, with an exponent

0th-order approximation
“How many friends do I have?”
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obtained with only a limited and local knowledge of the
topology of the graph.
The optimal random walk on a given graph can be

rigorously determined on mathematical grounds by con-
sidering the entropy rate h of the stochastic processes
associated to different random walks [12]. A trajectory
of t steps generated by a random walk starting at a fixed
node i is described by the sequence of occupied nodes
i, i1, i2, . . . , it, where i1,..., it are all indices that can take
integer values between 1 and N . This means that the
walker first moves from i to node i1, then it jumps to
node i2 and so on. In practice, there is a maximum
of M(t) different allowed sequences of length t, corre-
sponding to all possible walks of length t (and starting
at node i) on the graph under study. Depending on the
rules of the random walk, not all possible sequences will
appear, while some of them will occur with a probabil-
ity higher than the others. If we denote as joint proba-
bility p(i, i1, i2, . . . , it) the probability that the sequence
i, i1, i2, . . . , it is generated by a given random walk, then
the entropy rate of the random walk, h, is defined as:

h = lim
t→∞

St

t
, (1)

where St is the Shannon entropy of the set of tra-
jectories of length t starting at node i: St =
−
∑

i1,i2,...,it
p(i, i1, . . . , it) ln p(i, i1, . . . , it). The mini-

mum possible value of the entropy rate, hmin = 0, is
obtained when, for large time t, only one trajectory
dominates. On the other hand, the maximum possible
value is obtained when, for large time t, all the M(t)
allowed trajectories have equal probability to occur, i.e.
p(i, i1, . . . , it) = 1/M(t) if i, i1, . . . , it is a walk on the
graph originating in i, and p(i, i1, . . . , it) = 0 other-
wise. The maximum value of the entropy is equal to:
hmax = limt→∞

M(t)
t

. Now, in the most general case, the
probability of having a sequence of t nodes originating at
a given node i can be written (for any t > 1) in terms of
conditional probabilities as:

p(i, i1, . . . , it) = p(i1|i)p(i2|i, i1) . . . p(it|i, i1, . . . , it−1).

Summing both ends over i2, i3, . . . , it, and using the nor-
malization conditions

∑
it
p(it|i, i1, i2, . . . , it−1) = 1 for

t ≥ 2, we get an expression for the conditional proba-
bility at the first step as a function of the t-times joint
probabilities:

p(i1|i) =
∑

i2,i3,...,it

p(i, i1, . . . , it) . (2)

This means that, no matter how long is the me-
mory in the random walker, we can always describe
it as a Markov random walker, provided that we de-
fine the transition matrix of the Markov chain π(i1|i)
in terms of the joint probabilities p(i, i1, . . . , it) as in
Eq.(2). In particular, if we want to construct a maximal-
entropy random walk, we have to set p(i, i1, i2, . . . , it) =

1/M(t) iff i, i1, i2, . . . , it is a walk on the graph, and
p(i, i1, i2, . . . , it) = 0 otherwise. The number of walks of
length t originating in i can be written in terms of the ad-
jacency matrix as: M(t) =

∑
i1,i2,...,it

aii1ai1i2 . . . ait−1it .
Hence, the joint probability of a trajectory i, i1, i2, . . . , it
reads:

p(i, i1, . . . , it) =
aii1ai1i2 . . . ait−1it∑

i1,i2,...,it
aii1ai1i2 . . . ait−1it

, (3)

and the transition matrix of the Markov random walker
with the maximal entropy is finally given by:

π(i1|i) = lim
t→∞

aii1
∑

i2
ai1i2 . . .

∑
it
ait−1it∑

i1
aii1

∑
i2
ai1i2 . . .

∑
it
ait−1it

. (4)

The value of the entropy rate in Eq. (1) can then be cal-
culated directly from matrix π, as for any ergodic Markov
chain, from [12]:

h = −
∑

i,j

π(j|i) · w∗(i) ln [π(j|i)] . (5)

where w∗(i) is the ith component of the stationary
distribution. From Eq. (4) it is clear that, in the most
general case, in order for a walker at a node i to select
one of its first neighbors to step on, the walker needs
to know not only which node is in Ni, but also the
neighborhood of first neighbors, the neighborhood of
second neighbors, and so on. In practice, the local
choice of moving from i to one particular neighbor i1,
depends on the whole adjacency matrix of the graph.
However, as we demonstrate below, this global informa-
tion is not necessary in most of the cases. Uncorrelated
networks.- Uncorrelated graphs can be described by
the degree sequence of the nodes {k(1), k(2), . . . , k(N)},
corresponding to a degree distribution Pk, since the
degree of a node does not depend on the degree of its
first neighbors. In mathematical terms, this means that
the conditional probability Pk′|k does not depend on k,
and can be written in terms of the degree distribution
as: P unc

k′|k = k′Pk′/⟨k⟩ where the right hand side is

the probability to end up in a node of degree k′ by
choosing an edge at random with uniform probability.
Consequently, the average degree of the neighbors of
node j, knn(j) = 1/k(j)

∑
l ajlk(l), does not depend

on the degree of j, knn(j) = knn ∀j, and the last two
summations in the numerator and in the denominator of
Eq. (4), namely

∑
it−2

ait−3it−2

∑
it−1

ait−2it−1
k(it−1) =∑

it−2
ait−3it−2

k(it−2)knn(it−2) can be written as

knn
∑

it−2
ait−3it−2

k(it−2). The constant knn at the
numerator and at the denominator cancels out, so that
the same argument can be repeated again and again.
Finally, the formula factorizes into:

π1(i1|i) =
aii1k(i1)∑
i1
aii1k(i1)

. (6)

where, by the symbol π1 we mean the first order ap-
proximation to the transition matrix π in Eq. (4). This

3

formula tells us that the best diffusion process on a uncor-
related graph is a random walk whose motion is linearly
biased on node degrees. Thus, a walker at a given node,
only needs to have information on its first neighbors and
their degree. Since the degrees of different nodes are not
correlated, local information of the degree of first neigh-
bors is, in this case sufficient to construct the diffusion
process with maximal entropy. Such information is “lo-
cally available” to the walkers, meaning that a walker at
node i has complete information on the degree of each
node in its neighborhood Ni. Now, it is intuitive that a
random walk choosing a node j proportionally to k(j), so
that all the trajectories of length 2 starting in i will occur
with the same probability, will be more random than a
walker selecting uniformly the first neighbors of i.
Formula (6) gives theoretical grounds to the results of

Ref.[17], where random walks with power law dependence
π(i1|i) ∝ kα(i1) were explored as a function of α (α > 0
indicates a bias toward high-k neighbors, while α < 0
means preferring low-k nodes), and it was numerically
found indication of α = 1 as the best value of α if the
graph is uncorrelated. Of course, if all nodes have the
same degree, as in a regular graph, the transition matrix
reduces to that of an unbiased walker:

π0(i1|i) =
aii1∑
i1
aii1

. (7)

This is the lowest possible approximation for π in Eq. (4):
in the case of no available information, each neighbor has
the same probability to be selected. The values of h ob-
tained numerically with transition matrices π0 and π1 in
different models of uncorrelated networks are reported in
Table I. In agreement with our predictions, in regular
lattices and in random regular graphs, h(π0) is equal to
the maximal possible entropy hmax = lnλ. In Erdős-
Rényi (ER) random graphs not all nodes have the same
degree, so that a random walk linearly biased on degree
has an entropy h(π1) that is much closer to the maxi-
mum, than h(π0). This effect is even more evident in
scale-free graphs, i.e. in graphs with a very heteroge-
neous degree distribution.
Networks with degree-degree correlations.- Graphs with

degree-degree correlations are described in terms of their
degree distribution Pk, and of a non-trivial Pk′|k. This is
because the probability that a link from a node of degree
k arrives at a node of degree k′ does not simply factorize
in terms of the degree distribution. In such graphs the
average degree of the first neighbors of a node j, knn(j),
does depend on k(j). Therefore, in analogy with Eq. (6)
we can define a second order approximation of Eq. (4):

π2(i1|i) =
aii1

∑
i2
ai1i2k(i2)∑

i1
aii1

∑
i2
ai1i2k(i2)

=
aii1k(i1)knn(i1)∑
i1
aii1k(i1)knn(i1)

, (8)

h(π0)
h(π)

h(π1)
h(π)

h(π2)
h(π)

hmax = h(π)

Regular lattice 1.000 1.000 1.000 1.79
Random regular graph 1.000 1.000 1.000 1.79
ER random graph 0.954 0.993 0.998 1.98
Uncorr. scale-free γ = 1.5 0.886 0.992 0.996 2.36
BA model 0.825 0.976 0.996 2.52
Assort. scale-free γ = 1.5 0.876 0.991 0.999 2.44
Disassort. scale-free γ = 1.5 0.937 0.990 0.997 2.18

Regular lattice (1% defects) 0.996 0.997 0.998 1.38
Regular lattice (10% defects) 0.967 0.978 0.981 1.34
Regular lattice (20% defects) 0.931 0.955 0.963 1.29

Internet AS [21] 0.744 0.900 0.980 4.10
US Airports [18] 0.879 0.990 0.997 3.88
E-Mail [22] 0.881 0.983 0.997 3.03
SCN (cond-mat)[23] 0.694 0.867 0.946 3.17
SCN (astro-ph) [23] 0.784 0.941 0.973 4.41
PGP [24] 0.597 0.92 0.976 3.75

TABLE I. The entropies of random walks with no informa-
tion, h(π0), and with local information respectively on near-
est, h(π1), and next-nearest neighbors, h(π2), are compared
to the maximal possible entropy hmax = h(π) = lnλ on differ-
ent graph models with N = 500 and average degree ⟨k⟩ = 6,
on N = 40× 40 regular square lattices with defects (see [27]),
and on various real networks.

describing a Markov walker that, at each time step, se-
lects a first neighbor, i1, of the current node, with a prob-
ability proportional to the sum of the degrees of the first
neighbors of i1. This is equivalent to make equiprobale
all the walks of length 3 originating in i. In conclusion,
to construct high-entropy random walks on correlated
graphs, a walker at a given node needs to know the de-
gree of first and second neighbors of the current node,
which is still local information.
In Table I we report h(π2) for various models and for

real networks. In models of uncorrelated graphs h(π2) is
not very different from h(π1), while in models of corre-
lated graphs, in lattices with defects and in most of the
networks from the real world h(π2) is a much better ap-
proximation of h(π) than h(π1). In most real-world net-
works, degree-degree correlations are such that the aver-
age degree of the first neighbors of a node exhibits a clear
power-law dependence on degree: knn(j) ∼ [k(j)]−ν ,
with ν > 0 (ν < 0) for disassortative (assortative) net-
works [2]. For instance, as shown in the inset of Fig. 1,
ν ≃ 0.4 for the Internet at the autonomous systems level
[21]. Plugging this dependence in Eq. (8), we get an ap-
proximate form for the maximal-entropy random walk
in a correlated random graph in terms of degree-biased
random walks:

π2(i1|i) ≃
aii1 [k(i1)]

1−ν

∑
i1
aii1 [k(i1)]1−ν

. (9)

In practice, on a correlated network, an approximation
for the maximal-entropy random walk can be obtained
by considering a random walk whose motion is biased
as a power of the target node degree, with an exponent

0th-order approximation
“How many friends do I have?”

2

obtained with only a limited and local knowledge of the
topology of the graph.
The optimal random walk on a given graph can be

rigorously determined on mathematical grounds by con-
sidering the entropy rate h of the stochastic processes
associated to different random walks [12]. A trajectory
of t steps generated by a random walk starting at a fixed
node i is described by the sequence of occupied nodes
i, i1, i2, . . . , it, where i1,..., it are all indices that can take
integer values between 1 and N . This means that the
walker first moves from i to node i1, then it jumps to
node i2 and so on. In practice, there is a maximum
of M(t) different allowed sequences of length t, corre-
sponding to all possible walks of length t (and starting
at node i) on the graph under study. Depending on the
rules of the random walk, not all possible sequences will
appear, while some of them will occur with a probabil-
ity higher than the others. If we denote as joint proba-
bility p(i, i1, i2, . . . , it) the probability that the sequence
i, i1, i2, . . . , it is generated by a given random walk, then
the entropy rate of the random walk, h, is defined as:

h = lim
t→∞

St

t
, (1)

where St is the Shannon entropy of the set of tra-
jectories of length t starting at node i: St =
−
∑

i1,i2,...,it
p(i, i1, . . . , it) ln p(i, i1, . . . , it). The mini-

mum possible value of the entropy rate, hmin = 0, is
obtained when, for large time t, only one trajectory
dominates. On the other hand, the maximum possible
value is obtained when, for large time t, all the M(t)
allowed trajectories have equal probability to occur, i.e.
p(i, i1, . . . , it) = 1/M(t) if i, i1, . . . , it is a walk on the
graph originating in i, and p(i, i1, . . . , it) = 0 other-
wise. The maximum value of the entropy is equal to:
hmax = limt→∞

M(t)
t

. Now, in the most general case, the
probability of having a sequence of t nodes originating at
a given node i can be written (for any t > 1) in terms of
conditional probabilities as:

p(i, i1, . . . , it) = p(i1|i)p(i2|i, i1) . . . p(it|i, i1, . . . , it−1).

Summing both ends over i2, i3, . . . , it, and using the nor-
malization conditions

∑
it
p(it|i, i1, i2, . . . , it−1) = 1 for

t ≥ 2, we get an expression for the conditional proba-
bility at the first step as a function of the t-times joint
probabilities:

p(i1|i) =
∑

i2,i3,...,it

p(i, i1, . . . , it) . (2)

This means that, no matter how long is the me-
mory in the random walker, we can always describe
it as a Markov random walker, provided that we de-
fine the transition matrix of the Markov chain π(i1|i)
in terms of the joint probabilities p(i, i1, . . . , it) as in
Eq.(2). In particular, if we want to construct a maximal-
entropy random walk, we have to set p(i, i1, i2, . . . , it) =

1/M(t) iff i, i1, i2, . . . , it is a walk on the graph, and
p(i, i1, i2, . . . , it) = 0 otherwise. The number of walks of
length t originating in i can be written in terms of the ad-
jacency matrix as: M(t) =

∑
i1,i2,...,it

aii1ai1i2 . . . ait−1it .
Hence, the joint probability of a trajectory i, i1, i2, . . . , it
reads:

p(i, i1, . . . , it) =
aii1ai1i2 . . . ait−1it∑

i1,i2,...,it
aii1ai1i2 . . . ait−1it

, (3)

and the transition matrix of the Markov random walker
with the maximal entropy is finally given by:

π(i1|i) = lim
t→∞

aii1
∑

i2
ai1i2 . . .

∑
it
ait−1it∑

i1
aii1

∑
i2
ai1i2 . . .

∑
it
ait−1it

. (4)

The value of the entropy rate in Eq. (1) can then be cal-
culated directly from matrix π, as for any ergodic Markov
chain, from [12]:

h = −
∑

i,j

π(j|i) · w∗(i) ln [π(j|i)] . (5)

where w∗(i) is the ith component of the stationary
distribution. From Eq. (4) it is clear that, in the most
general case, in order for a walker at a node i to select
one of its first neighbors to step on, the walker needs
to know not only which node is in Ni, but also the
neighborhood of first neighbors, the neighborhood of
second neighbors, and so on. In practice, the local
choice of moving from i to one particular neighbor i1,
depends on the whole adjacency matrix of the graph.
However, as we demonstrate below, this global informa-
tion is not necessary in most of the cases. Uncorrelated
networks.- Uncorrelated graphs can be described by
the degree sequence of the nodes {k(1), k(2), . . . , k(N)},
corresponding to a degree distribution Pk, since the
degree of a node does not depend on the degree of its
first neighbors. In mathematical terms, this means that
the conditional probability Pk′|k does not depend on k,
and can be written in terms of the degree distribution
as: P unc

k′|k = k′Pk′/⟨k⟩ where the right hand side is

the probability to end up in a node of degree k′ by
choosing an edge at random with uniform probability.
Consequently, the average degree of the neighbors of
node j, knn(j) = 1/k(j)

∑
l ajlk(l), does not depend

on the degree of j, knn(j) = knn ∀j, and the last two
summations in the numerator and in the denominator of
Eq. (4), namely

∑
it−2

ait−3it−2

∑
it−1

ait−2it−1
k(it−1) =∑

it−2
ait−3it−2

k(it−2)knn(it−2) can be written as

knn
∑

it−2
ait−3it−2

k(it−2). The constant knn at the
numerator and at the denominator cancels out, so that
the same argument can be repeated again and again.
Finally, the formula factorizes into:

π1(i1|i) =
aii1k(i1)∑
i1
aii1k(i1)

. (6)

where, by the symbol π1 we mean the first order ap-
proximation to the transition matrix π in Eq. (4). This
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obtained with only a limited and local knowledge of the
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This means that, no matter how long is the me-
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fine the transition matrix of the Markov chain π(i1|i)
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chain, from [12]:

h = −
∑

i,j
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distribution. From Eq. (4) it is clear that, in the most
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proximation to the transition matrix π in Eq. (4). This
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formula tells us that the best diffusion process on a uncor-
related graph is a random walk whose motion is linearly
biased on node degrees. Thus, a walker at a given node,
only needs to have information on its first neighbors and
their degree. Since the degrees of different nodes are not
correlated, local information of the degree of first neigh-
bors is, in this case sufficient to construct the diffusion
process with maximal entropy. Such information is “lo-
cally available” to the walkers, meaning that a walker at
node i has complete information on the degree of each
node in its neighborhood Ni. Now, it is intuitive that a
random walk choosing a node j proportionally to k(j), so
that all the trajectories of length 2 starting in i will occur
with the same probability, will be more random than a
walker selecting uniformly the first neighbors of i.
Formula (6) gives theoretical grounds to the results of

Ref.[17], where random walks with power law dependence
π(i1|i) ∝ kα(i1) were explored as a function of α (α > 0
indicates a bias toward high-k neighbors, while α < 0
means preferring low-k nodes), and it was numerically
found indication of α = 1 as the best value of α if the
graph is uncorrelated. Of course, if all nodes have the
same degree, as in a regular graph, the transition matrix
reduces to that of an unbiased walker:

π0(i1|i) =
aii1∑
i1
aii1

. (7)

This is the lowest possible approximation for π in Eq. (4):
in the case of no available information, each neighbor has
the same probability to be selected. The values of h ob-
tained numerically with transition matrices π0 and π1 in
different models of uncorrelated networks are reported in
Table I. In agreement with our predictions, in regular
lattices and in random regular graphs, h(π0) is equal to
the maximal possible entropy hmax = lnλ. In Erdős-
Rényi (ER) random graphs not all nodes have the same
degree, so that a random walk linearly biased on degree
has an entropy h(π1) that is much closer to the maxi-
mum, than h(π0). This effect is even more evident in
scale-free graphs, i.e. in graphs with a very heteroge-
neous degree distribution.
Networks with degree-degree correlations.- Graphs with

degree-degree correlations are described in terms of their
degree distribution Pk, and of a non-trivial Pk′|k. This is
because the probability that a link from a node of degree
k arrives at a node of degree k′ does not simply factorize
in terms of the degree distribution. In such graphs the
average degree of the first neighbors of a node j, knn(j),
does depend on k(j). Therefore, in analogy with Eq. (6)
we can define a second order approximation of Eq. (4):

π2(i1|i) =
aii1

∑
i2
ai1i2k(i2)∑

i1
aii1

∑
i2
ai1i2k(i2)

=
aii1k(i1)knn(i1)∑
i1
aii1k(i1)knn(i1)

, (8)

h(π0)
h(π)

h(π1)
h(π)

h(π2)
h(π)

hmax = h(π)

Regular lattice 1.000 1.000 1.000 1.79
Random regular graph 1.000 1.000 1.000 1.79
ER random graph 0.954 0.993 0.998 1.98
Uncorr. scale-free γ = 1.5 0.886 0.992 0.996 2.36
BA model 0.825 0.976 0.996 2.52
Assort. scale-free γ = 1.5 0.876 0.991 0.999 2.44
Disassort. scale-free γ = 1.5 0.937 0.990 0.997 2.18

Regular lattice (1% defects) 0.996 0.997 0.998 1.38
Regular lattice (10% defects) 0.967 0.978 0.981 1.34
Regular lattice (20% defects) 0.931 0.955 0.963 1.29

Internet AS [21] 0.744 0.900 0.980 4.10
US Airports [18] 0.879 0.990 0.997 3.88
E-Mail [22] 0.881 0.983 0.997 3.03
SCN (cond-mat)[23] 0.694 0.867 0.946 3.17
SCN (astro-ph) [23] 0.784 0.941 0.973 4.41
PGP [24] 0.597 0.92 0.976 3.75

TABLE I. The entropies of random walks with no informa-
tion, h(π0), and with local information respectively on near-
est, h(π1), and next-nearest neighbors, h(π2), are compared
to the maximal possible entropy hmax = h(π) = lnλ on differ-
ent graph models with N = 500 and average degree ⟨k⟩ = 6,
on N = 40× 40 regular square lattices with defects (see [27]),
and on various real networks.

describing a Markov walker that, at each time step, se-
lects a first neighbor, i1, of the current node, with a prob-
ability proportional to the sum of the degrees of the first
neighbors of i1. This is equivalent to make equiprobale
all the walks of length 3 originating in i. In conclusion,
to construct high-entropy random walks on correlated
graphs, a walker at a given node needs to know the de-
gree of first and second neighbors of the current node,
which is still local information.
In Table I we report h(π2) for various models and for

real networks. In models of uncorrelated graphs h(π2) is
not very different from h(π1), while in models of corre-
lated graphs, in lattices with defects and in most of the
networks from the real world h(π2) is a much better ap-
proximation of h(π) than h(π1). In most real-world net-
works, degree-degree correlations are such that the aver-
age degree of the first neighbors of a node exhibits a clear
power-law dependence on degree: knn(j) ∼ [k(j)]−ν ,
with ν > 0 (ν < 0) for disassortative (assortative) net-
works [2]. For instance, as shown in the inset of Fig. 1,
ν ≃ 0.4 for the Internet at the autonomous systems level
[21]. Plugging this dependence in Eq. (8), we get an ap-
proximate form for the maximal-entropy random walk
in a correlated random graph in terms of degree-biased
random walks:

π2(i1|i) ≃
aii1 [k(i1)]

1−ν

∑
i1
aii1 [k(i1)]1−ν

. (9)

In practice, on a correlated network, an approximation
for the maximal-entropy random walk can be obtained
by considering a random walk whose motion is biased
as a power of the target node degree, with an exponent

0th-order approximation
“How many friends do I have?”

2

obtained with only a limited and local knowledge of the
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associated to different random walks [12]. A trajectory
of t steps generated by a random walk starting at a fixed
node i is described by the sequence of occupied nodes
i, i1, i2, . . . , it, where i1,..., it are all indices that can take
integer values between 1 and N . This means that the
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node i2 and so on. In practice, there is a maximum
of M(t) different allowed sequences of length t, corre-
sponding to all possible walks of length t (and starting
at node i) on the graph under study. Depending on the
rules of the random walk, not all possible sequences will
appear, while some of them will occur with a probabil-
ity higher than the others. If we denote as joint proba-
bility p(i, i1, i2, . . . , it) the probability that the sequence
i, i1, i2, . . . , it is generated by a given random walk, then
the entropy rate of the random walk, h, is defined as:

h = lim
t→∞
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t
, (1)

where St is the Shannon entropy of the set of tra-
jectories of length t starting at node i: St =
−
∑

i1,i2,...,it
p(i, i1, . . . , it) ln p(i, i1, . . . , it). The mini-

mum possible value of the entropy rate, hmin = 0, is
obtained when, for large time t, only one trajectory
dominates. On the other hand, the maximum possible
value is obtained when, for large time t, all the M(t)
allowed trajectories have equal probability to occur, i.e.
p(i, i1, . . . , it) = 1/M(t) if i, i1, . . . , it is a walk on the
graph originating in i, and p(i, i1, . . . , it) = 0 other-
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p(i1|i) =
∑
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This means that, no matter how long is the me-
mory in the random walker, we can always describe
it as a Markov random walker, provided that we de-
fine the transition matrix of the Markov chain π(i1|i)
in terms of the joint probabilities p(i, i1, . . . , it) as in
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entropy random walk, we have to set p(i, i1, i2, . . . , it) =
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formula tells us that the best diffusion process on a uncor-
related graph is a random walk whose motion is linearly
biased on node degrees. Thus, a walker at a given node,
only needs to have information on its first neighbors and
their degree. Since the degrees of different nodes are not
correlated, local information of the degree of first neigh-
bors is, in this case sufficient to construct the diffusion
process with maximal entropy. Such information is “lo-
cally available” to the walkers, meaning that a walker at
node i has complete information on the degree of each
node in its neighborhood Ni. Now, it is intuitive that a
random walk choosing a node j proportionally to k(j), so
that all the trajectories of length 2 starting in i will occur
with the same probability, will be more random than a
walker selecting uniformly the first neighbors of i.
Formula (6) gives theoretical grounds to the results of

Ref.[17], where random walks with power law dependence
π(i1|i) ∝ kα(i1) were explored as a function of α (α > 0
indicates a bias toward high-k neighbors, while α < 0
means preferring low-k nodes), and it was numerically
found indication of α = 1 as the best value of α if the
graph is uncorrelated. Of course, if all nodes have the
same degree, as in a regular graph, the transition matrix
reduces to that of an unbiased walker:

π0(i1|i) =
aii1∑
i1
aii1

. (7)

This is the lowest possible approximation for π in Eq. (4):
in the case of no available information, each neighbor has
the same probability to be selected. The values of h ob-
tained numerically with transition matrices π0 and π1 in
different models of uncorrelated networks are reported in
Table I. In agreement with our predictions, in regular
lattices and in random regular graphs, h(π0) is equal to
the maximal possible entropy hmax = lnλ. In Erdős-
Rényi (ER) random graphs not all nodes have the same
degree, so that a random walk linearly biased on degree
has an entropy h(π1) that is much closer to the maxi-
mum, than h(π0). This effect is even more evident in
scale-free graphs, i.e. in graphs with a very heteroge-
neous degree distribution.
Networks with degree-degree correlations.- Graphs with

degree-degree correlations are described in terms of their
degree distribution Pk, and of a non-trivial Pk′|k. This is
because the probability that a link from a node of degree
k arrives at a node of degree k′ does not simply factorize
in terms of the degree distribution. In such graphs the
average degree of the first neighbors of a node j, knn(j),
does depend on k(j). Therefore, in analogy with Eq. (6)
we can define a second order approximation of Eq. (4):

π2(i1|i) =
aii1

∑
i2
ai1i2k(i2)∑

i1
aii1

∑
i2
ai1i2k(i2)

=
aii1k(i1)knn(i1)∑
i1
aii1k(i1)knn(i1)

, (8)

h(π0)
h(π)

h(π1)
h(π)

h(π2)
h(π)

hmax = h(π)

Regular lattice 1.000 1.000 1.000 1.79
Random regular graph 1.000 1.000 1.000 1.79
ER random graph 0.954 0.993 0.998 1.98
Uncorr. scale-free γ = 1.5 0.886 0.992 0.996 2.36
BA model 0.825 0.976 0.996 2.52
Assort. scale-free γ = 1.5 0.876 0.991 0.999 2.44
Disassort. scale-free γ = 1.5 0.937 0.990 0.997 2.18

Regular lattice (1% defects) 0.996 0.997 0.998 1.38
Regular lattice (10% defects) 0.967 0.978 0.981 1.34
Regular lattice (20% defects) 0.931 0.955 0.963 1.29

Internet AS [21] 0.744 0.900 0.980 4.10
US Airports [18] 0.879 0.990 0.997 3.88
E-Mail [22] 0.881 0.983 0.997 3.03
SCN (cond-mat)[23] 0.694 0.867 0.946 3.17
SCN (astro-ph) [23] 0.784 0.941 0.973 4.41
PGP [24] 0.597 0.92 0.976 3.75

TABLE I. The entropies of random walks with no informa-
tion, h(π0), and with local information respectively on near-
est, h(π1), and next-nearest neighbors, h(π2), are compared
to the maximal possible entropy hmax = h(π) = lnλ on differ-
ent graph models with N = 500 and average degree ⟨k⟩ = 6,
on N = 40× 40 regular square lattices with defects (see [27]),
and on various real networks.

describing a Markov walker that, at each time step, se-
lects a first neighbor, i1, of the current node, with a prob-
ability proportional to the sum of the degrees of the first
neighbors of i1. This is equivalent to make equiprobale
all the walks of length 3 originating in i. In conclusion,
to construct high-entropy random walks on correlated
graphs, a walker at a given node needs to know the de-
gree of first and second neighbors of the current node,
which is still local information.
In Table I we report h(π2) for various models and for

real networks. In models of uncorrelated graphs h(π2) is
not very different from h(π1), while in models of corre-
lated graphs, in lattices with defects and in most of the
networks from the real world h(π2) is a much better ap-
proximation of h(π) than h(π1). In most real-world net-
works, degree-degree correlations are such that the aver-
age degree of the first neighbors of a node exhibits a clear
power-law dependence on degree: knn(j) ∼ [k(j)]−ν ,
with ν > 0 (ν < 0) for disassortative (assortative) net-
works [2]. For instance, as shown in the inset of Fig. 1,
ν ≃ 0.4 for the Internet at the autonomous systems level
[21]. Plugging this dependence in Eq. (8), we get an ap-
proximate form for the maximal-entropy random walk
in a correlated random graph in terms of degree-biased
random walks:

π2(i1|i) ≃
aii1 [k(i1)]

1−ν

∑
i1
aii1 [k(i1)]1−ν

. (9)

In practice, on a correlated network, an approximation
for the maximal-entropy random walk can be obtained
by considering a random walk whose motion is biased
as a power of the target node degree, with an exponent

2nd-order approximation
“What is the average degree of my friends’ friends?”
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recap

‣ can use random walks to sample nodes 
with desired properties 

‣ how to incorporate into a realistic sampling 
methodology? 

‣ network models are fun to work with!


