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Random thoughts on random walks:
networks, centrality, and tracking the spread of disease



» fancy word for graphs: nodes = vertices,
connections = edges

» typically directed (Twitter) or undirected
(Facebook)

» connectedness/giant component,
irreducibility




1 if edge from ito j (0 otherwise)
symmetric for undirected graphs
makes counting easier
degree of node i:  d; = Zj Qi
# of walks of length t starting from node i: Undirected Graph
Mi(t) = > i, iy i, iy Qiyin *** Qiy_yi,

# of 3-cycles in entire network (triple counting):

CB) =37,(A%)i = Tr(A%)

Adjacency Matrix




at does it mean to be central within a
network? context-dependent!

http://vax.herokuapp.com/game
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» {in-, out-, undirected-} degree centrality

"How many {followers, followees, friends} do | have?”

» eigenvector centrality

"How influential am [?”

» Katz centrality/PageRank
"It my friends are important, doesn’t that make me important?”

» closeness centrality
"How close am | to everyone else, on average?”

» betweenness centrality
"How many chains of connections include me?”



) Cgleg — dz/Zz d;

» normalization doesn't matter

» detined using only local information (up to scaling)



» defined recursively/iteratively: requires global knowledge of network

/
C; E A;iCj
J

» equivalent to dominant eigenvector of adjacency matrix (hence the name)

Av = Kkv



similar to eigenvector centrality, but using normalized adjacency matrix

defined using global information (as before)

Pm =

add a damping factor to ensure everyone ends up with at least some centrality

» i.e., interpolate original graph with complete graph

Page et. al (1999)



transition probabilities of going from ito |

stationary distribution satisfies Z?Tz'pz’j =m; (e, 7P =m)
i

rate of convergence given by second largest eigenvalue of transition matrix

example: simple random walk on finite set of states



» interpretation: proportion of time random walker spends at each node,
assuming at each step neighbor selected at random

» i.e., stationary distribution of Markov process on graph with uniform transition

orobabilities

» technical details: irreducibility, aperiodicity, ergodicity
» damping factor ensures these properties hold

» note for later: only local information used at each step in walk...



» for undirected networks, PageRank (w/o damping) is the simple random walk

» has degree centrality as its stationary distribution if network is connected

» check this yourself! show that

S b dj '\ _ i
J P Zidi B Zidi



moments of degree distribution:  (d™) =+ Y. d" =, d™P(d)

[/

if we sample a node uniformly at random:

P(X =4) = 1/N = E(deg(X)) = (d)

instead, after performing random walk “long enough”, we are sampling nodes
according to their degree centralities:

P(X — 7’) — dz/zz d; — E(deg(X)) — (d°) — <d> | chggd)

intuition: In the limit, every edge is traversed same proportion of times. So, we
are sampling a node at the end ot an edge chosen uniformly at random!

Lovasz (1993)



» constructive: If we want to sample according to degree centrality, take any
node and select neighbor uniformly at random... rinse, repeat...

» principle behind Markov Chain Monte Carlo (MCMC)

» provides way to generate samples from distribution that can’t be sampled directly

» need to specify transition probabilities such that stationary distribution of Markov chain is
the desired sampling distribution




Christakis & Fowler (2010)

flu outbreak among Harvard student population

from Sep.-Dec. '09

2009 HIN1 pandemic: ~60M infected in US,
~300K hospitalizations

two groups: random vs. friends ot random (FoR)

epidemic curve In

-oR tracked progression in

random group ~14d in advance

deal with it: on average, your friends have more

friends than you

Strogatz, New York Times (2012)
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http://opinionator.blogs.nytimes.com/2012/09/17/friends-you-can-count-on/

» long history of using (random) walks to infer properties of the social graph

» Milgram’s small-world experiment (1967)

» Watts-Strogatz model: shortcuts in highly clustered networks

» Kleinberg model: distribution of shortcut lengths and efticient routing



Erdos-Renyi (tree-like)



Erdos-Renyi (tree-like)

small diameter, no clustering



Watts-Strogatz (lattice + shortcuts)

Erdos-Renyi (tree-like)
small diameter, no clustering




Erdos-Renyi (tree-like) small diameter, high clustering

small diameter, no clustering Watts-Strogatz (lattice + shortcuts)




Kleinberg (distribution of shortcuts)

Watts-Strogatz (lattice + shortcuts)

Erdos-Renyi (tree-like)




Kleinberg (distribution of shortcuts)

Watts-Strogatz (lattice + shortcuts)

Erdos-Renyi (tree-like)




Erdos-Renyi (tree-like) Kleinberg (distribution of shortcuts)
Watts-Strogatz (lattice + shortcuts)

Watts-Strogatz (1998); Kleinberg (2000)



what do public health officials and CDC care about?
situational awareness
early detection of epidemic onset

peak timing and intensity
oractical reasons

vaccine supply and distribution

allowing hospitals to run at high capacity and prepare for
large influx of patients

difficulties both mathematical/statistical and
oractical

Peak lag

[ Ime

Early warning

Situational
awareness




SIR model on a graph (recall Andy’s talk!)
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Newman (book); message passing: Karrer-Newman (2013)
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SIR model on a graph (recall Andy’s talk!)
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dx
— = fAx — yx
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dominant e-value of A

Z corresponding e-vector
x(t) = exp(t(A —v1))x(0) =~ e \%
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dominant e-value of A

Z corresponding e-vector
x(t) = exp(t(A —v1))x(0) =~ e \%

1
epidemic takes off if 7y = % > B
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dominant e-value of A

J corresponding e-vector
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dominant e-value of A

J corresponding e-vector
x(t) = exp(t(A — 71))x(0) ~ eBr—Dty &
- x(7s)-1s ePE=Y)Tsy . 14 Cox(1)-1 e(BE=7)Ty . 1
S VA M P=7N =N
expected prevalence hits p in surveillance set expected prevalence hits p in entire network

AT =Tg —T = : ln(i)
Br —



dominant e-value of A

Z corresponding e-vector
x(t) = exp(t(A — v1))x(0) =~ e \%

x(7g) - 1g ePE=Y)Tsy . 14 x(7) - 1 e(BE—Y)Tyv . 1
S VA M P=7N ~ N
expected prevalence hits p in surveillance set expected prevalence hits p in entire network

average e-vector centrality in surveillance set

| ¥

AT i =7T¢ — T = ln(i)
bK — Cs

w

average e-vector centrality in network




problem: not possible* without knowing
entire network to begin with!

never really know the underlying social
graph, can only infer global properties

from local subnetworks

is there a random walk whose stationary
distribution is eigenvector centrality?




could use degree centrality (locally
recoverable) as a proxy for eigenvector

centrality

can we do better: is there a random walk
whose stationary distribution is eigenvector
centrality?

0.005 0.050 0.500




aijvj

Pij =
/ RU;

transition probabilities

Burda (2010)



aijvj 9
Dij = Vi = v;
RU;
transition probabilities stationary distribution!

Burda (2010)



aijvj 9
Dij = Vi = v;
RU;
transition probabilities stationary distribution!

1 2
Av = KV —> Zpijwj — Evi Zaijvj =V, = %
J J

Burda (2010)



aijvj 9
Dij = Vi = v;
RU;
transition probabilities stationary distribution!

|
Av = KV — Zpijwj — Evi Z@z‘jvj — UZ'Z =
J

J

but transition probabilities given in terms of e-vector centralities!

Burda (2010)



why maximal entropy?

uniform distribution on a set has maximal
entropy among all distributions on that set

transition probabilities of MERW put equal
porobability on all paths of length t starting
from a given node, as t goes to




probability of particular path

"4
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Entropy of set of paths of length t starting at i



probability of particular path

"4
St)y=— > pliit,....ie) Inp(i,ir,. .. i)

Entropy of set of paths of length t starting at i

In S(t)

h = lim
t— 00

entropy rate



» minimal entropy: all probability is put on one path starting from i:

O for all paths except onel

N 5 . .
S == 3 plisis, st Inplisis, v ie) = 0

minimal entropy

» maximal entropy: uniform probability on all paths ot length t starting from i:

uniform probability on all paths

'4
1 1
0= 2 " (327) =49

maximal entropy

Mi(t) = 2 iy igo iy Qiiy Qigiy iy




transition probabilities ot MERW

aiil ai1i2 c .. a’it—lit
Zil,iz,...,it Uigg Qiqig « - - Qiy iy

uniform probability on all paths

Pty i1, ...,10) =

r(i]i) = lim i 2ia Biria - iy Giraie
1) =
t— 00 Z’Ll aml Z’LQ a”il’ig .« o . Z’Lt a/it_lit

corresponding transition probabilities!

Sinatra et. al (2011)



transition probabilities ot MERW

m(21]7) = lim ity D vig Qiniz -+ iy Fir-vis

t— 00 Z’Ll aml Z’LQ a”il’ig o« o . Z’Lt a/it_l’it

Sinatra et. al (2011)



transition probabilities ot MERW

m(i1]7) = lim ity D vig Qiniz -+ iy Fir-vis

t=00 Y o iy D i Qigin « -+ D i, Qiy_yiy

iqq
D iy iy

Oth-order approximation

w0 (i1]i) =

“How many friends do | have?”

Sinatra et. al (2011)



transition probabilities ot MERW

m(21]7) = lim ity D vig Qiniz -+ iy Fir-vis

t— 00 Z’Ll aml Z’LQ a”il’ig « o . Z”Lt a/it_lit

O/- |- 7% L. a;i, k(2
w(inli) = =t (i i) = a )
Zil (igy D i, Qiiy K(i1)
Oth-order approximation 1st-order approximation
“How many friends do | have?” “How many friends do my friends have?”

Sinatra et. al (2011)



transition probabilities ot MERW

m(21]7) = lim ity D vig Qiniz -+ iy Fir-vis

t— 00 Z’Ll aml Z’LQ a”il’ig « o . Z’Lt a/it_lit

g4

g4 k(Zl)

O/« |-
T (11]1) = (1)) = .
D iy iy (E1%) D i, Qiiy k(i1)
Oth-order approximation 1st-order approximation
“How many friends do | have?” “How many friends do my friends have?”
(i i k(o
i) = i D Gkl

Zil Qi ZiQ ai, i, k(i)  2nd-order approximation
aii, k(31 knn (i1) “What is the average degree of my friends’ friends?”

> ir @iy k(i) knn (i)

Sinatra et. al (2011)






Performance of MERW approximations for scale-free networ  Performance of MERW approximations for scale-free netwo
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can use random walks to sample nodes

with desired properties

how to incorporate into a realistic sampling
methodology?

network models are fun to work with!
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