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My research interests are in applied probability, and in particular the study of many-body systems. I have
a broad training in applied mathematics and enjoy working on problems that interface between disciplines,
requiring insight from a variety of perspectives. This is reflected in my past work, which focuses on mean-
field models arising from fluid dynamics, physical chemistry, and agent-based systems. More recently I
have become interested in dynamical processes on networks and corresponding applications in inference
and optimization. As I will try to illustrate in the following discussion, a unifying thread in these problems
is the emergence of self-organized structure in random phenomena.

1 Areas of current interest

In the past year, my interests have shifted towards network science and related statistical problems. To this
effect, I developed and am currently teaching a topics course on complex networks for graduate students
and advanced undergraduates. The course has not only been attended by students in mathematics and
statistics, but by many in computer science, engineering, and physics. Central themes are random graphs
(branching processes, Erdős-Rényi model, small-worlds, preferential attachment and power laws), dynam-
ical processes on networks (routing, epidemics, contagion and submodular optimization), and statistical
methods for analyzing network structure (node ranking, graph partitioning, spectral clustering, modular-
ity maximization, blockmodels). A detailed course description, along with lecture notes, is available at:
http://www.ma.utexas.edu/users/rav/ComplexNetworks/.

2 Previous work

2.1 Burgers turbulence and stochastic coalescence

My initial work is in the area of Burgers turbulence: a model originating in fluid mechanics which describes
the dynamics of a large number of “sticky” particles with random initial velocities. This research aims to
provide a deeper understanding of aggregation phenomena with applications in physical chemistry and
materials science. It also happens to be intimately connected to problems in nonparametric statistics and
epidemics at criticality.

Problem. One way to interpret the long-standing problem of hydrodynamic turbulence is as follows:

How does a random field evolve under a deterministic flow?

In the setting of turbulence, the randomness of the velocity field describes uncertainty in the initial con-
ditions and the deterministic flow is given by the nonlinear equations of fluid mechanics. To solve this
problem, one must construct a time-varying random field which respects the flow. In fact, this question
lies at the heart of many fundamental problems in mechanics: interfacial dynamics in phase separation,
directed polymers, and surface growth by random deposition [6, 27, 35]. It also has roots in probability
theory. When studying a stochastic process such as Brownian motion (a one-dimensional random field) it
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Figure 2.1: (a) Coherent structures in hydrodynamic turbulence; (b) Interfacial dynamics in a binary mixture [27].

is natural to ask how a distribution over an ensemble of paths “deforms” as a result of some determinis-
tic transformation of the paths. As long as this transformation preserves the original ensemble—that is,
satisfies a closure property—the problem is well-posed. A classical result of this nature is the Cameron-
Martin-Girsanov theorem for semimartingales.

Applications and known results. 1-D Burgers turbulence is the study of Burgers equation

∂tu + ∂x

�
1
2

u2
�
= 0 (2.1)

with random initial data or forcing. It has a remarkably rich structure despite its simplicity as a nonlinear
model, and exact solutions have played an important role in its analysis [7, 9, 10, 11, 12, 18]. In particular,
the solution to (2.1) with white noise initial data can be expressed in terms of the Markov process

Z(r) = arg max
s∈R

�
W(s)− (r − s)2

�
(2.2)

where W(s) is standard (two-sided) Brownian motion. The statistics of Z were explicitly derived by
Groeneboom in his study of isotonic estimators in nonparametric statistics [21]. Here, the distribution of
(2.2) is the analogue of the normal distribution for many problems with “cube-root” (as opposed to the
typical square-root) asymptotics. These include maximum-likelihood estimation of a decreasing density
on the half-line, and estimating the mode of a unimodal density by binning [13, 20].

Interestingly, related functionals of Brownian motion also appear in SIR epidemics (Reed-Frost model) at
the critical threshold. Understanding fluctuations at criticality is especially important since a mean-field
description cannot capture the stochastic effects that determine whether an epidemic takes off. As it turns
out, first passage times of Brownian motion with a parabolic drift can be used to determine the total size
of an outbreak, among other properties, in the scaling limit. We refer the interested reader to [2, 24, 26].

Our contribution and future directions. In collaboration with Govind Menon (Brown University), we
have developed a methodology for the study of 1-D scalar conservation laws with random initial data
[28, 30, 33]. Our work uses tools from probability and stochastic processes, kinetic theory, and integrable
systems. Precisely, we have proven an interesting closure property: if the initial data to the conservation
law ∂tu + ∂x f (u) = 0 with convex flux f is a Markov process in x with only downward jumps, the entropy
solution u(x, t) retains this property in x for each t ≥ 0. Furthermore, its generator A(x, t) in x satisfies
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Figure 1: The least concave majorant of W (t)− t2.

The infinitesimal generator of the process (1.1) is given in Theorem 4.1 of [6], where it is expressed
in terms of Airy functions. However, most attention has been for the result on the distribution
of V (0), which gave an analytic expression for the limit distribution of a whole class of so-called
“isotonic estimators", for example the pointwise limit distribution of an estimator of the mode,
discussed in [2], and the pointwise limit behavior of the Grenander (maximum likelihood) estimator
of a decreasing density, see, e.g., [18] and [4].
For results on global functionals, however, like the L1 or L2 distance of the Grenander estimator to
the underlying density, or the number of its jumps, one needs information on the whole process V ,
and not only on its pointwise behavior. In this paper we will show how one can extract information
from Theorem 4.1 in [6] in the derivation of a central limit theorem for the number of points jump
of V in an increasing interval. The result has a rather large number of applications in statistics, but
we will only sketch one such result for the number of points of jump of the Grenander estimator
(which is equivalent to the corresponding result for the number of vertices of the least concave
majorant).

Our main result is the following central limit theorem, which is proved at the end of section 2.

Theorem 1.3. Let N[a, b] be the number of jumps of the process V in the interval [a, b]. Then

N[a, b]− k1(b− a)�
k2(b− a)

�−→ N(0,1), as b− a→∞,

where k1 ≈ 2.10848 and k2 ≈ 1.029, and N(0, 1) is the standard normal distribution.

Perhaps somewhat remarkably, the difference between the results for the least concave majorants
of one-sided Brownian motion without drift and two-sided Brownian motion with a parabolic drift

2237

Figure 2.2: (a) A Brownian path with parabolic drift [22]; (b) The MLE ĝn(x) of a decreasing density g(x) is the derivative of the

concave hull of the empirical cdf Ĝn(x), and satisfies cn1/3 (ĝn(x)− g(x)) law−→ Z(x) as n → ∞ [20]; (c) The binning estimator m̂n of

the mode m of a unimodal density satisfies cn1/3 (m̂n − m)
law−→ Z(0) as n → ∞ [13].

the zero-curvature equation
∂tA− ∂xB = [A,B], (2.3)

where B(x, t) is explicitly given in terms of A and f and serves as a “generator” in t. This describes a
natural flow on the space of transition probabilities and has an elegant geometric interpretation [34].

Broadly, our results imply that the evolution of the simplest example of a random field under the simplest
nonlinear equation yields an exactly solvable system. Equation (2.3) admits Groeneboom’s solution for
white noise initial data, among others, as special cases. Our work unifies these under a common frame-
work, and hints at undeveloped links to random matrix theory. We have also shown that (2.3) is equivalent
to a kinetic equation, which in the most basic case reduces to a fundamental mean-field model: Smolu-
chowski’s coagulation equation with additive kernel [3]. Some related work delves into the asymptotic
behavior of such equations, including self-similarity and rates of convergence [29, 32].

2.2 Mean-field games and kinetic modeling

The study of social phenomena has become increasingly prevalent in the mathematical physics community.
This has resulted in models that, at least on a phenomenological level, display statistical characteristics
supported by data (e.g., Pareto tails for wealth distribution or fragmentation in opinion dynamics). While
complex networks and interacting particle systems underlie such models, continuum approaches based
on partial differential equations can still be of great utility in understanding large-scale properties. My
work in this area has been in the analysis of some models of information aggregation.

Problem. A common element to many problems in the social sciences is:

How can we describe the collective behavior of a large population of decision-making agents?

Both the structure of the interaction network and the detailed nature of interactions are crucial. A contem-
porary discussion of this matter from the perspective of interacting particle systems is given by Aldous
[1]. In order to develop even the most basic theory, we must focus on specialized cases under restric-
tive assumptions. For the remainder of our discussion, we will assume that agents are indistinguishable.
This implies that they interact through the mean-field and yields kinetic models as in gas dynamics. It
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also leads to the relatively new area of mean-field games (MFG), wherein an infinite number of interacting
players optimize their individual strategies by anticipating the future actions of others.

Applications and recent results An example arising from financial economics is the flow of information
in so-called “dark markets” [14]. These over-the-counter markets, in which derivatives and collateralized
debt obligations are traded, are characterized by a lack of transparency among participants. As demon-
strated by the financial crises of the previous decade, it is important to understand how asset prices are
established in decentralized settings and how information sharing can be appropriately incentivized. One
family of phenomenological models proposed by Duffie and co-authors uses the following simple frame-
work [15, 16]. Agents are initially endowed with heterogenous information about the true value of an
asset. Upon interaction with others, information sets are merged and each performs a Bayesian updating
of her belief, indexed by θ ∈ R. Larger θ correspond to a higher confidence that the asset is valuable. Ran-
domized meetings between agents implies that the distribution of beliefs in the market satisfies a kinetic
equation of Smoluchowski- or Boltzmann-type:

∂tµ = µC � µC −
�ˆ

R
µC(dθ)

�
µC + η(π − µ), µC(t, dθ) = C(t, θ)µ(t, dθ) (2.4)

Here, µ(t, dθ) is the distribution of agents with belief θ at time t ≥ 0, C(t, θ) modulates interaction rates,
and � denotes convolution. The first two terms on the right-hand side describe the aggregation of agents’
information, while the last is a flux of new agents at rate η ≥ 0 with beliefs drawn from a given law π(dθ).

A nonlocal mean-field game arises from (2.4) if C(t, θ) is taken to be a control parameter. This yields the
coupling of a forward-in-time Fokker-Planck equation for µ with a backward-in-time Hamilton-Jacobi-
Bellman equation for C, describing agents’ ability to optimize their matching rates. Solutions to the
coupled system are Nash equilibria. The forward-backward structure is a source of many analytical
difficulties, and lies at the heart of MFG theory developed by Lasry and Lions [25]. Similar models
have been used to describe a diverse set of socio-economic problems including urban planning, global oil
production, creation of price volatility, and even the propagation of “Mexican waves” in stadiums [23].

Our contribution and future directions. The kinetic equation (2.4) is akin to a Kac equation, for which
heavy-tailed (non-Gaussian) distributions are known to serve as limits under rescaling. This is in analogy
to the appearance of stable laws in classical probability theory [17]. Previous work on similar models
has yielded self-similar solutions using probabilistic and Fourier methods [5, 8, 29]. In collaboration with
Irene Gamba (UT Austin), I have applied this theory to characterize the behavior of (2.4) with constant C
and more complex interaction laws corresponding to “imperfect” information aggregation [19].

In other ongoing work with Mihai Sirbu (UT Austin), we have obtained partial analytical results for
the nonlocal mean-field game described the the previous section [31]. This work mainly utilizes tools
from stochastic control and partial differential equations. In particular, we considered a related optimal
stopping problem in a stationary (time-independent) regime. Since previous research in this area has
focused almost exclusively on local equations, our study has required the development of some new
techniques. It also points to many promising avenues of research. For example, how does one incorporate
network structure and agent heterogeneity into mean-field games? Can interacting particle systems such
as the gossip process of [4] be studied in a continuum setting?
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