Atiydh-Singer Index Theorem Seminar.
The Harmonic Oscillator and Non-Compact
Maniolds(Richard Hughes).
Motivation.
Classically: The harmonic oscillator describes simple oscillatory motion (particle on spring, for instance. Such systems are bound to oscillate near $a^{\text {stat at }}$ equilibrium state.
the potential energy function for the harmonic oscillator is quadratic in position, civil $\propto x^{2}$.
Since: Dy Damics of a system are unchanged by adding a constant term (ie. there is no objective "zero potential energy"; of vector space \leftrightarrow affine space); and,

- physical equilibrium states correspond to critical points of the potential energy, V,
we can appoximate physical systems near stable equilibria using. the harmonic oscillator, by taking a 2^{2-1} order Taylor expansion:

$$
V(x) \simeq V\left(x_{q}\right)+\frac{d V}{d x}\left(x_{q}\right)\left(x-x_{q}\right)+\frac{d^{2} V}{d x^{2}}\left(x_{q}\right)\left(x-x_{q}\right)^{2}+O\left(x^{2}\right) .
$$

Visually:

Thus, by studying the harmonic oscillator, we learn a great deal about the behaviour of any. physical system that is near a stable equilibrium.
Similarly: When we come to proving the index theorem, a key step will indore reducing certain global calculations to the study of "local harmonic oscillator type model. Thus, it is important that we study the harmonic oscillator.

The Harmonic Oscillator.
Definition: The harmonic oscillator is the name given to the unbounded operator

$$
H=-\frac{d^{2}}{d x^{2}}+a^{2} x^{2} \quad(a>0), \quad(H: O .)
$$

on $L^{2}(\mathbb{R})$.
Def:- The annihilation operator A is defined by $A=a x+\frac{d}{d x}$.

- The creation operator A^{*} is $A^{*}=a x-\frac{d}{d x}$.

Proposition:
(1) A^{*} is the $L^{2}(\mathbb{R})$-adjoint operator of A.
(2) The following identities hold:

- $A A^{*}=H+a$,
- $[H, A]=-2 a A$,
- $A^{*} A=H-a$,
- $\left[A, A^{*}\right]=2 a$,
- $\left[H, A^{*}\right]=2 a A^{*}$.

Proof:
For (1), use integration by parts, and the fact that for $L^{2}(\mathbb{R})$ integrable functions, $\lim _{x \rightarrow \infty} f(x)=0$.
For (2), calculate $A^{*} A$ and $A A^{*}$ using test functions; the other identities are formal consequences of those first two idurtities.

Defn: A function f is rapiolly decreasing if $|f(\lambda)|=O\left(|\lambda|^{-k}\right)$ for each $k \in \mathbb{Z}>0$.
Deft: The Schwarte space $S(\mathbb{R})$ is the space of C^{∞} functions on \mathbb{R}^{\top} which are rapidly decreasing and all If whose derivatives are also rapidly decreasing.
Observation: A, A^{*} and H map the Schwartz space to itself ($S\left(\mathbb{R}\right.$) closed under poly ${ }^{\text {n mult. }}$ \& differentiation).
Now: In what follows, we are (from a rep. thy point of view) just constructing a highest weight rep. of the weyl ongera $L^{2}(\mathbb{R})$. However, we are interested in the analytic properties of our eigenfunctions, not, just their rep. theoretic popertios.
Deff: The ground state of H is the function $\psi_{0} \in L^{2}(\mathbb{R})$ satisfying the differential eq^{2}
$A \psi_{0}=0$, and such that $\left\|\psi_{0}\right\|=1$.
Observe: $H \psi_{0}=\left(A^{*} A+a\right) \psi_{0}=A^{*}\left(A \psi_{0}\right)+a \psi_{0}=a \psi_{0}$, i.e. ψ_{0} is an eigenfunction of H (40 is highest weight vedor).

Proposition:

$$
\psi_{0}(x)=a^{\frac{1}{2}} \pi^{\frac{1}{4}} e^{-\frac{a x^{2}}{2}}
$$

Proof:

$$
\begin{aligned}
O & =A \psi_{0}=\frac{d \psi_{0}}{d x}+a x^{\psi_{0}} \text {, so } \\
& -a \int x d x=\int \frac{1}{\psi_{0}} \frac{d \psi_{0}}{d x} d x=\int \frac{d \psi_{0}}{\psi_{0}}=\log \left(\psi_{0}\right), \\
& =-a\left(\frac{1}{2} x^{2}\right)+K \\
\tau_{\text {coast }} & \text { so, } \psi_{0}(x)=C e^{-\frac{a x^{2}}{2}} .
\end{aligned}
$$

Imposing $\left\|z_{0}\right\|=1$ determines the normalizing constant C to
be $C=a^{\frac{1}{2}} \pi^{\frac{1}{4}}$.

Def: For $k \geqslant 1$, define the excited states of H inductively by

$$
\psi_{k}=\frac{1}{\sqrt{2 k a}} A^{*} \psi_{k-1}
$$

Lemma:
Th belongs to $S(\mathbb{R})$, and is a normalized eigenfunction of H with eigenvalue $(2 k+1) a$.

Proof:
First, since $A^{*}: S(\mathbb{R}) \rightarrow S(\mathbb{R})$, it is sufficient to show that $\psi_{0} \in S(\mathbb{R})$. In particular, since the space of rapidly decreasing pecs is closed under multi. by polys and the derivatives of ψ_{0} are of the form $\left(\right.$ poly $\left.y^{=}\right) \times q_{0}$, it is sufficient to show that ψ_{0} is rapidly decreasing.

So we wish to show that for every $k \in \mathbb{Z}_{x},\left|\psi_{0}(x)\right|=O\left(|x|^{-k}\right)$. J.e., we want

$$
\left|\frac{\psi_{0}(x)}{x^{k}}\right|=\left|x^{k} \psi_{0}(x)\right| \leqslant \text { canst as } x \rightarrow \pm \infty \text {. }
$$

Since ψ_{0} is even, sufficient to consider $x \geqslant 0$. Then $x^{2} \psi_{0}(x) \geqslant 0$ for all x. Now,

$$
\begin{aligned}
\frac{d}{d x}\left(x^{k} y_{0}\right) & =k x^{k-1} y_{0}+x^{k} \frac{d y_{0}}{d x} \\
& =k x^{k-1} y_{0}-a x^{k+1} y_{0}
\end{aligned}=x^{k-1} y_{0}\left[k-a x^{2}\right] .
$$

Now, $k-a x^{2}<0 \Leftrightarrow k<a x^{2} \Leftrightarrow \frac{k}{a}<x^{2} \quad(a>0)$, so

$$
\frac{d}{d x}\left(x^{h} \psi_{0}\right)<0 \text { for } x>\sqrt{\frac{h}{a}}
$$

Using ever/odd symmetry of $x^{k} \%$, get

$$
0 \leqslant|x|^{\frac{k}{2}} \psi_{0}(x)<\left(\frac{k}{a}\right)^{\frac{k}{2}} \psi_{0}\left(\sqrt{\frac{k}{a}}\right)=\left(\frac{k}{a}\right)^{\frac{k}{2}} a^{\frac{1}{2}} m^{\frac{1}{4}} e^{-\frac{a}{2} \frac{k}{a}}=\sqrt{\frac{k^{k} \pi^{\frac{1}{2}} e^{-k}}{a^{k-1}}} \text { for }|x|>\sqrt{\frac{k}{a}} \text {. }
$$

This, $\psi_{0}(x)=O\left(|x|^{-1}\right)$ for all $k \in \mathbb{Z}_{20}$, and so $\psi_{l} \in S(\mathbb{R})$ for all $l \in \mathbb{Z}_{20}$.
As for the rest of the lemma, wealready have the base case ψ_{0}. So by induction:
and,

$$
\begin{aligned}
& \left\|\psi_{h}\right\|^{2}=\frac{1}{2 k_{k}}\left\langle A^{*} \psi_{l-1}, A^{*} y_{l-1}\right\rangle=\frac{1}{2 k_{k}}\left\langle A A^{*} l_{l-1}, y_{l-1}\right\rangle \\
& =\frac{1}{2 a}\left\langle(H+\omega) \psi_{\omega-1}, \psi_{k-1}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2 k_{a}}\left\langle\left\langle 2 k_{k} \psi_{k, 1}, \psi_{k-1}\right\rangle=\left\|\psi_{k+1}\right\|^{2}=1\right. \text {. }
\end{aligned}
$$

Lemma:
$\psi_{k}(x)=h_{k}(x) e^{\frac{-v^{2}}{2}}$, where h_{L} is a polyamide of degree k with positive lading coefficient.

Poof:
Let $h_{k}(x)=Y_{k}(x) e^{\frac{a^{2}}{2}}$; first, we will determine a recurrence relation for h_{k}. We have

$$
\begin{aligned}
& h_{l}(x)=\psi_{k}(x) e^{\frac{a^{2}}{2}}=e^{\frac{o x^{2}}{2}} \frac{1}{\sqrt{2 k a}} A^{x} \psi_{l-1}(x)=e^{\frac{-a^{2}}{2}} \sqrt{\sqrt{2 t a}} A^{*}\left(h_{l-1}(x) e^{-\frac{a^{2}}{2}}\right) \\
& =\frac{e^{\frac{x_{2}}{2}}}{\sqrt{2 k a}}\left(a x-\frac{d}{d x}\right)\left(h_{t-1}(x) e^{-\frac{a^{2}}{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\frac{e^{\frac{a x}{2}}}{\sqrt{2 k a}} \int \operatorname{arch} h_{k-1}(x) e^{-\frac{a x^{2}}{2}}-\frac{d h_{k-1}}{d x} e^{-\frac{a 2^{2}}{2}}-h_{h-1}(x) \frac{d}{d x}\left(e^{-\frac{a x^{2}}{2}}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{e^{\frac{a x^{2}}{2}}}{\sqrt{2 k a}}[a \operatorname{arh} \\
& (x) \frac{-\frac{a x^{2}}{2}}{2}-\frac{d h_{k-1}}{d x} e^{-\frac{x^{2}}{2}}-h_{k-1}(x)\left(\frac{-a(2 x)}{2}\right) e^{-\frac{a x^{2}}{2}} \\
& =\frac{1}{\sqrt{2 k a}}\left[a x h_{k-1}(x)-\frac{d h_{k-1}}{d x}+\operatorname{arch}(x)\right] .
\end{aligned}
$$

Thus, we obtain the recurrence relation for h_{k} :

$$
h_{k}(x)=\frac{1}{\sqrt{2 k a}}\left(2 a x h_{k-1}(x)-\frac{d h_{k-1}}{d x}\right) .
$$

Now,

$$
h_{0}(x)=a^{\frac{1}{2}} \pi^{\frac{1}{4}} \quad \text { (constant), }
$$

ie. h_{0} is a degree zero polynomial with positive leading coefficient. Thus, since

$$
h_{k}(x) \propto x h_{k-1}(x),
$$

$h_{k}(x)$ is a degree k polynomid, and the coefficient of x^{k} in $h_{k}(x)$ is

Remark:
Up to normalization, the h_{n} are the Hermite polynomials. If I have time, jill put up some extra notes on these guys.
from the previous lemma we have:
Corollary:

$$
P=\mathbb{R}-\operatorname{span}\left\{Z_{k}\right\}_{k=0}^{\infty}=\left\{\left.f(x)=p(x) e^{-\frac{a x^{2}}{2}} \right\rvert\, p(x) \in \mathbb{R}[x]\right\} \leqslant L^{2}(\mathbb{R}) .
$$

Proof:
From previous lemma, since we are taking $\mathbb{R}_{\text {span }}\left\{(d \operatorname{leg} k \text { poly }) e^{-\frac{-a^{2}}{2}}\right\}_{k=0}^{0}$.

Proposition:
P is dense in $L^{2}(\mathbb{R})$.
Proof:
Assume $a=1$ (this is sufficient - general a comes from

$$
p(x) e^{-\frac{x^{2}}{2}}=p(x) e^{\frac{-\left(x x^{2}\right)^{2}}{2}}=p\left(\frac{y}{\sqrt{a}}\right) e^{-\frac{y^{2}}{2}}=\tilde{p}(y) e^{\frac{-y^{2}}{2}}
$$

where $y=x \sqrt{a}$ and \tilde{p} is the pay ${ }^{2}$ detained by letting $\tilde{p}(x)=p\left(\frac{x}{a}\right)$). So,

$$
\psi_{0}(x)=\sqrt[4]{\pi} e^{\frac{-x^{2}}{2}}, \quad \psi_{k}(x)=\frac{1}{\sqrt{2 k}} A^{*} \psi_{k-1}(x)
$$

Let $f_{j}(x)=x^{j} e^{-\frac{x^{2}}{2}}$. We calculate,

Now,

$$
e^{i \lambda x-\frac{x^{2}}{2}}=e^{-\frac{x^{2}}{2}} e^{i \lambda x}=e^{-\frac{z^{2}}{2}} \sum_{j=0}^{\infty} \frac{(i \lambda x)^{j}}{j!}=\sum_{j=0}^{\infty} \frac{(i \lambda)^{j}}{j!} x^{j} e^{-\frac{x^{2}}{2}}=\sum_{j=0}^{\infty} \frac{(i \lambda)^{j}}{j!} f_{j}(x),
$$

So,

$$
\left\|e^{i \lambda x-\frac{x^{2}}{2}}\right\|=\left\|\sum_{j=0}^{\infty} \frac{(i \lambda)^{j}}{j!} f_{j}(x)\right\| \leqslant \sum_{j=0}^{\infty} \frac{|i \lambda|^{j}}{j!}\left\|f_{j}\right\| \leqslant \sum_{j=0}^{\infty} \frac{|\lambda|^{j}(j!)^{\frac{1}{2}}}{j!},
$$

ie. $\left\|e^{i \lambda x-\frac{x_{2}^{2}}{2}}\right\| \leq \sum_{j=0}^{\infty} \frac{|\lambda|^{j}}{\sqrt{j!}}$. Let $a_{j}=\frac{|\lambda|^{j}}{\sqrt{j!}}$; and calculate

$$
\left|\frac{a_{j+1}}{a_{j}}\right|=\frac{|\lambda|^{j+1}}{\sqrt{(j+1)!}} \cdot \frac{\sqrt{j!}}{|\lambda|^{j}}=|\lambda| \cdot \frac{1}{\sqrt{j+1}} \rightarrow 0 \quad \text { as } j \rightarrow+\infty .
$$

Let $F_{\lambda}(x):=e^{i \lambda x-\frac{x^{2}}{2}}$ so $\left\|F_{\lambda}\right\| \leqslant \sum_{j=0}^{\infty} \frac{\mid \lambda \lambda^{j}}{\sqrt{j!}}<+\infty$. Since
each $f_{j} \in P$, we also have

$$
F_{\lambda}(x) \in \bar{P} .
$$

Now, suppose that $f \in L^{2}$ is orthogonal to P. Then

$$
\left.\int_{-\infty}^{+\infty} f_{2}\right) e^{\lambda x-\frac{x^{2}}{2}} d x=0 \quad \forall \lambda \in \mathbb{R} .
$$

J.e. the Fourier transform $\left(\overline{f(x)} e^{-\frac{2^{2}}{2}}\right)$ is identically zero. So by Aancherel's theorem,
$f(x) e^{-\frac{x^{2}}{2}}=0$ a.e, so since $e^{\frac{-x^{2}}{2}} \neq 0, f(x)=0$ a.e.

Thus, $L^{2}(\mathbb{R})$ admits a complete orthogonal decomposition into (1D) eigonspaces for H, with discrete spectrum tending to infinity. We compare this with Th $=5.27$ of Roe...
Decomposition result from ChiS.
Let $H=L^{2}(S)$, $\stackrel{i}{\mathrm{M}}$ a Clifford bundle with Dirac opeator D.
Jhn: There is a direct sum decomposition of HI into a sum of countably mary orthogonal subspaces H_{λ}. Each H_{λ} is a finite dimensional space of smooth sections, and is an eigenspace for D with eigenvalue λ. The eigenvalues of D form a discrete subset of \mathbb{R}.

Decomposition result for H.O.
There is a decomposition

$$
L^{2}(\mathbb{R})=\overline{\bigoplus_{k=1}^{\infty} I_{i k}}
$$

where $I_{-k}=\mathbb{R} \psi_{k}$, the $\left\{\psi_{k}\right\}_{k=0}^{\infty}$ being (orthogonal) eigenfunction of the harmonic oscillator H, and with (discrete) spectrum $\{(2 k+1) a\}_{k=1}$; i.e. $H \psi_{h}=(2 k+1) a^{2} \psi_{k}$.

Thus, we have an analogy of behaviour.
H) the harmonic oscillator operator, associated to (nonconpact) \mathbb{R}. $\}_{\text {is }}$ spectrally_like
D, the Dirac operate, associated to a compact manifold.
Functional Calculus of the Harmonic Oscillator.
Lemma:
Let $u \in L^{2}(\mathbb{R})$. Then $u \in J(\mathbb{R})$ if and only if the "Fourier coefficients" $a_{k}=\left\langle\psi_{k}, u\right\rangle$ are rapidly decreasing in k.
Proof:
$u \in S(\mathbb{R}) \rightarrow a_{k}$ rapidly decreasing.
Let $u \in S(\mathbb{R})$ and write $\left.u(x)=\sum_{k=0}^{1} a_{k}\right\}_{k}$ sQ that

$$
H^{1} u=\sum_{k=0} a_{k} H^{1} \psi_{k}=\sum_{k=0}((2 h+1) a)^{1} a_{k}^{2} \psi_{k} \in S(\mathbb{R}) \text {. }
$$

Since this holds for all $l \in \mathbb{Z}_{>0}$, the
Since this holds for all $l \in \mathbb{Z}>0$, the
a_{k} must, be rapidly decreasing else the expression α to $\sum k_{a}^{l} a_{k}^{2}$ would fail to be S(R) in finite $\left(-\psi_{k}\right.$ is rapidly deveraning in x, not k.

Rapidly decreasing $a_{k} \Rightarrow u \in S(\mathbb{R})$.
Conversely, suppose that the Fourier coefficients are rapidly decreasing,

$$
a_{k}=\left\langle\psi_{k}, u\right\rangle=O\left(l^{-\alpha}\right) \text { for all } \alpha \in \mathbb{Z}_{>0} \text {. }
$$

Then for all $l,\left(A^{*}\right)_{u}^{\prime}$ and $A^{\prime} u$ have rapidly decreasing Javier coefficients \otimes.

Calculations to prove $\circledast:$
$A^{*} u:$

$$
\begin{aligned}
\left(A^{*}\right)_{u}^{l} & =\sum_{k=0}\left\langle\psi_{k, u}\right\rangle\left(A^{*}\right)^{\prime} \psi_{n} \\
& =\sum_{k=0}\left\langle\psi_{k}, u\right\rangle \sqrt{\frac{2^{1} a^{1}(k+1)!}{k!}} \psi_{k+c}
\end{aligned}
$$

So, $\left.\left.\left\langle\psi_{\infty},\right| A^{*}\right|_{u} ^{l}\right\rangle=\sum_{k=0} a_{k} \sqrt{\frac{2^{2} a^{2}(k+k)!}{k!}} \underbrace{\left\langle\psi_{\alpha}\right.}_{=\delta_{\alpha, k+c}}, \psi_{k+c}\rangle$

$$
=a_{\alpha-l} \sqrt{\frac{2^{2} a^{2} \alpha!}{(\alpha-l)!}}(\text { for } \alpha \geqslant l),
$$

i.e., $\left\langle\psi_{\alpha},\left(A^{*}\right)^{l} u\right\rangle= \begin{cases}a_{\alpha-l} \sqrt{\frac{2^{2} \alpha^{2} \alpha!}{(\alpha-u!},} & \alpha \geqslant l, \\ 0, & \alpha<l .\end{cases}$

Since $a_{\alpha-L}$ is rapidly decreasing in a and $\sqrt{\frac{2^{2} a^{2} \alpha!}{(\alpha-1)!}}$, is poly ${ }^{n}$ in $\sqrt{\alpha},\left\langle\psi_{\alpha},\left(A^{*}\right) u\right\rangle$ is rapidly decreasing in α for all l.
 rapidly decreasing as above.

Let D denotetle differatiation operator $\frac{d}{d x}$, M He multiply by x operator, so

$$
\left.\begin{array}{l}
A=a M+D \\
A^{*}=a M-D
\end{array}\right\} \Rightarrow D=\frac{1}{2}\left(A-A^{*}\right),
$$

and since $A^{\prime} u$ ad $\left(A^{*}\right)^{\prime} u$ have rapidly decreasing Fourier coff, so must $D^{1} u$ and $M^{1} u$ for all $l \in \mathbb{Z}>0_{0}$. Thus, for any (nonommuting) poly ${ }^{=} p$ in M and $D, p(M, D)$, we have

$$
P(M, D) u \in L^{2}(\mathbb{R})
$$

In particular, consider $M^{\alpha} D^{\beta} u=x^{\alpha} \frac{d^{\beta} u}{d x^{\beta}}$. Since this is in $L^{2}(\mathbb{R})$ for all $\alpha 末 \beta$, we have that

$$
x^{\alpha} \frac{d^{\beta} u}{d x^{\beta}} \longrightarrow O \text { as }|x| \rightarrow+\infty \text { for every } \alpha \xi \beta \text {. }
$$

So $\left|u^{(\beta)}(x)\right|=O\left(|x|^{-\alpha}\right)$ for all $\alpha, \beta \in \mathbb{\mathbb { Z }} \geqslant 0$, ie. $u \in S(\mathbb{R})$.

Proposition:
If f is a bounded function on the spectrum of H, then $f(H)$ is defined and is a bounded operator on $L^{2}(\mathbb{R})$; the map $f \rightarrow f(H)$ is a homomorphism from the ring of bounded functions on the spectrum of H to $B\left(L^{2}(\mathbb{R})\right)$. Moreover, $f(H)$ maps $S(\mathbb{R})$ to $S(\mathbb{R})$.
Remark: Compare this statement (ξ proof) to $\left[\right.$ Roe; Th $\left.^{m} 5.30\right]$, the functional calculus proposition for the dirac operator for con pact M.

$f(H)$ is a bounded operator on $L^{2}(\mathbb{R})$.
$f: U(H) \longrightarrow \mathbb{R}$ is bounded, so $|f(\lambda)| \leqslant M<+\infty$ for some $M \geqslant 0$ $\cap^{\text {dixcte }}$ citable and all $\lambda \in \sigma(H)$.
\mathbb{R}
So,

$$
\begin{aligned}
&\|f(H)\|\|=\| \sum_{k=0} f\left(\lambda_{k}\right) a_{k} \psi_{k} \| \leqslant \sum_{k=0} \mid f\left(\lambda_{k}\right)\left\|a_{k}\right\| \psi_{k} \| \\
& \leqslant M \sum_{k=0}\left|a_{k}\right|=M\| \| \|<+\infty \\
& \text { LO.N. of the } \psi_{k}
\end{aligned}
$$

Thus, for $u \in L^{2}(\mathbb{R}), f(H) u \in L^{2}(\mathbb{R})$, and moreover,

$$
\|f(H)\|=\sup _{\| u n=1} \| f\left((H)\| \| \leqslant_{\sup }^{\sup } M\|u\|=M\right.
$$

so $f(H)$ is a bonded operator $L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$.
Homomorphism.
Let $1, g \in B(\sigma(H), \mathbb{R})$. Then

$$
\begin{aligned}
(f+g)(H) u & =(f+g)(H) \sum_{k=0}\left\langle\psi_{k}, u\right\rangle \psi_{k} \\
& =\sum_{k=0}(f+g)\left(\lambda_{k}\right)\left\langle\psi_{k}, u\right\rangle \psi_{k} \\
& =\sum_{k=0} f\left(\lambda_{k}\right)\left\langle\psi_{k}, u\right\rangle \psi_{k}+\sum_{k=0} g\left(\lambda_{k}\right)\left\langle\psi_{k}, u\right\rangle \psi_{k} \\
& =f(H) u+g(H)_{u}=(f(H)+g(H)) u,
\end{aligned}
$$

and,

$$
\begin{aligned}
(f g)(H) u & =(f g)(H) \sum_{k=0}\left\langle\psi \psi_{k} u\right\rangle \psi_{h}=\sum_{k=0}(f g)\left(\lambda_{k}\right)\left\langle\psi_{k}, u\right\rangle \psi_{h} \\
& =\sum_{k=0} f\left(\lambda_{k}\right) g\left(\lambda_{k}\right)\left\langle\psi_{k}, u\right\rangle \psi_{k} \\
& =f(H) \sum_{k ; 0} g\left(\lambda_{k}\right)\left\langle\psi_{k}, u\right\rangle \psi_{h} \\
& =f(H) g(H) \sum_{k=0}\left\langle\psi_{k}, u\right\rangle \psi_{k}=(f(H) g(H)) u_{0}
\end{aligned}
$$

Thus, $(f+g)(H)=f(H)+g(H)$ and $(f g)(H)=f(H) g(H)$, so $f \mapsto f(H)$ is a ring homomorphism $B(\delta(H), \mathbb{R}) \rightarrow B\left(L^{2}(\mathbb{R})\right)$.

$$
f(H): S(\mathbb{R}) \rightarrow \zeta(\mathbb{R})
$$

If $u \in S(\mathbb{R})$, then $\left\langle\psi_{k}, u\right\rangle$ is rapidly decreasing in k. So,

$$
\left\langle\psi_{\alpha}, f(\mu) u\right\rangle=\left\langle\psi_{\alpha}, \sum_{\omega 0} f\left(\lambda_{n}\right)\left\langle\psi_{k}, u\right\rangle \psi_{k}\right\rangle=\sum_{k=0} f\left(\lambda_{\lambda}\right)\left\langle\psi_{k}, u\right\rangle\left\langle\psi_{\alpha}, \psi_{k}\right\rangle=f\left(\lambda_{\alpha}\right)\left\langle\psi_{\alpha}, u\right\rangle
$$

is rapidly decreasing in α, and so $f(H) u \in S(\mathbb{R})$.

Harmonic Oscillator Hlateqquation.
We can now carry over our previous discussion of the heat eq" to the "harmonic oscillator heat equation",

$$
\frac{\partial u}{\partial t}+H u=0 \quad(H O H E)_{0}
$$

Suppose that $u_{0}(x)=u(x, 0) \in L^{2}(\mathbb{R})$ is the initial condition given for the HOHE.

Claim: $u_{t}(x)=e^{-t h} u_{0}(x)$ is a sol to the HOHE with initial condition $u_{0}(x)$.
Proof: That $e^{-t t}$ is a well-detined operator on $L^{2}(\mathbb{R})$ comes from the functional calculus proposition", the rest is "plug in and compute".

The solution operator $e^{-t H}$ is a smoothing operator, so there is a heat kernel $k_{t}^{H} \in \zeta(\mathbb{R} \times \mathbb{R})$ such that

$$
e^{-t H} u(x)=\int k_{t}^{H}(x, y) u(y) d y .
$$

Remark (via Roe):
The heat kernel is completely characterized by the fact that (i) it is Schwartz clans, (ii) it satisfies the heat eq in the first variddle, and (iii) as $t \rightarrow 0, k_{t}^{H}(x, y) \rightarrow \delta(x-y)$

Our next take is to find on explicit expression for the heat bend k_{t}.
Case 1 $(y=0)$: Omit this case from talk-ship to general case.
Ansate: $K_{t}^{H}(x, 0)=U(x, t)=\alpha(t) e^{-\frac{t}{e n} \pi x^{2}}$, where α, β are f as to be determined.
Then: $:$ II $U=\left(a^{2} x^{2}-\frac{d^{2}}{d x^{2}}\right)\left(\alpha(t) e^{-\frac{1}{\beta} \beta(t) x^{2}}\right)=\alpha(t)\left[x^{2}\left(a^{2}-\beta(t)^{2}\right)+\beta(t)\right] e^{-\frac{i}{\psi}(4) x^{2}}$

$$
\cdot \frac{\partial u}{\partial t}=\frac{\partial \alpha}{\partial t} e^{-\frac{1}{\psi} \beta(t) x^{2}}+\alpha(t) \frac{\partial}{\partial t}\left(e^{-\frac{t}{2} x^{2} \beta(t)}\right)=\left(\dot{\alpha}-\frac{x^{2} \alpha \dot{\beta}}{2}\right) e^{-\frac{1}{2} \beta x^{2}}
$$

Plug in to (HOHE):

$$
\begin{aligned}
& 0=\frac{\partial U}{\partial t}+H U=\left(\dot{\alpha}-\frac{x^{2} \alpha \dot{\beta}}{2}\right) e^{-\frac{1}{2} \beta x^{2}}+\alpha\left(x^{2}\left(\alpha^{2}-\beta^{2}\right)+\beta\right) e^{-\frac{1}{-\beta x^{2}}}, \text { so, } \\
& 0=\dot{\alpha}-\frac{x^{2} \dot{a} \dot{\beta}}{2}+\alpha x^{2}\left(a^{2}-\beta^{2}\right)+\alpha \beta=\underbrace{[\dot{\alpha}+\alpha \beta]}_{=0}+x^{2}\left[\alpha\left(a^{2}-\beta^{2}\right)-\frac{\alpha \dot{\beta}}{2}\right]
\end{aligned}
$$

Joe.,
(I) $\dot{\alpha}=-\alpha \beta$, and
(II) $\dot{\beta}=2\left(a^{2}-\beta^{2}\right)$.

We wart a solution for β that behaves as $\frac{1}{t}$ as $t \rightarrow 0$. Jake

$$
\beta(t)=\operatorname{acoth}(2 a t)
$$

Now, $\dot{\alpha}=-\alpha \beta$, so $\frac{\dot{\alpha}}{\alpha}=-\operatorname{acoth}(2 a t)$.

So,

$$
\int-a \operatorname{coth}(2 a t) d t=\int \frac{1}{\alpha} \frac{\partial \alpha}{\partial t} d t=\int \frac{d \alpha}{\alpha}=\log (\alpha)
$$

thus,

$$
\begin{aligned}
\alpha(t)=e^{-a \int \operatorname{coth}(2 a t) d t} & =e^{-\frac{1}{2} \log (\sinh (\operatorname{cat}))+\cdot(\cos s t)} \\
& =C(\sinh (2 a t))^{\frac{-1}{2}}=\frac{C^{2}}{\sqrt{\sinh h(2 a t)}} .
\end{aligned}
$$

For small t,

$$
\sinh (2 a t) \sim 2 a t, \cosh (2 a t) \sim 1+2 a^{2} t^{2}, \operatorname{coth}(2 a t) \sim \frac{1}{2 a t},
$$

so in the limit $t \rightarrow 0$,

$$
U(x, t) \sim \frac{C}{\sqrt{2 o t}} e^{-\frac{x^{2}}{4 t}}
$$

so if we choose $C=\sqrt{\frac{a}{2 \pi}}$, Euclidean heat kernel

$$
U(x, t) \sim \frac{1}{\sqrt{4 \pi t}} e^{-\frac{x^{2}}{4 t}} \text { for small } t \text {. }
$$

Thus, from the known properties of the Euclidean heat kernel, for any function $s \in S(\mathbb{R})$,

$$
\int_{-\infty}^{+\infty}(x, t) s(x) d x \sim \frac{1}{\sqrt{4 \pi t}} \int_{-\infty}^{+\infty} e^{+\frac{x^{2}}{n}} s(x d x \rightarrow s(0) \text { as } t \rightarrow 0
$$

ie. $U(x, t) \rightarrow \delta(x)$ as $t \rightarrow 0$, and $U(x, t)$ satisfies (HOHE). So by uniqueness, $U(x, t)$ is equal to the heat kernel $k_{t}^{\prime \prime}(x, 0)$.

Proposition:
The harmonic oscillator heat kerned $k_{t}^{H}(x, 0)=U(x, t)$ satisfies

$$
\begin{aligned}
& U(x, t)=\sqrt{\frac{a}{2 \pi \sinh (2 a t)}} e^{-\frac{a x^{2} \operatorname{coth}(2 a t)}{2}} \\
&(\text { Mahler's Formula) }
\end{aligned}
$$

Case $2($ general $y)$.
Ansatz: $K_{t}^{H}(x, y)=\alpha(t) e^{-\frac{1}{2} \beta(t)\left(x^{2}+y^{2}\right)-\gamma(t) x y}$.
Why this ansatz? C.f. the standard heat kerne k_{t} on \mathbb{R},

$$
k_{t}(x, y)=\frac{1}{\sqrt{4 \pi t}} e^{-\frac{(x-y)^{2}}{4 t}}=\frac{1}{\sqrt{4 \pi t}} e^{-\frac{(x 2 y y)}{4 t}+\frac{x y}{2 t}}
$$

We base our guess on the reasonable supposition that for small $t, k_{t}^{H} \sim k_{t}$, so that k_{t}^{H} is of the form given above and that

$$
\alpha(t) \sim t^{-\frac{1}{2}}, \beta(t) \sim \frac{1}{t}, \gamma(t) \sim-\frac{1}{t} \text { as } t \rightarrow 0
$$

Solving for appropriate α, β and γ, we obtain...

Proposition:

$$
\begin{aligned}
k_{t}^{H}(x, y) & =\sqrt{\frac{a}{2 \pi \sinh (2 a t)}} e^{-\frac{a \operatorname{coth}(2 a t)}{2}\left(x^{2}+y^{2}\right)+\frac{a}{\sinh (2 a t)} x y} \\
& =\sqrt{\frac{a}{2 \pi \sinh (2 a t)}} e^{-\frac{a}{2}\left(\operatorname{coth}(2 a t)\left(x^{2} \cdot y^{2}\right)-2 \operatorname{cosech}(2 a t) x y\right)} \\
& \text { General version of Mahler's formula }
\end{aligned}
$$

Functional Calculus on Open Manifolds.
Let: M Me a complete Riemannian manifold, and

- De a Dirac operator on a Clifford bundle $\stackrel{\substack{~}}{\sim}$.

We wart to develop a functional calculus for D, i.e. a ring home. $f \mapsto f(D)$ having properties analogous to the compact case.
Method: We will use the finite propagation speed of solutions to the Dirac W.E. to construct the functional calculus directly.

Proposition:
$\frac{\partial s}{\partial t}=i D s$ has a unique solution for smooth, compactly supported initial data s_{0} on M, and the solution s_{t} is smooth and compactly supported for all times t.

Prod:
Uniqueness - from the energy estimate $\left\|s_{t}\right\|^{2} \leqslant\left\|s_{0}\right\|^{2}$.
Existence-construct a compact manifold M^{\prime} that contains an open subset isometric to a neighbourhood of $\operatorname{supp}\left(s_{0}\right) \subseteq M$, then use the results from [Roe; Ch.7] (Val'stalk) for compact manifolds.

Remark: The sol operator $e^{i t D}$ is defined and unitary on the dense subspace $C_{e}^{\infty}(S) \leq L^{2}(S)$, so extends to a unitary op. on $L^{2}(S)$ by continuity.

Let $f \in S(\mathbb{R})$ and define $f(D)$ by the Fourier integral

$$
f(D)=\frac{1}{2 \pi} \int \hat{f}(t) e^{i t D} d t
$$

where $e^{i t D}$ is the unitary sol operator to the Dirac W.E. described above. Since $f \in S(\mathbb{R}), \hat{f} \in S(\widehat{\mathbb{R}})$ (so is rapidly decreasing), and so this integral converges (in the weak sense).

Proposition:
(1) The mapping $f \mapsto f(D)$ is a ring homomorphism $S(\mathbb{R}) \rightarrow B\left(L^{2}(S)\right)$.
(2) $\|f(D)\| \leqslant \sup |f|$.
(3) If $f(x)=x g(x)$, then $f(D)=\operatorname{Dg}(D)$.

Proof:
All three results follow by reducing to the compact case and applying the results we have already obtained there.
For instance, first consider $f \in S(\mathbb{R})$ such that \hat{f} is compactly supported and $s \in C_{c}^{\infty}(S)$. Construct a compact manifold M^{\prime} isometric to t_{0}-nbhd U of K, where

$$
\operatorname{Supp}(\hat{f}) \subset\left[-t_{0}, t_{0}\right], \operatorname{Supp}(s) \subset K .
$$

Then by the finite propagation speed result, $\operatorname{Supp}(f(D) S) \subset U$ and $f(D) s=\overrightarrow{f\left(D^{\prime}\right)}$ s on U. Apply the compact care, and them use that $\overline{C_{e}^{0}(S)}=L^{2}(S)$ and that $\overline{\{f \in S(\mathbb{R}) \mid S u p p}(\hat{f})$ compact $\}=S(\mathbb{R})$.

Remark:
The closure of $S(\mathbb{R})$ in the sup norm is

$$
C_{0}(\mathbb{R})=\left\{f: \mathbb{R} \rightarrow \mathbb{R} \text { cts } \mid \lim _{x \rightarrow \infty} f(x)=0\right\} \text {. }
$$

Since $\|f(D)\| \leqslant$ sup $|f|$ for $f \in S(\mathbb{R})$, can extend by continuity to a map

$$
\begin{aligned}
C_{0}(\mathbb{R}) & \longrightarrow B\left(L^{2}(S)\right) \\
f & \longrightarrow f(D)
\end{aligned}
$$

with the same properties as above.

