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1. Preliminary motivations.

Key Motivational Slogan: To quantise functions on a group as a Poisson algebra, quantise an
appropriate dual.

Consider the following classical/quantum analogies:

Structure Classical Mechanics Quantum mechanics
Space of states Phase space M1 Hilbert space H

Space of observables C∞(M,C) Op(H) = {all linear operators on H}
Lie structure Poisson bracket {·, ·} Matrix commutator [·, ·]
Hamiltonian Hc ∈ C∞(M,C) Hq ∈ Op(H)

Evolution equations d
dtf(m(t)) = {Hc, f}(m(t)) dA

dt = [Hq, A]

We would like to find a way to pass between the classical and quantum pictures: i.e., we want to quantise
classical systems, and take classical limits of quantum systems.

Naive idea: {·, ·} and [·, ·] are both Lie brackets, so we should try to quantise Lie algebras.

Problems: (1) Lie algebras are too rigid a structure (e.g. complex simple Lie algebras have only trivial
deformations); and (2) considering only the Lie bracket fails to capture all of the classical structure.

Better: Quantize Lie bialgebras and Hopf algebras.

2. Lie bialgebras and their classical doubles.

2.1. Lie bialgebras. Consider a Poisson-Lie group, i.e. a Lie group G with a Poisson structure, compatible
in the appropriate sense. Let g = Lie(G). The Poisson structure induces a natural Lie algebra structure on
the dual g∗,

[(df1)e, (df2)e]g∗ = (d{f1, f2})e.

The properties of this extra structure on g∗ motivate the definition of a Lie bialgebra.

Definition 1. Let g be a Lie algebra. A Lie bialgebra structure on g is a skew-symmetric linear map
δ : g→ g⊗ g whose dual is a Lie bracket on g∗, and which is a 1-cocycle of g with values in g⊗ g; i.e.

δ([X,Y ]) = X · δ(Y )− Y · δ(X).

Given a map of Poisson-Lie groups, we would like the derivative to be a map of Lie bialgebras, so we define:

Definition 2. A homomorphism of Lie bialgebras is a Lie algebra homomorphism ϕ : g → h such that
(ϕ⊗ ϕ) ◦ δg = δh ◦ ϕ.
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2.2. Manin triples. We claim that g and g∗ play symmetric roles in a Lie bialgebra – this is not immediately
transparent. To make it so, we introduce Manin triples.

Definition 3. A Manin triple is a triple of Lie algebras (p, p+, p−) together with an ad-invariant inner
product2 (·, ·) such that

(i) p± are Lie subalgebras of p;
(ii) p = p+ ⊕ p− as vector spaces;
(iii) p± are isotropic for (·, ·).

Proposition 2.1. Let g be a finite dimensional Lie algebra. Then there is a 1-1 correspondence

{Lie bialgebra structures on g} ↔ {Manin triples with p+ = g}.

Proof. Given a Lie bialgebra structure on g we set p+ = g, p− = g∗, and define the ad-invariant isotropic
inner product to be the natural pairing between g and g∗. Conversely, given such a Manin triple the pairing
induces an isomorphism p− ∼= p∗+ = g∗, and hence a Lie algebra structure on g∗. To check that this is a
well-defined bijection, compute by choosing a basis and a dual basis. �

Example 1. Present sl2C by generators H, X± and relations [X+, X−] = H, [H,X±] = ±2X±. Then there
is a “standard bialgebra structure” given by δ(H) = 0 and δ(X±) = X± ∧H.

Example 2. Consider the current algebra for sl2C, g = sl2[u] = sl2 ⊗C C[u] (the Lie bracket is defined term
wise). Take the ad-invariant inner product on sl2 given by

(H,H) = 2, (H,X±) = 0, (X±, X±) = 0, (X±, X∓) = 1,

which gives us the Casimir t = 1
2H ⊗ H + X+ ⊗ X− + X− ⊗ X+. Then a Lie bialgebra structure on g is

given by

δ(f)(u, v) = (adf(u) ⊗ 1 + 1⊗ adf(v))
(

t

u− v

)
.

The corresponding Manin triple is (sl2((u−1)), sl2[u], u−1sl2[[u−1]]) with inner product

〈f, g〉 = −res0(f(u), g(u)),

where we have extended the inner product on sl2 to a map g→ C[u].

2.3. Quasitriangular Lie bialgebras. If g is a Lie bialgebra whose cocommutator is a coboundary, i.e.
δ(X) = X · r for some r ∈ g⊗ g, we say that it is a coboundary Lie bialgebra.

Proposition 2.2. Let g be a Lie algebra. Then r ∈ g⊗ g defines a Lie bialgebra structure on g if and only if

(i) r12 + r21 is g-invariant; and,
(ii) CYBE(r) := [r12, r13] + [r12, r23] + [r13, r23] is g-invariant (Classical Yang-Baxter equation).

The easier way to satisfy condition (ii) is if CY BE(r) = 0, in which case r is a classical r-matrix.

Definition 4. A coboundary Lie bialgebra is quasitriangular if CY BE(r) = 0. It is triangular if furthermore,
r ∈ g ∧ g.

2.4. The classical double. If (g, δ) is a Lie bialgebra, so is (g,−δ), which we call the opposite Lie bialgebra
of g, gop.

Proposition 2.3. Let g be a finite dimensional Lie bialgebra. Then there is a canonical quasitriangular
Lie bialgebra structure on g ⊕ g∗ such that the inclusions g ↪→ g ⊕ g∗ ←↩ (g∗)op are homomorphisms of Lie
bialgebras.

With this Lie bialgebra structure we call g⊕ g∗ the double of g and denote it by D(g).

2We don’t require positive definiteness for the inner product, just nondegeneracy.
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Proof. The structure is given by the element r ∈ g⊗ g∗ ⊂ D(g)⊗D(g) corresponding to the identity map of
g. It’s symmetrisation is proportional to the Casimir (hence g-invariant). To prove that CYBE(r) = 0 and
the inclusions are Lie bialgebra homomorphisms, choose a basis and dual basis and calculate. �

Example 3. Let g be complex simple Lie algebra, and choose a Borel subalgebra b. b can be given the
structure of a Lie bialgebra [D, Example 3.2]. The double D(b) is not quite the original algebra g, but it
surjects onto g as a Lie algebra with kernel a Lie bialgebra ideal. Thus, g inherits a quasitriangular Lie
bialgebra structure from the double D(b).

3. Hopf algebras.

Given G a Lie group, consider C∞(G) and Ug = (C∞(G))∗. The Lie structure on G gives rise to extra
structure on these function spaces, which we term a Hopf algebra.

Definition 5. A Hopf algebra is an algebra equipped with a compatible coalgebra structure (coassociative
comultiplication ∆ : A→ A⊗ A and counit ε : A→ C), and an antipode S : A→ A which is the inverse to
idA under convolution of functions.

This is really representation theoretic data for the algebra A: the counit allows us to define the trivial
representation, the comultiplication allows us to take tensor products of representations, and the antipode
allows us to take duals of representations.

Example 4. For g any Lie algebra Ug can be given a Hopf algebra structure by taking

∆(x) = x⊗ 1 + 1⊗ x, S(x) = −x, ε(x) = 0,

for all x ∈ g.

If A is finite dimensional its dual A∗ will also be a Hopf algebra. For infinite dimensional A we have to
consider instead the Hopf dual

A◦ = {α ∈ A∗ |µ∗(α) ∈ A∗ ⊗A∗},
where µ : A⊗ A→ A is the multiplication map. Additionally, from now on many tensor products will need
to be thought of topologically, not just algebraically; e.g. as the •-adic or weak completions of the algebraic
tensor product.

3.1. Coboundary structures on Hopf algebras. Let τ be the transposition automorphism of A⊗A, and
define ∆op(x) = τ ◦∆(x), the opposite comultiplication.

Definition 6. A Hopf algebra A is almost cocommutative if there exists an invertible element R ∈ A ⊗ A
such that for all a ∈ A,

∆op(a) = R∆(a)R−1.

We say that (A,R) is

• coboundary if R21 = R−1 and (ε⊗ ε)(R) = 1;
• quasitriangular if (∆⊗ id)(R) = R12R23 and (id⊗∆)(R) = R13R12;
• triangular if quasitriangular and R21 = R−1.

In the quasitriangular case we call R the universal R-matrix of A.3

A universal R-matrix arises as a solution to the Quantum Yang-Baxter equation (QYBE)

R12R13R23 = R23R13R12.

The QYBE can be thought of as an exponentiated version of the CYBE: solutions to the CYBE appear as
first order terms in solutions to the QYBE.

3The universal R-matrix is unique up to multiplication by elements in C(∆(A)).
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3.2. A twisted tensor product for Hopf algebras. Let B and C be Hopf algebras and R ∈ C ⊗ B an
invertible elements satisfying

(∆C ⊗ id)(R) = R13R23, (id⊗ SB)(R) = R−1,

(id⊗∆B)(R) = R12R13, (SC ⊗ id)(R) = R−1.

Then B ⊗ C with the usual algebra structure and

∆(b⊗ c) = R23∆B
13(b)∆C

24(c)R−1
23 ,

S(b⊗ c) = R−1
21 (SB(b)⊗ SC(c))R21,

ε(b⊗ c) = εB(b)εC(c),

is a Hopf algebra which we denote B ⊗R C.

3.3. The quantum double. Take A a Hopf algebra, and let B = A∗, C = Aop (opposite multiplication).
One can show that the canonical element R ∈ Aop⊗A∗ associated to the identity map satisfies the conditions
above.

Definition 7. The quantum double of A is

D(A) = (A∗ ⊗R Aop)∗,

where R is the canonical element.

Analogously with the Lie bialgebra case, we have that D(A) ∼= A⊗A∗ as coalgebras, and A ↪→ D(A)←↩ (A∗)op

are embeddings as Hopf algebras.

Remark The above is only true as written in the finite dimensional case. In the infinite dimensional case
we need R ∈ Aop⊗̂A◦ and we take

D(A) = (A◦⊗̂RAop)∗.

As for the classical double, we have:

Proposition 3.1. D(A) is quasitriangular with universal R-matrix the identity map of A.

4. Quantization of Hopf algebras.

4.1. Deformations. A deformation of a Hopf algebra (A, ι, µ, ε,∆, S) over C4 is a topological Hopf algebra
(Ah, ιh, µh, εh,∆h, Sh) over C[[h]] such that

(i) Ah ∼= A[[h]] as a C[[h]]-module;
(ii) µh ≡ µ mod h and ∆h ≡ ∆ mod h.

We will generally just refer to the deformation as Ah when the other data is clear. Given two deformations
of A, Ah and A′h, we say Ah ∼= A′h if there is an isomorphism fh : Ah → A′h of Hopf algebras over C[[h]]
which is the identity mod h.

The Hopf algebra structure on Ah gives rise to consistency conditions for µh and ∆h, which can be expressed
as cohomological conditions. [CP] define a Hopf algebra cohomology modelled on Hochschild cohomology5

in which

H2 = {space of infinitesimal deformations},
H3 = {space of obstructions}.

4Although I have been referring to C, all of the statements in this talk will over arbitrary fields, and most will hold over any
commutative ring.

5This appears to be nearly the same as the “Gernstenhaber-Schack complex” constructed in [SS], but from memory the
cohomology winds up shifted in degree at some point and I’m not sure where. Ultimately it’s not important.



Richard Hughes Introduction to Lie bialgebra quantization. 5

In particular, [CP] use a bicomplex Cp,q where the q = 1 row encodes the algebra cohomology (standard
Hochschild) and the p = 1 column encodes the coalgebra cohomology. This can be put to work for us, e.g.:

Proposition 4.1. Every deformation of Ug for a semisimple Lie algebra g is isomorphic to Ug[[h]] as an
algebra.

Proof. For g semisimple, H2
alg(Ug, Ug) = H2

Lie(g, g) = 0. For a geometric intuition, one could think of this as
a reflection of the fact that semisimple Lie algebras are classified over the discrete space of Dynkin diagrams;
for an actual proof consult [W, §7.8 Semisimple Lie Algebras]. �

Remark This feature can be put to work in other ways as well: in fact by studying the cohomology of
semisimple Lie algebras we can determine that there is an essentially unique deformation of Ug that preserves
(in a precise sense) the Cartan subalgebra and triangular decomposition.

4.2. Quasitriangular QUE algebras.

Definition 8. A quantised universal enveloping algebra (QUE algebra) is a Hopf algebra deformation of Ug
(where g is any Lie algebra).

We will use the notation Uhg when referring to such deformations. Be aware that unless otherwise specified,
this is not supposed to refer to any particular deformation!

We want to study the classical degenerations limh→0 Uhg to see what structures carry over.

Definition 9. Let Uhg be a QUE algebra. If there exists Rh ∈ Uhg⊗Uhg such that Rh ≡ 1⊗ 1 mod h and
as a topological Hopf algebra

• Rh,21 = R−1
h and (ε⊗ ε)(Rh) = 1, say that Uhg is coboundary ;

• (∆⊗ id)(Rh) = Rh,12Rh,23 and (id⊗∆)(Rh) = Rh,13Rh,12, say that Uhg is quasitriangular ;
• Rh,21 = R−1

h and Uhg is quasitriangular, say that Uhg is triangular.

The structure of a Lie bialgebra gives extra an structure to the corresponding enveloping algebra, which
we call a co-Poisson-Hopf algebra (this is just the structure induced by the cocommutator on the coalgebra
structure). The following proposition makes precise the sense in which Hopf algebra deformations are the
“correct” way to think about Lie bialgebra deformations.

Proposition 4.2. Let g be a Lie algebra and let Uhg be a Hopf algebra deformation of Ug. Define δ : Ug→
Ug⊗ Ug by

δ(x) :=
∆h(a)−∆op

h (a)
h

mod h,

where x ≡ a mod h. Then (Ug, δ) is a co-Poisson-Hopf algebra (so (g, δ) is a Lie bialgebra).

Additionally, extra structure on QUE algebras carry through to their classical limits:

Proposition 4.3. Let (Uhg,Rh) be a coboundary QUE algebra, and define r ∈ Ug⊗ Ug by

r :=
Rh − 1⊗ 1

h
mod h.

Then r ∈ g⊗ g, and the classical limit of Uhg is the coboundary Lie bialgebra (g, δ) defined by r. Moreover,
if (Uhg,Rh) is (quasi)-triangular, so is (g, δ).

Proof. Choose a PBW basis and compute. Specifically, express r in the PBW basis and show that all higher
degree terms must have zero coefficients. �
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4.3. QUE duals and doubles. The dual of a QUE algebra will be a quantum formal series Hopf algebra
(QFSH algebra): a topological Hopf algebra B over C[[h]] such that as a topological C[[h]]-module B ∼= C[[h]]I

for some index set I, and B/hB ∼= C[[u1, u2, . . . , ]] as a topological algebra.

In [D, §7] Drinfel’d claims that there is an equivalence between the category of QUE algebras (with classical
limit a finite dimensional Lie bialgebra) and QFSH algebras (finitely generated as topological algebras): given
a QUE algebra A one can construct a canonical QFSH algebra B ⊂ A such that the h-adic completion of B
is A. A rigorous proof of this correspondence can be found in [G].

Definition 10. The QUE dual of A is B∗.

Since B was a QFSH algebra, we have that the Hopf dual is a QUE algebra. With this appropriate notion
of the dual algebra, the construction of section 3.3 can be repeated to obtain the notion of a QUE double.

Proposition 4.4. The classical limit of the Hopf dual of Uhg will correspond to g∗ (with Lie bialgebra
structure); the classical limit of the QUE double is the classical double D(g).

Proof. See [G]. Really the definition has been at least partly rigged to give us the first part of the proposition;
the second part should follow from the fact that taking appropriate topological duals commutes with taking
appropriate topological tensor products.6 �

5. Example: Standard quantisation of sl2.

Recall that sl2 has a triangular Lie bialgebra structure given by r = X+ ∧X−, i.e.

δ(H) = 0, δ(X±) = X± ∧H.
Let b± = 〈H,X±〉 ⊂ sl2 (as Lie bialgebras).

Idea: Quantize (sl2, δ) by quantizing (b±, δ|b±).

Recall from Proposition 4.2 we want

δ(x) =
∆h(a)−∆op

h (a)
h

mod h if x ≡ a mod h.(5.1)

So look at b+. We wish to find a quantisation isomorphic to Ub+[[h]] as an algebra. δ(H) = 0, so

∆h(H) = H ⊗ 1 + 1⊗H
satisfies (5.1). Ub+ is graded by deg(H) = 0 and deg(X+) = 1. We will look for a quantisation that preserves
this grading. This imposes

∆h(X+) = X+ ⊗ f + g ⊗X+

where f, g ∈ Uh[[h]], h = 〈H〉. Since the zeroth order term must be the classical comultiplication, f, g ≡ 1
mod h. The coassociativity condition imposes that f and g must be group like (∆(f) = f⊗f). By computing
with power series, one determines that the group like elements of Uh[[h]] which are 1 mod h are exactly the
elements ehµH for µ ∈ C[[h]]. So for some µ, ν ∈ C[[h]] we write

∆h(X+) = X+ ⊗ ehµH + ehνH ⊗X+.

By changing the basis X+ 7→ e−hνHX+ we can assume that

∆h(X+) = X+ ⊗ ehµH + 1⊗X+.

Then the first term in the power series expansion of ∆h(X+)−∆op
h (X+) is

h(X+ ⊗ µH − µH ⊗X+),

so to satisfy (5.1) we require X+ ∧H ≡ X+ ∧ µH mod h, i.e. µ ≡ 1 mod h. So, set µ = 1. Then

∆h(X+) = X+ ⊗ ehH + 1⊗X+.

6Fair warning: I haven’t explicitly checked that this is the correct approach.
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Further algebraic analysis (look for consistency requirements imposed by the Hopf algebra structure) will
lead us to define

Sh(H) = −H, Sh(X+) = −X+e−hH , εh(H) = εh(X+) = 0.
We can play the same game with (b−, δ|b−) to obtain

∆h(X−) = X− ⊗ 1 + e−hH ⊗X−, Sh(X−) = e−hHX−, εh(X−) = 0.

Let this define a coalgebra structure on Usl2[[h]] as a C[[h]]-module. We want to define an algebra struc-
ture such that ∆h is an algebra homomorphism; this will give us the desired quantisation Uhsl2. A quick
computation gives us the condition

∆h[X+, X−] = [X+, X−]⊗ ehH + e−hH ⊗ [X+, X−].

This condition is not satisfied by our original multiplication; instead it will hold if [X+, X−] is any multiple
of ehH − e−hH (remember that these are group-like elements). In order to obtain the correct classical limit,
we choose

[X+, X−] =
ehH − e−hH

eh − e−h
.

Finally, we remark that Uhsl2 is a topologically quasi-triangular Hopf algebra (which we might expect from
the fact that its classical limit is quasi-triangular). There is an elementary proof of this in [CP, §6.4] in which
the form of the universal R-matrix is magicked into existence. There is a more useful procedure modelled on
the idea outline in Example 3, where one constructs the quantisation as a quotient of the quantum double of
Ub+ and obtains an explicit description of the dual standard basis. The details for this are in [CP, §8.3].
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