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1. Motivation.

Recall that we are interested in quantising Lie bialgebras. There are natural questions we can then ask:

• Can every Lie algebra be quantised?
• Is there a functorial quantisation procedure?
• Is (quasi-)triangularity preserved under quantisation?

In [D2] Drinfeld formulates precise statements of the above (and many other) important questions. The
paper by [EK] Etingof and Kazhdan provides answers to a number of questions in [D2]: in particular, they
prove existence of a universal quantisation for Lie bialgebras, and show that the construction is functorial.
Additionally, they prove classical r-matrices can be quantised, and give an explicit description of the category
of representations for the double of a Lie bialgebra.

This talk:
• Outline an explicit construction for quantisation of a finite dimensional Lie bialgebra.
• Demonstrate that this construction is the quantum double of a QUE algebra.
• Brief remarks on applications to quantisation of r-matrices and the infinite dimensional case.

Next talk (Michael Wong): Generalize this construction to infinite dimensional Lie bialgebras and prove
that the construction is functorial and universal.

2. Drinfeld Category and the fibre functor.

2.1. Drinfeld Category. We begin with the following data:

• A finite dimensional Lie algebra g over k (particular interest: finite dimensional Manin triple).
• A g-invariant elements Ω ∈ Sym2g (particular interest: Casimir element).
• An associator Φ ∈ T3[[h]] (T3 a monodromy Lie algebra).

Define the Drinfeld category M by

Ob(M) = g-modules,

HomM(U,W ) = Homg(U,W )[[h]].

From now on, we drop the subscript M on Hom.

M has a braided monodical structure. Let tensor product be the standard tensor product g-modules. Re-
calling that T3 is generated by elements tij , given V1, V2, V3 ∈ M define the homomorphism θ : T3[[h]] →
End(V1 ⊗ V2 ⊗ V3) by θ(tij) = Ωij . The associativity morphism is then

ΦV1V2V3 := θ(Φ) ∈ Hom((V1 ⊗ V2)⊗ V3), V1 ⊗ (V2 ⊗ V3)).

The braiding βV1V2 : V1 ⊗ V2 → V2 ⊗ V1 is given by

β = s ◦ ehΩ/2,

where s is the transposition map V1 ⊗ V2 → V2 ⊗ V1.
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2.2. Fibre functor. Let A be the category of topologically free k[[h]]-modules, (g, g+, g−) a finite dimension
Manin triple with Casimir element Ω, and M the Drinfeld category associated to g. Consider the functor

F :M→A
F (V ) = Hom(Ug, V )

which is naturally isomorphic to the forgetful functor. We wish to equip F with a tensor structure: a
functorial isomorphism JV W : F (V )⊗ F (W )→ F (V ⊗W ) such that

F (ΦV WU )JV⊗W,U ◦ (JV W ⊗ 1) = JV,W⊗U ◦ (1⊗ JWU ),

and JV 1 = J1V = 1. In order to do so we consider a different realisation of the functor which, while convenient
for us now, is necessary to generalise to the infinite dimensional case.

Let 1 be the one dimensional trivial representation and consider the Verma modules

M± = Indg
g±1,

which are freely generated over U(g∓) by vectors 1± such that g±1± = 0 (immediate consequence of PBW
theorem). This leads directly to the following lemma:

Lemma 2.1. The assignment 1 7→ 1+ ⊗ 1− extends to an isomorphism of g-modules φ : Ug→M+ ⊗M−.

Proof. M± are identified with Ug∓, so we can think of φ as a linear map Ug→ Ug− ⊗ Ug+. This preserves
the standard filtration so induces a map Sym(g) → Sym(g−) ⊗ Sym(g+), which is the map induced by the
isomorphism g→ g− ⊕ g+. �

Thus we can think of F as the functor F (V ) = Hom(M+ ⊗ M−, V ). Now, there are unique g-module
morphisms that send

i± : M± →M± ⊗M±
i±(1±) = 1± ⊗ 1±.

Suppressing associativity morphisms, we define the tensor structure JV W by

JV W (v ⊗ w) = (v ⊗ w) ◦ (1⊗ β23 ⊗ 1) ◦ (i+ ⊗ i−).

We call the functor F equipped with the tensor structure J the fibre functor.

3. Quantization via the endomorphism algebra of the fibre functor.

3.1. Hopf algebra structure on End(F ). Let H = End(F ) be the algebra of endomorphisms on the
functor F . This is naturally isomorphic to Ug[[h]] via the map α : Ug[[h]]→ H defined by (α(x)f)(y) = f(yx);
we therefore aim to quantise g by finding a Hopf algebra structure for H.

Let F 2 : M×M → A be the bifunctor defined by F 2(V,W ) = F (V ) ⊗ F (W ); then End(F 2) = H ⊗ H.
Define a bialgebra structure by

∆ : H → H ⊗H, ε : H → k[[h]],

∆(a)V,W (v ⊗ w)J−1
V WaV⊗WJV W (v ⊗ w), ε(a) = a1,

where a ∈ H, v ∈ F (V ) and w ∈ F (W ). An antipode S : H → H can be similarly defined.

Proposition 3.1. The algebra H equipped with ∆, ε, S is a topological Hopf algebra.

Let ∆0 and S0 be the standard comultiplication and antipode for Ug. One can find an element J ∈ Ug⊗2[[h]]
(and an element Q ∈ Ug[[h]] derived from J) such that

∆(a) = J−1∆0(a)J and S(a) = Q−1S0(a)Q.(3.1)
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Corollary 3.2. Introduce a new comultiplication and antipode on the topological Hopf algebra Ug[[h]] by

∆(x) = J−1∆0(x)J, S(x) = Q−1S0(x)Q,

where ∆0, S0 are the usual comultiplication and antipode. Then Uhg := (Ug[[h]],∆, S) is a topological Hopf
algebra isomorphic to H.

We note here that with the algebraic structure induced on Ug[[h]] by H the usual comultiplication and
antipode is not a Hopf algebra, but is instead a quasi-hopf algebra (with the associativity element Φ). The
element J−1 therefore witnesses an equivalence of the quasi-Hopf algebra (Ug[[h]],Φ) with the Hopf algebra
Uhg.

Recall that a QUEA A is a quantisation of the Lie bialgebra (g, δg) if

(i) A/hA is isomorphic to Ug as a Hopf algebra, and
(ii) for any x0 ∈ g and any x ∈ A equal to x0 mod h we have

∆(x)−∆op(x)
h

≡ δ(x0) mod h.

Theorem 3.3. The topological Hopf algebra Uhg is a quantisation of the Lie bialgebra (g, δg).

Proof. Recall that δg(x) = [x⊗1+1⊗x, r] where r ∈ g⊗g is the canonical element associated to the identity.
Define δ as in the statement of the theorem; we wish to show that δ(a) = δg(a) for all a ∈ g.

Let {g+
j } be a basis of g+ and {g−j } be the dual basis of g−; the canonical element is then r =

∑
j g

+
j ⊗ g

−
j .

We have the identities

ehΩ/2 ≡ 1 +
hΩ
2

mod h2;

Φ ≡ 1 mod h2 (required by the pentagon axiom);

J ≡ 1 +
hr

2
mod h2 (from definition of J and identity for Φ).

By (3.1),

∆(a) ≡ ∆0(a) +
h

2
[∆0(a), r] mod h2,

and so

∆(a)−∆op(a) ≡ h

2
[∆0(a), r − sr] mod h2.

Since r + sr = Ω is g-invariant, we add it to the second position of the bracket so that

δ(a) = [∆0(a), r] = δg(a).

�

We note here that the element
R = (Jop)−1ehΩ/2J ∈ Uhg⊗2

defines a quasitriangular structure on Uhg that quantises r in the sense that

R ≡ 1 + hr mod h2.

4. Uhg is a quantum double.

4.1. The algebras Uhg±. Since the fibre functor F is represented by M+⊗M− ∈M, we have a homomor-
phism

θ : End(M+ ⊗M−)→ End(F ) = Uhg

θ(a)v = v ◦ a
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where v ∈ F (V ), V ∈M and a ∈ End(M+⊗M−). This is in fact an isomorphism, so we identify End(M+⊗
M−) ∼= Uhg. Using this identification, we define

m− :F (M+)→ Uhg m+ :F (M−)→ Uhg

m−(x) = (x⊗ 1) ◦ (1⊗ i−) m+(x) = (1⊗ x) ◦ (i+ ⊗ 1)

which are embeddings (since they are embeddings mod h). We define

Uhg± := m±(F∓).

Proposition 4.1. Uhg± are subalgebras in Uhg.

Proof. For m−, a calculation gives

m−(x) ◦m−(y) = m−(z) where z = x ◦ (y ⊗ 1) ◦ (1⊗ i−) ∈ F (M+).

�

One can see that Uhg± is a deformation of Ug± via the linear isomorphism

µ : Ug∓ → Uhg∓

µ(a)(1+ ⊗ 1−) = a1±

which is also an algebra homomorphism mod h2. Moreover we have the following proposition (which is true
because it is true mod h):

Proposition 4.2. The map Uhg+ ⊗ Uhg− → Uhg given by a⊗ b 7→ ab is a linear isomorphism.

4.2. QUE duals and quantum doubles. There is an alternate realisation of the universal R-matrix of
Uhg as an element of Uhg+ ⊗ Uhg− given by the unique element that satisfies the identity

R ◦ β−1 ◦ (i+ ⊗ i−) = β;

from this an alternate explicit realisation of R can be computed. Let

Uhg∗± := HomA(Uhg±, k[[h]]).

This is not itself a QUEA. However given a QUEA A we can define a canonical QUEA from it by taking the
h-adic completion of the subalgebra ∑

n≥0

h−n(I∗)n ⊂ A∗ ⊗k[[h]] k((h)),

where I∗ is the maximal ideal in A∗. We denote this QUEA A∨ and call it the dual QUEA to A. A∗ can be
recovered from A∨ as (roughly)1 the maximal Hopf subalgebra on which nth iterated coproducts vanish mod
hn. We denote such subalgebras with a prime, so that for instance, A∗ = (A∨)′. The following result is due
to Drinfeld [D1]:

Theorem 4.3. Consider the k[[h]]-module D(A) = A ⊗ (A∨)op with canonical element R ∈ A ⊗ A∗ ⊂
A⊗ (A∨)op. There is a unique structure of a topological Hopf algebra on D(A) such that

(1) A⊗ 1, 1⊗ (A∨)op are Hopf subalgebras in D(A);
(2) R defines a quasitriangular structure on D(A); and,
(3) the linear mapping A⊗ (A∨)op → D(A) given by a⊗ b 7→ ab is bijective.

Equipped with this structure D(A) is a quasitriangular QUEA which we call the quantum double of A.

1The actual definition involves constructing a sequence of new maps δn : A → A⊗n from nth iterated coproducts; not the
iterated coproducts themselves.
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4.3. Realization of Uhg as a quantum double. Given what we have already proved, in order to realise
Uhg as a quantum double, it is sufficient to prove that Uhg+ and Uhgop

− are QUE dual Hopf subalgebras of
Uhg. We proceed as follows: define k[[h]]-linear maps

ρ+ : Uhg∗− → Uhg+, ρ− : Uhg∗+ → Uhg−,

ρ+(f) = (1⊗ f)(R), ρ−(f) = (f ⊗ 1)(R).

Denote U± := im (ρ±): these are closed as k[[h]]-subalgebras. That Uhg± are closed under comultiplication
and the antipode follows from the corresponding behaviour of the universal R-matrix, together with the
following proposition:

Proposition 4.4. Uhg± ⊗k[[h]] k((h)) is the h-adic completion of U± ⊗k[[h]] k((h)).

Proof. Given an element T ∈ Uhg± one can explicitly construct a sequence {txm
} ⊂ U± ⊗ k((h)) such that

T =
∑

m≥0 txm
hm. The construction proceeds by reducing mod h to obtain an element x0 ∈ Ug±, finding a

tx0 such that tx0 = x0 +O(h), then subtracting away tx0 and iterating the procedure. �

From this, we consider the properties of ρ± as maps of Hopf algebras:

Proposition 4.5. ρ+ is an embedding of topological Hopf algebras (Uhgop
− )∗ → Uhg+ and ρ− is an embedding

of topological Hopf algebras Uhg∗− → Uhgop
+ .

Proof. Fairly straightforward computation using the properties of the R-matrix. �

Finally, to complete the proof that our Hopf subalgebras are QUE dual, we use the follow propsition:

Proposition 4.6. U± = Uhg′±.

Proof. To show Uhg′± ⊂ U±, one explicitly represents elements of Uhg′± as a series of elements in U+ using
the elements tx from the proof of Proposition 4.4. To show U± ⊂ Uhg′± recall that R has zeroth order term 1,
thus any element of the form (R− 1)n will be divisible by hn; this is exactly the type of nth order coproduct
vanishing that appears in the definition of A′. �

Prop 4.6 implies QUE duals. Unravelling definitions and equivalences, we have

(Uhg+)′ = U+
∼= (Uhgop

− )∗,

which gives the desired result upon taking the appropriate completion ·∨ of both sides. �

We summarise our results in the following theorem:

Theorem 4.7. [EK, Theorem 4.13] Let g+ be a finite dimensional Lie bialgebra and (g, g+, g−) be the
associated Manin triple. Then

(i) There exist quantised universal enveloping algebras Uhg and Uhg± ⊂ Uhg which are quantisations of
the Lie bialgebras g, g± ⊂ g respectively;

(ii) The multiplication map Uhg+ ⊗ Uhg− → Uhg is a linear isomorphism;
(iii) The algebras Uhg+, Uhgop

− are QUE duals;
(iv) The factorisation Uhg = Uhg+Uhg− defines an isomorphism of Uhg with the quantum double of Uhg+;
(v) Uhg is isomorphic to Ug[[h]] as a topological algebra.
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5. Final remarks.

5.1. Quantization of classical r-matrices and quasitriangular bialgebras. Let A be an associative
unital algebra. Recall that a classical r-matrix in A ⊗ A defines a Lie bialgebra g; in [EK, §5] Etingof
and Kazhdan prove that any such r-matrix can be quantised to a solution R of the QYBE satisfying R =
1 + hr +O(h2).

Roughly, the proof is: form the double of g, which will be quasitriangular with r-matrix r̃ which projects
(in some appropriate sense) down to r. Form the QUE algebra of the double as above, which will be
quasitriangular with universal R-matrix R̃; then the desired quantisation of r is the induced projection of R̃.

Furthermore, in [EK, §6] the above is used to prove that any (quasi)triangular Lie bialgebra (not necessarily
finite dimensional) admits a (quasi)triangular QUEA quantisation; once we have proved functoriality of our
quantisation procedure from Section 3 it is possible to prove that the two quantisations are isomorphic.

5.2. The infinite dimensional case. All of the constructions and proofs above are almost true in the
infinite dimensional case: there is some topological subtlety, however, and it turns out that the correct
objects to study are equicontinuous g-modules. For infinite dimensional g, Ug will not be an equicontinuous
g-module, so our original definition of the fibre functor does not make sense. We instead replace our original
definition with

F (V ) := Hom(M−,M∗+⊗̂V ),
where M± are the same Verma modules as before and ⊗̂ is an appropriately completed tensor product.
All modules involved are now equicontinuous, and this functor is still naturally isomorphic to the forgetful
functor.

With the above definitions, suppose we are given a Manin triple (g, g+, g−). End(F ) will no longer be
a topological bialgebra, so we will not obtain a quantisation of g; however, the embedding m+ (suitably
twisted) will still determine an algebra embedding whose image is a Hopf algebra. This provides the desired
quantisation of g+.
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