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1 Preliminaries on derived functors.

1.1 A computational definition of right derived functors.

We begin by recalling that a functor between abelian categories F : A → B is called left exact if it takes
short exact sequences (SES) in A

0→ A→ B → C → 0

to exact sequences
0→ FA→ FB → FC

in B. If in fact F takes SES in A to SES in B, we say that F is exact.

Question. Can we measure the “failure of exactness” of a left exact functor?

The answer to such an obviously leading question is, of course, yes: the right derived functors RpF , which
we will define below, are in a precise sense the unique extension of F to an exact functor.

Recall that an object I ∈ A is called injective if the functor

HomA(−, I) : Aop → Ab

is exact. An injective resolution of A ∈ A is a quasi-isomorphism in Ch(A)

A→ I• = (I0 → I1 → I2 → · · · )

where all of the Ii are injective, and where we think of A as a complex concentrated in degree zero. If every
A ∈ A embeds into some injective object, we say that A has enough injectives – in this situation it is a
theorem that every object admits an injective resolution.

So, for A ∈ A choose an injective resolution A→ I• and define the pth right derived functor of F applied to
A by

RpF (A) := Hp(F (I•)).

Remark • You might worry about whether or not this depends upon our choice of injective resolution
for A – it does not, up to canonical isomorphism.

• Since 0→ FA→ FI0 → FI1 is exact, R0F (A) ∼= FA.

If RpF (A) = 0 for p 6= 0, we say that A is F -acyclic.
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1.2 Some examples of derived functors.

I claim that everybody here knows at least one example of a derived functor, since in his talk yesterday on
the Eilenberg-Moore Spectral Sequence, Richard W. introduced Tor groups.1 As some other examples, we
have:

• Sheaf cohomology: Hp(X;F) = RpΓ(F), the right derived functors of global sections

Γ : Sh(X)→ Ab

• Group cohomology: Hp(G;M) = Rp(−)G(M), the right derived functors of taking G-invariants

(−)G : G−Mod→ Ab

• Ext groups: ExtpR(M,N) = RpHomR(M,−)(N), the right derived functors of

HomR(M,−) : R−Mod→ Ab

2 The Grothendieck Spectral Sequence.

2.1 Statement of the Grothendieck Spectral Sequence.

We now know enough to explain what the Grothendieck Spectral Sequence (GSS) is, and what problemn it
is trying to solve. Suppose that A,B and C are abelian categories, and that A and B have enough injectives:
for instance, Ab, R−Mod, Sh(X), OX −Mod for (X,OX) a ringed space. Suppose further that we are given
left exact functors

F : A → B and G : B → C

such that F sends injective objects to G-acyclic objects. Then the GSS tells us how to compose the derived
functors of F and G. Explicitly:

Theorem 2.1. Given the above setup, there exists a convergent (1st quadrant) spectral sequence for every
object A of A,

Ep,q
2 = (RpG ◦RqF )(A)⇒ Rp+q(G ◦ F )(A).

Remark There is a dual (homological) version of this spectral sequence dealing with left-derived functors
of right exact functors between categories with enough projectives, etc.

2.2 Base change for Ext.

In order to actually compute examples of the GSS we will need to specify specific functors to work with. As
a first example, we will consider the base change spectral sequence for Ext.

Suppose that we have a ring homomorphism R→ S, choose N ∈ S −Mod, and consider the functors

R−Mod S −Mod

Ab

HomR(S,−)

HomR(N,−) HomS(N,−)

1This is an example of a left derived functor of the right exact functor of taking tensor product.
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This triangle, commutes, since by tensor-hom adjunction

HomS(N,HomR(S,M)) = HomR(N ⊗S S,M) = HomR(N,M)

and since HomR(S,−) is right adjoint to an exact functor, it preserves injectives. Thus the hypotheses of the
GSS are satisfied, and we have for each M ∈ R−Mod a spectral sequence

Ep,q
2 = ExtpS(N,ExtqR(S,M))⇒ Extp+q

R (N,M).

Example 1. Suppose that S is projective as an R-module. Then ExtqR(S,M) = 0 for q 6= 0, and the spectral
sequence collapses at the E2-page to yield

ExtnR(N,M) ∼= ExtnS(N,HomR(S,M)).

Example 2. Consider the quotient map Z→ Z/nZ, let N ∈ Z/nZ−Mod, and suppose that M is an abelian
group with no n-torsion (so that HomZ(Z/nZ,M) = 0). Then the Ext spectral sequence again collapses at
the E2-page (since there is only the q = 1 row), and we obtain

ExtpZ/nZ(N,Ext1
Z(Z/nZ,M)) ∼= Extp+1

Z (N,M).

Since Ext≥2
Z = 0 and Ext1

Z(Z/nZ,M) = M/nM , this gives

Ext1
Z(N,M) ∼= HomZ/nZ(N,M/nM).

We can interpret this statement as follows: the group extensions of an n-torsion abelian group N by an
n-torsion free abelian group M are parametrised by the homomorphisms2 Hom(N,M/nM).

2.3 Proof of the Grothendieck Spectral Sequence.

We break the proof of the GSS up into three parts. Many details have been discussed in previous talks, and
so are omitted here.

2.3.1 Spectral Sequence of a Filtered Complex.

Suppose that we have a complex C• ∈ Ch(A) and a filtration by subcomplexes

· · · ⊇ F pC• ⊇ F p+1C• ⊇ · · · , d(F pCn) ⊆ F pCn+1.

Assume that the filtration is exhaustive and bounded below. Then there is a spectral sequence

Ep,q
1 = Hp+q(F pC•/F p+1C•)⇒ Hp+q(C•).

This is obtained from the E0-page
Ep,q

0 = F pCp+q/F p+1Cp+q

with all differentials induced by the differentials of the complex C•. We picture this as follows:

F pCp+q F pCp+q+1

F p+1Cp+q F p+1Cp+q+1

F p+2Cp+q F p+2Cp+q+1

...
...

d

where the dashes are the partially defined maps which yield the higher differentials.

2Of abelian groups.



Richard Hughes The Grothendieck Spectral Sequence. 4

2.3.2 Spectral Sequence of a Double Complex.

A double complex is a collection of objects Cp,q ∈ A with differentials

dh : Cp,q → Cp+1,q

dv : Cp,q → Cp,q+1

(dh)2 = (dv)2 = dhdv + dvdh = 0

The condition on the differentials ensures that

Tot(C•,•)n =
⊕

p+q=n

Cp,q, D = dh + dv

is a complex. There are two natural filtrations we an put on this, by truncating (c)olumns or (r)ows of C•,•:

• Truncation of columns:

((c)τ≥pC)i,j =

{
0 i < p,
Ci,j i ≥ p

I.e. the truncation looks like

0 Cp,q+1 Cp+1,q+1

0 Cp,q Cp+1,q

0 Cp,q−1 Cp+1,q−1

< p ≥ p

and yields the filtration
(c)F pTot(C)n =

⊕
i+j=n
i≥p

Ci,j = Tot
(

(c)τ≥pC
)

• Truncation of rows:

((r)τ≥qC)i,j =

{
0 j < q,
Ci,j j ≥ q

I.e. the truncation looks like

Cp−1,q+1 Cp,q+1 Cp+1,q+1

Cp−1,q Cp,q Cp+1,q ≥ q
0 0 0 < q

and yields the filtration
(r)F qTot(C)n =

⊕
i+j=n
j≥q

Ci,j = Tot
(

(r)τ≥qC
)

Let’s focus on the spectral sequence coming from the column filtration. We have d0 differential induced by
D = dh + dv,

(c)Ep,q
0 =(c)F pCp+q/(c)F p+1Cp+q (c)Ep,q+1

0

Cp,q Cp,q+1

d0

' '

dv

So, taking cohomology,
(c)Ep,q

1 = Hq(Cp,•, dv) =: Hq
(v)(C

p,•).

Since dv ≡ 0 on E1, the differential d2 is induced by dh,and so we find that

(c)Ep,q
2 = Hp(Hq

(v)(C
•,•), dh) =: Hp

(h)(H
q
(v)(C

•,•)).
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Similarly, for the row truncated filtration, we find

(r)Ep,q
0

(r)Ep,q+1
0

Cq,p Cq+1,p

'

d0

'

dh

so that
(r)Ep,q

1 = Hq(C•,p, dh) = Hq
(h)(C

•,p)

and
(r)Ep,q

2 = Hp(Hq
(h)(C

•,•), dv) = Hp
(v)(H

q
(h)(C

•,•)).

So applying the spectral sequence of a filtered complex, we get that under nice circumstances (e.g. C•,• first
quadrant), there are spectral sequences

(c)Ep,q
2 = Hp

(h)(H
q
(v)(C

•,•))⇒ Hp+q(Tot(C))

(r)Ep,q
2 = Hp

(v)(H
q
(h)(C

•,•))⇒ Hp+q(Tot(C))

2.3.3 Derivation of the GSS.

We will now construct the GSS by playing these two spectral sequences against each other. Recall the setup:
F : A → B and G : B → C left exact functors, A and B have enough injectives, and F sends injective objects
to G-acyclic objects.

Choose for A ∈ A an injective resolution, A→ I•. Apply F to get F (I•) ∈ Ch−(B). Now, we resolve again
– specifically, we choose a first quadrant Cartan-Eilenberg resolution of F (I•), J•,•, i.e. we choose a double
complex such that

• F (I•)→ J•,0 is a map inducing a quasi-isomorphism for each F (Ip),

• J•,• is a complex of injectives, and

• the induced maps on coboundaries/cohomology induce injective resolutions of the Bp(F (I•)) and
Hp(F (I•)) (e.g. Hq

(h)(J
•,•) is an injective resolution of RqF (A)).

It is a theorem that such resolutions exist. We have

(c)Ep,q
2 = Hp

(h)(H
q
(v)(G(J•,•))⇒ Hp+q(Tot(G(J)))

But Hq
(v)(G(J•,•) = 0 unless q = 0 since F (Ip) is G-acyclic, so the sequence collapses at E2, and converges

to Rp(G ◦ F )(A) with no extension problems. So the other sequence is

(r)Ep,q
2 = Hp

(v)(H
q
(h)(G(J•,•))⇒ Rp+q(G ◦ F )(A)

Now,

Hp
(v)(H

q
(h)(G(J•,•)) = Hp

(v)(G(Hq
(h)(J

•,•)) (since in the CE resolution the kernels of the dh are injective)

= RpG(RqF (A))

where the last equality is because Hq
(h)(J

•,•) is an injective resolution of RqF (A). Putting this together we

obtain the Grothendieck Spectral Sequence

Ep,q
2 = RpG(RqF (A))⇒ Rp+q(G ◦ F )(A).
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3 Application: Leray-Serre Spectral Sequences.

Ernie presented a version of this sequence on Wednesday – the version I give will look a little more general,
as I will consider more general maps and will allow coeffiecients in any sheaf. I will finish by applying
Leray-Serre to a particular setup in algebraic geometry, and will derive some geometric consequences.

3.1 Rediscovering Leray-Serre.

Consider a map of topological spaces

X B

∗

f

with the unique maps to the one point space shown explicitly. Pushforward to a point is exactly the functor
of global sections, so we obtain a commutative diagram of functors

Sh(X) Sh(B)

Ab

f∗

Γ Γ

where Sh(X) is the category of sheaves of abelian groups on X. These functors are all left exact, because
they are right adjoints. Moreover, since f−1 (the left adjoint to f∗) is exact, one can show that f∗ sends
injectives to injectives. So from the GSS we obtain a spectral sequence for any F ∈ Sh(X),

Ep,q
2 = Hp(B;Rqf∗F)⇒ Hp+q(X;F)

We can recover the version of Leray-Serre described by Ernie as follows: suppose f is a fibration with fibre
F . Rqf∗F is the sheafification of

U 7→ Hq(f−1(U);F(f−1(U)))

and f−1(U) ' F for small enough U . Assuming further that F = GX is a constant sheaf, that F is
connected, and that the monodromy of the pushforward is trivial, we may identify Rqf∗F as the constant
sheaf Hq(F ;G)B , so that

Ep,q
2 = Hp(B;Hq(F ;G))⇒ Hp+q(X;G)

as in Ernie’s talk.

3.2 Leray-Serre in algebraic geometry.

To finish up, let us now extract some geometric information from this spectral sequence. Let f : X → B
be a map of noetherian schemes over a field k (or of complex analytic manifolds)3. Suppose further that
char(k) = 0, that B is normal, and that f is a faithfully flat proper morphism with geometrically connected
fibres: for instance X could be a flat family of projective varieties over a smooth base B. Then f∗OX = OB .

Consider the sheaf O×X ∈ Sh(X). The first right derived functor R1f∗O×X is the sheafification of

U 7→ H1(f−1(U);O×f−1(U)) = Pic(f−1(U))

and so carries information about line bundles along the fibres of f : it is called the relative Picard sheaf.

Then looking at the terms which converge to H1, the Leray-Serre spectral sequence says, roughly, that
“H1(X;O×X) = Pic(X) can be approximated by H1(B;O×B) = Pic(B) and H0(B;R1f∗O×X)”, or in plain

3Here I will be agnostic in notation as to whether we are working in the étale or analytic topologies.



Richard Hughes The Grothendieck Spectral Sequence. 7

language, that “a line bundles on X is approximated by a line bundle on the base B together with a line
bundle along the fibres”.

More than this, however, the spectral sequence tells us precisely how these pieces fit together. The five-term
exact sequence (which we did not discuss, but whose derivation should be considered an exercise) is

0→ E1,0
2 → H1 → E0,1

2 → E2,0
2 → H2

which in the case we are considering becomes

0→ Pic(B)→ Pic(X)→ H0(B;R1f∗O×X)→ H2(B;O×B)→ H2(X;O×X)

Note that there are potential obstructions to gluing “fibrewise defined” line bundles into line bundles on X,
which lie in H2(B;O×B). These obstructions have a geometric incarnation as “O×-gerbes” (which is a story
for another time).
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