$$
\text { M361K - Spring } 2022 \text { - Rusin - HW2 - due 11:59pm Feb } 9
$$

1. The axioms for the real numbers don't assume an operation called "division". Instead, we use the notation "a/b" to mean "the product of a and the (unique) multiplicative inverse of b ", i.e. $a \cdot b^{-1}$.

Prove that for all nonzero real numbers a, b, c, d we have

$$
\left(\frac{a}{b}\right) \cdot\left(\frac{c}{d}\right)=\frac{a \cdot c}{b \cdot d}
$$

2. Prove that if $a, b, c, d>0$ then $(a+c) /(b+d)$ lies between a / b and c / d.
3. Prove that if $f: \mathbf{R} \rightarrow \mathbf{R}$ is a function for which the following are true

$$
\begin{gathered}
\text { for every } x, y \in \mathbf{R}, f(x+y)=f(x)+f(y) \\
\text { for every } x, y \in \mathbf{R}, f(x \cdot y)=f(x) \cdot f(y)
\end{gathered}
$$

then $f(x)=x$ for every rational number x.
(Hint: First prove that $f(x)=x$ for $x=0$ and $x=1$. Then prove it by induction for every $x \in \mathbf{N}$, and then for every $x \in \mathbf{Z}$.)

It is an interesting question to ask whether there can exist such functions f for which there are any real numbers x with $f(x) \neq x$. Remember that all the axioms for \mathbf{R} (other than Completeness) are satisfied by other structures, and for some of these other structures, the answer is "yes". Here's an example. Let X be the set \mathbf{Q}^{2} of ordered pairs of rational numbers (a, b); define addition by $(a, b)+\left(a^{\prime}, b^{\prime}\right)=\left(a+a^{\prime}, b+b^{\prime}\right)$ but define multiplication by $(a, b) \times(c, d)=(a c+2 b d, a d+b c)$. (In effect, $(0,1)$ is " $\sqrt{2}$ " and these are the numbers $a+b \sqrt{2}$.) Then the function defined by $f(a, b)=(a,-b)$ satisfies the conditions of problem 1 , but is not the identity function.
4. Let $\mathbf{R}[X]$ denote the set of polynomials in one variable X, having real coefficients. Let P be the set of polynomials whose leading coefficient is positive, and assume addition and multiplication are defined on usual. Which axioms for the real numbers does $R[X]$ violate?
(If you prefer, you may use the symbol ∞ instead of X; do you see why this is appropriate?)

You may wish to think about whether it is possible to modify the set $\mathbf{R}[X]$ so that it does satisfy the axioms for the real numbers.
5. Proce that this is a metric space

$$
X=\mathbf{Z} \quad \text { and } \quad d(x, y)=\frac{1}{2^{n}} \quad \text { where } \quad|x-y|=2^{n} m \quad \text { with } m \text { odd }
$$

6. (Important) Recall that in any metric space X, a subset $U \subseteq X$ is called open if it is a union of balls in X. (A ball is a set

$$
B_{r}(a)=\{x \in X \mid d(x, a)<r\}
$$

for any real r and any $a \in X$.)
Show that a set U is open if and only if

$$
\forall u \in U \exists r>0\left(B_{r}(u) \subseteq U\right)
$$

Extra Credit. Since \mathbf{Q} is a countable set, list the rational numbers in any order:

$$
\mathbf{Q}=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}
$$

Let $U=\bigcup_{n=1}^{\infty} B_{2^{-n}}\left(x_{n}\right)$, which is an open set.
(a) Show U contains every rational number.
(b) Show U does not contain every real number. (Hint: How big of a subset of the real line could U be?)

