
The antidifferentiation problem ∫
6 dx

x
√
x2 + 4

gives us an opportunity to review many useful techniques.
First, since you see the square root of a quadratic polynomial, you should consider

the use of a trig substitution. Please review section 7.3 until you feel comfortable that
x = 2 tan(u) is the most reasonable choice. After that, you should be able to confidently
complete the substitution process that removes every x and dx in favor of u and du; in
this example that should result in

3

∫
sec(u)

tan(u)
du.

Make sure you practice substitutions (in both forms “Let u = . . .” and “Let x = . . .”) until
that step flows naturally, quickly, and accurately.

Now you have a trigonometric integral: a product (or quotient) of powers of the six
basic trig functions. These are discussed in section 7.2 and you should practice a lot of these
too because this is a family of functions that you will always be able to antidifferentiate.
The first step I recommend is to write the integrand as a product of powers of sines and
cosines only. (In this course we will never give a trig integration problem that cannot be
so transformed, possibly using trig identities and the other tools of chapter 7.) In this
example the integral may be written

3

∫
1

sin(u)
du = 3

∫
(sin(u))m(cos(u))n du

where in our case m = −1 and n = 0.

You have a couple of options at this point. Some students prefer to memorize the
formula ∫

csc(u) du = ln(| csc(u)− cot(u)|) + C

which is correct and fast. The only drawback to this one is that it is not at all obvious
that it’s even true, and it’s easy to memorize wrong (especially with the negative sign in
there). It might be a little easier to memorize the similar integral∫

sec(u) du = ln(| sec(u) + tan(u)|) + C

correctly, and our integral can be transformed to this one with the substitution u = π
2 − v.

What I showed you in class today was an alternative that covers more such cases in
a uniform way, but you should expect that any time you see a tool that can do a lot of
things, it’s not going to do them all equally efficiently. This approach will handle all these
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integrands (sin(u))m(cos(u))n uniformly, using a substitution. Here are the three cases I
showed you today:

If m is odd, let v = cos(u).
If n is odd, let v = sin(u).
If m + n is even, let v = tan(u).

(Every combination of m and n is covered by one of these cases; when m and n are both
odd, then any of the three substitutions may be used.) In our case we let v = cos(u) to
obtain the integral

−3

∫
dv

sin2(u)
= −3

∫
dv

1− cos2(u)
= −3

∫
dv

1− v2

This result is typical: you will always be led to a rational function of v to integrate, if you
use the substitutions above (and use some trig identities).

In section 7.4 you will learn how to antidifferentiate any rational function, so this is
cause for optimism. Right at this moment you haven’t learned those tools, so I had to give
you the additional piece of information that

1

v2 − 1
=

1
2

v − 1
−

1
2

v + 1

which you might not have expected but which you should at least be able to verify is true.
With that piece of information you should then be able to antidifferentiate

−3

∫
dv

1− v2
=

3

2

∫
dv

v − 1
− 3

2

∫
dv

v + 1
=

3

2
ln |v − 1| − 3

2
ln |v + 1|+ C

At that point you have nearly finished the calculus part of this problem. You are
obligated, after every use of Substitution, to express your answer in terms of the original
variables: recall that v = cos(u) and u = arctan(x/2), so our answer is legitimately
expressed as∫

6 dx

x
√
x2 + 4

=
3

2
ln |cos(arctan(x/2))− 1| − 3

2
ln |cos(arctan(x/2)) + 1|+ C

Everything else we did is just an attempt to make the answer more attractive (which
is to say more useful). You should certainly be comfortable drawing little right triangles
to simplify any trig(arctrig(z)) combinations; in this case cos(arctan(x/2)) = 2/

√
x2 + 4.

And you should be able to combine logarithms to get

3

2
ln

∣∣∣∣∣ (2/
√
x2 + 4)− 1

(2/
√
x2 + 4) + 1

∣∣∣∣∣
Less obvious is the trickery that comes from experience: we may rewrite the argument of
the logarithm in a couple of ways:

(A− 1)/(A + 1) = (A2 − 1)/(A + 1)2 = (A− 1)2/(A2 − 1)
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which is a reasonable thing to do only because in our case, |A2−1| = x2/(x2 +4), allowing
us to use the formula ln(B2) = 2 ln(|B|) to express our answer as either of these:

3 ln

∣∣∣∣ x

(2 +
√
x2 + 4)

∣∣∣∣ = 3 ln

∣∣∣∣∣ (2−
√
x2 + 4)

x

∣∣∣∣∣
I hope you can agree that these expressions really are algebraically equivalent, and I
think you will agree that they are prettier than the answer we had at the end of the last
paragraph. So you could get to this point, and you should want to get to this point, but
it’s not really a component of our course that you be expected to get this point.

I do want to emphasize another point I stressed in class today: whichever complicated
technique you have used to compute your antiderivative, you really should check that it’s
right by using an alternative computation, namely, compute the derivative of your answer
and make sure you get 6/(x

√
x2 + 4). If your algebra is not up to the task, well, maybe

you should practice your algebra! But just in the privacy of your own home, you can
always get convincing confirmation that you have computed a function that’s equal to
some other function (even if you don’t see how to prove it algebraically) by simply asking
your calculator to graph the difference between the two functions. A straight line means
the difference in constant (including the case when the difference is zero).
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